首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
OBJECTIVE: To evaluate genetic and metabolic predispositions and nutritional risk factors for development of pasture-associated laminitis in ponies. DESIGN: Observational cohort study. ANIMALS: 160 ponies. PROCEDURES: A previous diagnosis of laminitis was used to differentiate 54 ponies (PL group) from 106 nonlaminitic ponies (NL group). Pedigree analysis was used to determine a mode of inheritance for ponies with a previous diagnosis of laminitis. In early March, ponies were weighed and scored for body condition and basal venous blood samples were obtained. Plasma was analyzed for glucose, insulin, triglycerides, nonesterified fatty acids, and cortisol concentrations. Basal proxies for insulin sensitivity (reciprocal of the square root of insulin [RISQI]) and insulin secretory response (modified insulin-to-glucose ratio [MIRG]) were calculated. Observations were repeated in May, when some ponies had signs of clinical laminitis. RESULTS: A previous diagnosis of laminitis was consistent with the expected inheritance of a dominant major gene or genes with reduced penetrance. A prelaminitic metabolic profile was defined on the basis of body condition, plasma triglyceride concentration, RISQI, and MIRG. Meeting > or = 3 of these criteria differentiated PL- from NL-group ponies with a total predictive power of 78%. Determination of prelaminitic metabolic syndrome in March predicted 11 of 13 cases of clinical laminitis observed in May when pasture starch concentration was high. CONCLUSIONS AND CLINICAL RELEVANCE: Prelaminitic metabolic syndrome in apparently healthy ponies is comparable to metabolic syndromes in humans and is the first such set of risk factors to be supported by data in equids. Prelaminitic metabolic syndrome identifies ponies requiring special management, such as avoiding high starch intake that exacerbates insulin resistance.  相似文献   

2.
OBJECTIVE: To measure concentrations of amines formed in the cecum of clinically normal ponies, determine amine concentrations in plasma samples collected in spring and winter, and compare concentrations of amines and serotonin in plasma samples obtained from clinically normal ponies and ponies predisposed to laminitis. SAMPLE POPULATION: Cecal contents obtained from 10 ponies euthanatized at an abattoir and blood samples obtained from 42 adult ponies. PROCEDURE: Cecal contents were assayed for amines by high-performance liquid chromatography (HPLC). Blood samples were collected at various times of the year from 20 ponies predisposed to acute laminitis and 22 clinically normal ponies. Plasma serotonin concentration was measured by HPLC, and tryptamine (TRP), tyramine (TYR), phenylethylamine (PEA), and isoamylamine (IAA) were measured by liquid chromatography-mass spectrometry. RESULTS: 15 amines were identified in cecal contents. Plasma TRP, TYR, PEA, and IAA concentrations ranged from 10pM to 100nM in both groups of ponies. Plasma concentrations of serotonin or other amines did not differ between clinically normal ponies and those predisposed to laminitis; however, significantly higher concentrations of TRP, PEA, and IAA were found in samples obtained in the spring, compared with winter samples. CONCLUSIONS AND CLINICAL RELEVANCE: Various amines are found in the cecum of ponies, several of which can be detected in the plasma. Concentrations increase significantly in the spring and may reach concentrations close to the threshold for causing vasoconstriction. Release of amines from the cecum into the systemic circulation may contribute to hemodynamic disturbances in horses and ponies with acute laminitis.  相似文献   

3.
OBJECTIVE: To determine whether pasture, and specifically the addition of fructan carbohydrate to the diet, induces exaggerated changes in serum insulin concentration in laminitispredisposed (LP) ponies, compared with ponies with no history of the condition, and also to determine insulin responses to the dexamethasone suppression test. DESIGN: Prospective study. ANIMALS: 10 LP and 11 control adult nonobese mixed-breed ponies. PROCEDURES: Insulin-modified IV glucose tolerance tests were performed (5 ponies/group). In diet studies, ponies were kept on pasture and then changed to a hay diet (10 ponies/group). Second, ponies were maintained on a basal hay diet (4 weeks) before being fed a hay diet supplemented with inulin (3 g/kg/d [1.4 g/lb/d]). Serum insulin and plasma glucose concentrations were analyzed before and after dietary changes. Serum cortisol and insulin concentrations were also measured in a standard dexamethasone suppression test. RESULTS: The LP ponies were insulin resistant (median insulin sensitivity of 0.27 x 10(4) L min(-1) mU(-1) in LP ponies, compared with 0.64 x 10(4) L min(-1) mU(-1) in control ponies). Median insulin concentration in LP ponies was significantly greater than that in control ponies at pasture, decreased in response to feeding hay, and was markedly increased (5.5-fold) following the feeding of inulin with hay. The LP ponies had a greater increase in serum insulin concentration at 19 hours after dexamethasone administration (median, 222.9 mU/L), compared with control ponies (45.6 mU/L). CONCLUSIONS AND CLINICAL RELEVANCE: Nonobese ponies predisposed to develop laminitis had compensated insulin resistance, and this phenotype was revealed by feeding plant fructan carbohydrate or by dexamethasone administration.  相似文献   

4.
Pasture-induced laminitis in the horse is associated with the overconsumption of fermentable carbohydrate, in the form of simple sugars, fructans, or starch. The fermentation of carbohydrate in the cecum and large intestine results in the production of lactic acid and other toxins or "laminitis trigger factors." Vasoactive amines have been suggested as possible initiating factors. The aim of this study was to feed a commercially available form of fructan carbohydrate (inulin, 3 g/kg of BW per day) to normal ponies and to ponies predisposed to laminitis, to mimic a change from a basal hay diet to lush spring-summer pasture. Five normal and 6 laminitis-prone, native-breed ponies were acclimated to a basal hay diet before the inclusion of inulin and chopped dried grass. Blood samples, fecal samples, and foot temperature measurements were taken throughout the study. Amines were measured in the feces and plasma by HPLC and liquid chromatography-mass spectrometry, respectively. The pH of the fecal samples decreased from 6.89 +/- 0.11 on the hay diet to a minimum of 6.18 +/- 0.11 with the addition of inulin (P <0.05). An increase was observed in the fecal concentrations of a number of amines, including tryptamine (2.5-fold increase, P <0.05) and tyramine (2-fold increase, P <0.05). No changes were noted in plasma amine concentrations or plasma D- or L-lactate, indicating that there may be a threshold of hindgut pH change before mucosal damage can result in the release of these factors into the circulation. No differences in pH or any of the measured compounds were observed between the group of normal ponies and those predisposed to laminitis. This indicates that differences in the intestinal microflora do not account for this predisposition. However, the results from this study indicate that moderate increases in dietary fructan carbohydrate can produce increases in bacterial fermentation products and other compounds in the large intestine, which may be relevant to the pathogenesis of acute laminitis in ponies on pasture.  相似文献   

5.
Reasons for performing study: The ability to predict ponies at increased risk of laminitic episodes, when exposed to nutrient dense pasture, would facilitate management to avoid disease. Objectives: To identify variables and clinically useful cut‐off values with reproducible diagnostic accuracy for the prediction of ponies that subsequently developed laminitis when exposed to nutrient dense pasture. Methods: A cohort of predominantly Welsh and Dartmoor ponies from a closed herd was evaluated in March 2006 (n = 74) and March 2007 (n = 57). Ponies were categorised as never laminitic or previously laminitic according to reported laminitic history and as clinically laminitic (CL) if laminitis was observed within 3 months following evaluation. Body condition score (BCS), cresty neck score (CNS), girth and neck circumferences (NC), withers height, blood pressure and hoof surface temperature, and plasma insulin, glucose, triglyceride, leptin, cortisol, ACTH, uric acid and TNF‐α concentrations were measured. Analysis of sensitivity, specificity and receiver operating characteristic curves was used to evaluate the diagnostic accuracy for a variable to predict CL ponies. Results: Variables with diagnostic accuracy for the prediction of CL ponies included insulin, leptin, BCS, CNS, and NC:height ratio. Specific cut‐off values of insulin (>32 mu/l), leptin (>7.3 ng/ml), BCS (≥7), CNS (≥4) and NC:height ratio (>0.71) had reproducible diagnostic accuracy for the prediction of laminitis. Combining tests did not result in higher diagnostic accuracy than individual tests of insulin or leptin during either evaluation. Conclusions: Tests of insulin and leptin concentrations and measures of generalised (BCS) and localised (CNS or NC:height ratio) obesity were beneficial in the prediction of laminitic episodes. Potential relevance: These results highlight the importance of monitoring and reducing insulin concentration, and generalised and regional obesity in ponies to reduce risk of laminitis.  相似文献   

6.
Identification of ponies (Equus caballus) at increased risk of pasture-associated laminitis would aid in the prevention of the disease. Insulin resistance has been associated with laminitis and could be used to identify susceptible individuals. Insulin resistance may be diagnosed by feeding supplementary water-soluble carbohydrate (WSC) and measuring blood glucose and insulin concentrations. The aim of this study was to assess the glycemic and insulinemic responses of 7 normal (NP) and 5 previously laminitic (PLP), mixed breed, native UK ponies fed glucose, fructose, and inulin [1 g/(kg(.)d) for 3 d] or no supplementary WSC (control) in spring and fall after a 7-d adaptation to a pasture or hay diet. Blood samples were taken for 12 h after feeding on each day, and baseline and peak concentrations and area under the curve (AUC) for glucose and insulin were recorded. Linear mixed models were used for statistical analysis. Differences between PLP and NP groups were most marked after glucose feeding with differences in peak glucose (P = 0.02) and peak insulin (P = 0.016) concentrations. Season and diet adaptation also affected results. Peak concentrations of glucose and insulin occurred 2 to 4 h after WSC feeding. Peak insulin concentration was greater and more variable in fall, particularly in PLP adapted to fall pasture. Baseline glucose and insulin concentrations varied between individuals and with season and diet adaptation but were not greater in PLP than NP. Insulin AUC was greater in PLP than NP after feeding both glucose and fructose (P = 0.017), but there were no differences between PLP and NP in glucose AUC. Glycemic and insulinemic changes were less (P ≤ 0.05) after feeding fructose than glucose, although differences between PLP and NP were still evident. Minimal changes in glucose and insulin concentrations occurred after inulin feeding. Measurement of peak insulin 2 h after feeding of a single dose of glucose (1 g/kg) may be a simple and practical way to aid identification of laminitis-prone ponies before the onset of clinical disease, particularly when ponies are adapted to eating fall pasture.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Elevated plasma homocysteine (HCy) concentration is a risk factor for cardiovascular diseases associated with endothelial dysfunction, including the human digital ischaemic disease, Raynaud's phenomenon. HYPOTHESIS: HCy causes dysfunction of equine vascular endothelium and elevated plasma concentrations predispose to laminitis. OBJECTIVES: To determine 1) the concentration of HCy in vitro, which inhibits equine vascular endothelial cell function and 2) any association between risk of laminitis and plasma HCy concentration. METHODS: Endothelial function was studied by measuring endothelium-dependent vasodilatory responses of the equine isolated perfused digit and basal nitric oxide (NO) production by cultured equine digital vein endothelial cells (EDVECs). Total plasma HCy (tHCy) concentrations were measured in samples collected in the winter and spring from normal ponies and ponies predisposed to laminitis. RESULTS: HCy (10 and 100 micromol/l) inhibited endothelial function and, at concentrations above 100 micromol/l, inhibited NO production by EDVECs. Plasma tHCy concentration ranged from 13 to 14.7 micromol/l. There was no effect of season or disease status on the concentration measured. CONCLUSIONS: In vitro, HCy was shown to interfere with endothelial cell function at physiologically relevant concentrations. No evidence was found for an association between risk of laminitis and high plasma concentrations of HCy. POTENTIAL RELEVANCE: Elevated plasma HCy concentrations could adversely affect endothelial cell function and mangement regimens that lead to increases in plasma HCy concentration should be avoided in ponies predisposed to laminitis.  相似文献   

8.
Equine metabolic syndrome (EMS) is important because of its association with laminitis. Obesity and insulin resistance are two important components of EMS, and the underlying cause of this syndrome is likely to be enhanced metabolic efficiency. Affected horses are often referred to as “easy keepers” because they require fewer calories to maintain body condition, and enhanced metabolic efficiency is an inherent risk factor for EMS that may be genetically determined. Pony breeds, Morgan horses, and Paso Finos are predisposed to EMS, but this problem can be prevented through effective management. Overfeeding, abundant pasture grass, and inadequate exercise are risk factors that relate to modern management practices. Obesity and adiposity induce insulin resistance, and recent research suggests that this is the determinant of laminitis susceptibility in ponies. Increased plasma insulin concentrations are detected in most affected horses and ponies, so this serves as a useful screening test for EMS. Physical characteristics also should be examined because horses with EMS exhibit regional adiposity in the form of a cresty neck or abnormal adipose tissue deposits close to the tailhead. All horses with enhanced metabolic efficiency, obesity, or regional adiposity should be screened for EMS. The combined intravenous glucose−insulin test can be performed to diagnose insulin resistance in mildly affected horses and quantify insulin sensitivity. Most horses with EMS can be effectively managed by reducing caloric intake, decreasing the starch and sugar content of the diet, increasing exercise, and limiting or eliminating access to pasture, but medical therapy is warranted in select cases.  相似文献   

9.
10.
Reasons for performing study: Insulin resistance may be a risk factor for pasture‐associated laminitis. Diagnosis of insulin resistance could help identify individuals at increased risk of laminitis. Objective: To calculate proxy measurements of insulin sensitivity (reciprocal of the square root of insulin: RISQI and quantitative insulin sensitivity check index: QUICKI) and insulin secretory response (modified insulin‐to‐glucose ratio: MIRG) based on basal glucose and insulin concentrations in normal (NP) and previously laminitic (PLP) ponies. Methods: Proxies were calculated in 7 NP and 5 PLP from 20 separate measurements of insulin and glucose taken in spring, summer and winter when ponies were adapted to eating either pasture or hay. Proxies were RISQI: Insulin‐0.5, QUICKI: 1/(log[fasting Insulin]+ log[fasting Glucose]) and MIRG: (800?0.3×[Insulin‐50]2)/[Glucose‐30]. A modified insulin‐to‐glucose ratio for ponies (MIGRP) was investigated using: (3000?0.012 ×[Insulin‐500]2)/[Glucose‐30]. Statistical analysis used linear mixed models. Results: Diet did not significantly affect measurements, so values were pooled for further analysis. RISQI (mean ± s.d.) was lower in PLP (0.26 ± 0.15 [mu/l]‐0.5) than NP (0.29 ± 0.12 [mu/l]‐0.5; P = 0.05). QUICKI was lower in PLP (0.31 ± 0.05) than NP (0.33 ± 0.04; P = 0.047). There was no difference in MIRG between NP and PLP. MIGRP (median [interquartile range]) was greater in PLP (4.0 [7.9][muins]2/10·l·mggluc) than NP (2.6 [3.2][muins]2/10·l·mggluc; P = 0.022). In spring, NP had higher RISQI and QUICKI and lower MIGRP than PLP (P<0.001). In PLP, RISQI and QUICKI were higher in summer than spring (P<0.02) and MIGRP was lower in summer than other seasons (P<0.01). In NP, RISQI, QUICKI and MIGRP were each different between seasons (P<0.017). MIRG did not vary with season. Conclusions: RISQI, QUICKI and MIGRP, but not MIRG, differentiated between NP and PLP. None of the proxies accurately identified individual PLP. Seasonal changes in insulin sensitivity and insulin secretory response were apparent. Potential relevance: Current proxy measurements cannot determine an individual's laminitis susceptibility. MIGRP may be useful in hyperinsulinaemic animals.  相似文献   

11.
The purpose of this study was to determine the effects of prolonged administration of insulin, whilst maintaining normal glucose concentrations, on hoof lamellar integrity in vivo on healthy ponies with no known history of laminitis or insulin resistance. Nine clinically healthy, unrelated ponies were randomly allocated to either a treatment group (n =5; 5.9+/-1.7 years) or control group (n =4; 7.0+/-2.8 years). The treatment group received insulin via a euglycaemic hyperinsulinaemic clamp technique modified and prolonged for up to 72 h. Control ponies were infused with an equivalent volume of 0.9% saline. Ponies were euthanized at the Obel grade 2 stage of clinical laminitis and hoof lamellar tissues were harvested and examined for histopathological evidence of laminitis. Basal serum insulin and blood glucose concentrations were 15.7+/-1.8 microU/mL and 5.2+/-0.1 mmol/L, respectively (mean+/-SE) and were not significantly different between groups. Mean serum insulin concentration in treatment ponies was 1036+/-55 microU/mL vs. 14.6 microU/mL in controls. All ponies in the treatment group developed clinical and histological laminitis (Obel grade 2) in all four feet within 72 h (55.4+/-5.5h), whereas none of the control ponies developed laminitis. There was no clinical evidence of gastrointestinal involvement and the ponies showed no signs of systemic illness throughout the experiment. The data show that laminitis can be induced in healthy young ponies, with no prior history of laminitis, by maintaining prolonged hyperinsulinaemia with euglycaemia. This suggests a role for insulin in the pathogenesis of laminitis, independent of hyperglycaemia, or alterations in hind-gut fermentation. For the clinician, early detection and control of hyperinsulinaemia may facilitate management of endocrinopathic laminitis.  相似文献   

12.
Laminitis is a painful, inflammatory disease of the equine hoof that often results in euthanasia. Elevated plasma insulin concentrations are a predictive factor for laminitis, and in previously healthy horses and ponies, laminitis was induced by infusion of insulin. Thus, we chose to determine if an infusion of insulin would increase plasma concentrations of inflammatory cytokines and cytokine mRNA abundance in subcutaneous adipose tissue, skeletal muscle, and white blood cells. Ten mature Thoroughbred mares received an insulin infusion that elevated plasma insulin concentrations for 6h or an equivalent volume of isotonic saline in a switchback design. Insulin infusion altered plasma concentrations of both TNF (P=0.037) and IL-6 (P=0.044), but did not result in consistent changes to either skeletal muscle or adipose tissue cytokine mRNA. Insulin may be involved in the production of inflammatory cytokines, and this could be a mechanism for insulin increasing the risk of laminitis.  相似文献   

13.
A high basal plasma or serum insulin concentration is commonly accepted as an indicator of Cushing's disease in horses. The results of the combined dexamethasone suppression test and thyrotropin-releasing hormone stimulation test were compared with the basal insulin concentrations and insulin response tests of eight hyperinsulinaemic and insulin-resistant ponies with clinical histories of chronic or recurrent laminitis that were suspected of having Cushing's disease. Seven of the eight ponies had normal responses to the combined test indicating that basal insulin concentrations are not a specific indicator of the disease.  相似文献   

14.
15.
Background: Pituitary pars intermedia dysfunction (PPID) is a risk factor for pasture‐associated laminitis, which follows a seasonal pattern. Hypothesis: Hormonal responses to season differ between PPID and unaffected horses. Animals: Seventeen horses aged 8–30 years (14 horses ≥ 20 years of age). Methods: Longitudinal observational study. Blood was collected monthly from August 2007 until July 2008 after pasture grazing and again after overnight stall confinement. Blood hormone and metabolite concentrations were measured and pasture grass samples were analyzed to determine carbohydrate content. Analysis of variance analysis for repeated measures was performed. Results: Mean ACTH concentrations varied significantly over time (P < .001), with higher concentrations detected in August, September, and October compared with November–April. Pasture × time effects were detected for glucose and insulin concentrations, with peaks observed in September. Horses were retrospectively allocated to PPID (n = 8) and control (n = 9) groups on the basis of plasma ACTH concentrations. Changes in insulin concentrations over time differed in the PPID group when compared with the control group. Insulin concentrations were positively correlated with grass carbohydrate composition. Conclusions and Clinical Importance: PPID did not affect the timing or duration of the seasonal increase in ACTH concentrations, but higher values were detected in affected horses. Insulin concentrations differed between groups, but hyperinsulinemia was rarely detected. Glucose and insulin concentrations peaked in September when horses were grazing on pasture, which could be relevant to the seasonal pattern of laminitis.  相似文献   

16.
Reasons for performing study: Anatomical changes in the hoof lamellar tissue induced by prolonged hyperinsulinaemia have not been described previously. Analysis of the induced lesions may promote understanding of hyperinsulinaemic laminitis pathogenesis and produce clinical benefit. Objectives: To use light and transmission electron microscopy (TEM) to document hoof lamellar lesions in ponies clinically lame after prolonged hyperinsulinaemia. Methods: Nine clinically normal, mature ponies were allocated randomly to either a treatment group (n = 5) or control group (n = 4). The treatment group received insulin via a modified, prolonged euglycaemic hyperinsulinaemic clamp technique (EHCT) and were subjected to euthanasia when clinical signs of Obel grade II laminitis occurred. The control group was sham treated with an equivalent volume of 0.9% saline and killed at 72 h. Lamellar tissues of the right front feet were harvested and processed for TEM. Results: Lamellae from insulin treated ponies were attenuated and elongated with many epidermal basal cells (EBC) in mitosis. Unlike carbohydrate induced laminitis in horses there was no global separation at the lamellar dermal/epidermal interface among ponies. Sporadic EBC basement membrane (BM) separation was associated with the proximity of infiltrating leucocytes. In 2 ponies, the lamellar BM was thickened. The number of hemidesmosomes/μm of BM was decreased in all insulin treated ponies. Conclusions: Prolonged hyperinsulinaemia causes unique lamellar lesions normally characteristic of acute and chronic laminitis. Lamellar proliferation may be an insulin effect through its mitogenic pathway. Aberrant lamellar mitosis may lengthen and weaken the lamellar, distal phalanx attachment apparatus and contribute to the clinical signs that developed. Potential relevance: The study shows that insulin alone, in higher than normal circulating concentrations, induces profound, changes in lamellar anatomy. Medical control of insulin resistance and hyperinsulinaemia may ameliorate lesions and produce clinical benefit.  相似文献   

17.
Twelve Shetland ponies were fed a high-starch ration. Seven ponies which had a transitory metabolic acidosis developed laminitis 56 hours (+/- 3.5, SEM) after overfeeding. These ponies also developed persistent hypokalemia, hyperthermia, and increased heart rate 24 hours before the onset of lameness. Serum sodium, serum chloride, hematocrit, plasma volume, and blood volume were unchanged. At the onset of clinical signs of laminitis, cardiac output and blood pressure increased, but total peripheral resistance was unchanged. None of the measured or calculated values predicted the onset of laminitis. Hypertension appeared to be a response to, rather than a cause of, lameness. Three of the remaining ponies apparently died of shock 29.3 +/- 2.7 hours after overfeeding. All 3 had severe metabolic acidosis; decreased cardiac output, systemic arterial pressure, and plasma volume; and increased hematocrit, total peripheral resistance, and pulmonary vascular resistance. The 11th pony was unaffected and the 12th pony was euthanatized.  相似文献   

18.
Reasons for performing study: Several conditions associated with laminitis in horses are also associated with insulin resistance, which represents the failure of glucose uptake via the insulin‐responsive glucose transport proteins in certain tissues. Glucose starvation is a possible mechanism of laminitis, but glucose uptake mechanisms in the hoof are not well understood. Objectives: To determine whether glucose uptake in equine lamellae is dependent on insulin, to characterise the glucose transport mechanism in lamellae from healthy horses and ponies, and to compare this with ponies with laminitis. Methods: Study 1 investigated the effects of insulin (300 µU/ml; acute and 24 h) and various concentrations of glucose up to 24 mmol/l, on 2‐deoxy‐D‐[2,6‐3H]glucose uptake in hoof lamellar explants in vitro. Study 2 measured the mRNA expression of GLUT1 and GLUT4 transport proteins by PCR analysis in coronary band and lamellar tissue from healthy horses and ponies, ponies with insulin‐induced laminitis, and ponies suffering from chronic laminitis as a result of equine Cushing's syndrome. Results: Glucose uptake was not affected by insulin. Furthermore, the relationship between glucose concentration and glucose uptake was consistent with an insulin‐independent glucose transport system. GLUT1 mRNA expression was strong in brain, coronary band and lamellar tissue, but was weak in skeletal muscle. Expression of GLUT4 mRNA was strong in skeletal muscle, but was either absent or barely detectable in coronary band and lamellar tissue. Conclusions: The results do not support a glucose deprivation model for laminitis, in which glucose uptake in the hoof is impaired by reduced insulin sensitivity. Hoof lamellae rely on a GLUT1‐mediated glucose transport system, and it is unlikely that GLUT4 proteins play a substantial role in this tissue. Potential relevance: Laminitis associated with insulin resistance is unlikely to be due to impaired glucose uptake and subsequent glucose deprivation in lamellae.  相似文献   

19.
Glucose tolerance and insulin sensitivity in ponies and Standardbred horses   总被引:3,自引:0,他引:3  
The existence of an innate insulin insensitivity in ponies was investigated and compared with the situation in larger breeds of horse. Ponies that were fat or had previously suffered laminitis were found to be far more intolerant to oral glucose loading (1 g/kg bodyweight [bwt]) than normal ponies or Standardbreds. These ponies also exhibited a far greater response in plasma insulin levels after glucose loading. Insulin response tests (0.4 iu/kg bwt insulin intravenously) showed only a minimal and very protracted response in both the fat and laminitic groups. The relevance of these findings in regulation of carbohydrate and lipid metabolism, and their role in the pathogenesis of hyperlipaemia, are discussed.  相似文献   

20.
To investigate the influence of overweight and dietary fat supplementation on lipid and insulin glucose metabolism of Shetland ponies, eight Shetland pony geldings were fed a hypercaloric (30 MJ DE/150 kg bwt. and day) fat diet (10% fat as soybean oil) or a carbohydrate control diet for nine months until ponies gained an overweight of 15%. Afterwards oral glucose tolerance tests (oGTT; 5, 6 mmol/kg bwt.) were performed after a 12 hour fast and after a fast which led to an increase of plasma triglyceride concentrations to a threshold of 3 mmol/l (36-65 hrs.). Plasma concentrations of glucose, insulin, triglycerides and non esterified fatty acids (NEFA) were determined for 480 minutes after the glucose load. Ponys having had received the control diet tended to a higher insulin secretion in case of both oGTTs, whereas the glucose tolerance was similar in both groups but lower than in ponies of normal weight. During the oGTTs after fasting leading to the plasma triglyceride threshold, triglyceride concentrations decreased significantly (p < 0.05) faster and stronger in fat fed ponies. Additionally, fat fed pony showed significantly (p < 0.05) lower NEFA levels. The results of this study demonstrate a positive effect of fat feeding on the triglyceride clearance of overweight Shetland ponies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号