首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The water balance in the soil profile and soil moisture dynamic (available water content [%]) under sugar beet 2009 and spring barley 2010 were investigated in selected treatments of a long-term K-fertilization trial on a chernozem developed from loess in Bernburg, Germany (21% clay, 73% silt, 1.5% Corg), which received an annual K-fertilization of 0/0 and 249/124.5 kg ha?1, respectively, to sugar beet/spring barley within the last 14 years. Intensive K-fertilization increased the K content of topsoil and subsoil as well as available water capacity up to 60 cm soil depth. Under water stress conditions in August 2009, the treatment with high K-fertilization achieved the highest sugar beet yield, sugar content (°S) and white-sugar-yield at final harvest. Combined with the higher beet yield, the water use efficiency was also increased and the water pool of the subsoil was used more efficiently. In the following year (2010), weather conditions were relatively wet. Under these conditions, no differences in yield parameters and water consumption of sugar beet and spring barley between both K-levels were observed.  相似文献   

2.
《CATENA》2001,43(1):35-47
Field observations in central Belgium indicate a significant soil degradation process which has hitherto not been considered in assessments of soil erosion rates: i.e., soil losses due to root crop harvesting (SLRH). The objectives of this study were: (1) to assess SLRH for two commonly grown root crops in Belgium, i.e. chicory roots and sugar beet, (2) to investigate some factors controlling the spatial and temporal variation of SLRH, and (3) to evaluate the contribution of this soil degradation process to overall soil loss in the study area. Soil losses due to harvesting of witloof chicory roots were assessed by measuring dirt tare from 43 root samples whereas SLRH for inuline chicory roots and sugar beet were calculated from dirt tare data provided by factories processing these roots. Mean soil loss was 11.8 ton ha−1 harvest−1 for witloof chicory roots, 8.1 ton ha−1 harvest−1 for inuline chicory roots and 9.1 ton ha−1 harvest−1 for sugar beet. Assuming that root crops are grown once in 2 years in the study area, mean annual SLRH equals 5.0 ton ha−1 year−1 (0.33 mm/year). Since these root crops have been grown over a period of at least 200 years in Belgium, this implies a mean soil profile truncation of 66 mm. However, important spatial and temporal variability in SLRH data was observed, depending on soil texture, soil moisture at harvest time and harvesting technique. Given the importance of SLRH, it needs to be incorporated into future assessments of soil degradation processes and sediment budgets.  相似文献   

3.
Soil losses due to potato harvesting at the regional scale in Belgium   总被引:1,自引:0,他引:1  
During harvesting of crops, such as sugar beet, potatoes and chicory roots, considerable quantities of soil, consisting of adhering soil, soil clods and stones, are exported from cropland. This soil erosion process is called soil loss due to crop harvesting (SLCH). This study aimed to assess the variability in soil losses caused by potato (Solanum tuberosum L.) harvesting in Belgium and to investigate the role of weather conditions prior to the harvest and regional differences in soil texture on SLCH variability. To meet these objectives, more than 1000 soil tare data measured at a potato‐processing factory during the harvesting seasons of 1999, 2000 and 2001 were analysed. Soil loss was on an average 2.2 t ha?1 per harvest but could be as large as 45 t ha?1 per harvest. The average soil losses per municipality were positively and exponentially related to the average content of soil particles <16 μm. This relationship was in close agreement with a previous field study on SLCH for potatoes in Belgium and could explain why measured soil loss values from a German study were larger than SLCH values for potatoes measured in Belgium. Weather conditions prior to harvest played only a minor role for SLCH variability. As a consequence, SLCH for potatoes harvested mechanically is more variable in space than in time.  相似文献   

4.
The aim of this study was to determine potential cumulative effects of repeated passes with current heavy agricultural machinery on topsoil (0–0.3 m) and subsoil (below 0.3 m) physical properties of a Luvisol as affected by long-term tillage (annual mouldboard ploughing to 0.3 m depth (MP), shallow-mixing conservation tillage to 0.1 m depth (SM) with a wing-bladed rigid tine cultivator). Moreover, sugar beet yield was determined. Wheeling was conducted with a six-row self-propelled sugar beet harvester representing contemporary heavy agricultural machinery (wheel load 7.8–11.7 Mg, average ground contact pressure 100–145 kPa). Wheeling was applied once per year over three consecutive years after harvest of sugar beet, cereal and cereal, and moreover, independent from regular plot management with light experimental machinery. Soil moisture at wheeling (0–0.6 m depth) was around 100% field capacity in most years, which was secured by irrigation before wheeling if necessary.Repeated wheeling negatively affected penetration resistance, macropore volume (equivalent diameter >50 μm) and air permeability of topsoil (0.05–0.1 m, 0.18–0.23 m) and subsoil (0.4–0.45 m) layers, while biopore number and surface water infiltration remained unaffected. SM compared to MP tillage increased penetration resistance while decreasing macropore volume and air permeability in the 0.18–0.23 m layer, whereas reverse effects occurred in 0.4–0.45 m depth. Sugar beet yield was decreased by wheeling and SM tillage compared to the control treatments. No significant interactions between wheeling and tillage occurred in any parameter investigated.Conclusively, SM tillage did not provide better subsoil resistance against compaction compared to MP treatment under wheeling and soil conditions prevalent in our experiment. Repeated wheeling with heavy agricultural harvest machinery is obviously at risk to exceed the bearing capacity of susceptible soils. Although (i) under regular harvest conditions just small parts of arable fields (except headlands) are wheeled with high loads, (ii) harvest is by far not every year conducted under high soil moisture, and (iii) effects in the subsoil were small, such risks have to be taken into account. Reduction of tillage depth to <0.1 m is not recommended for high yielding sugar beet crops grown on loessial soils.  相似文献   

5.
The relationship between pyroxasulfone bioactivity and soil properties has not been investigated in a wide range of soils typical of western Canada. In this study, 47 soils from Saskatchewan, Manitoba and Alberta, with varying organic matter content (1.5%–22.1%), pH (5.0–7.9), and clay content (6.8%–59.4%) were used to evaluate the effect of soil properties on pyroxasulfone bioactivity and its relevance to field application rates. Bioactivity was assessed by measuring the reduction of sugar beet shoot length after 7 days in response to 0, 92, 184, and 368 µg?ai?kg?1 pyroxasulfone concentration in soil. Multiple regression analysis showed that pyroxasulfone bioactivity was related to soil organic matter content, pH and clay content. Grouping the soils according to these properties allowed for a summarization of pyroxasulfone field application rates required to achieve bioactivity based on the magnitude of sugar beet shoot length inhibition (%). The estimated field application rates ranged from less than 120–480 g?ai?ha?1.  相似文献   

6.
Damping off and chronic root rot of sugar beet caused by Aphanomyces cochlioides is a major constraint in cultivation of sugar beet, with occurrence of the disease in Sweden being concentrated to specific areas. This study examined soil factors that can be used for risk assessment of Aphanomyces root rot. Soils from 134 field plots were assessed over three years for Aphanomyces root rot potential in bioassays and analysed for easily measured soil factors such as soluble nutrients, pH and soil electrical conductivity (EC). Classification of the field plots into four groups with increasing disease severity index (DSI) according to the bioassay revealed that the group with the lowest DSI (<39) had an average soil calcium (Ca) content of 430 mg/100 g and a soil EC of 1.12 mS/cm, which were significantly higher than in the groups with DSI >40. From these results, we concluded that soil Ca concentration is an easily measured factor that can be used to identify soils with an increased risk of Aphanomyces root rot. We suggest that the Ca content should be above 250 mg Ca/100 g soil to avoid problems with Aphanomyces root rot in sugar beet. To gain a more thorough understanding of the geographical variation in Aphanomyces root rot and its connection to the geological origin of the soils, a number of other soil factors were analysed in the field plots, including clay mineralogy, CEC, and particle size distribution. Aphanomyces root rot was very rare in soils with a high proportion of smectite and vermiculite relative to illite and kaolin minerals, here predominantly calcareous soils developed on clay till in south-western Scania.  相似文献   

7.
《Soil & Tillage Research》1988,12(3):253-267
Despite relatively narrow ranges in soil physical properties and in climatological conditions, the intensity of cultivation treatments necessary for sugar beet seedbed preparation in Ireland varies considerably. In an attempt to understand some of the underlying causes and reasons for this phenomenon, experimental treatments of autumn deep loosening and spring seedbed preparation for sugar beet (Beta vulgaris L.) were imposed on 12 sites in 1982, 1983 and 1984. Seedbed preparation methods studied included powered rotary, disc harrow and spring-tine cultivation on deep loosened and non-loosened soil. Seedbed aggregate size distributions were influenced by cultivation treatment and intrinsic soil physical parameters. The intrinsic parameters (clay content, fine sand/coarse sand ratio, organic-matter content, water stable aggregates, moisture content at field capacity, liquid limit, plastic limit, plasticity index and plastic limit/field capacity ratio) of the 12 sites were closely correlated with each other. They exerted a large influence on soil workability and explained why some soils required more intensive tillage operations. Prediction equations for moisture content at cultivation time, number of cultivation passes and aggregate size distribution were derived, based on the intrinsic soil physical parameters. The equations provided indicators of which soil physical properties are most important in sugar beet seedbed preparation on a range of Irish tillage soils.  相似文献   

8.
Fertilizer nitrogen (N) can impact on soil total N and organic carbon (C). The effects of long-term nitrogen (N) applications in continuous winter wheat (Triticum aestivum L.) production systems on total N and organic C in soils has not been studied previously. Deep soil cores were taken from four long-term winter continuous wheat experiments in Oklahoma, on silt loam and clay loam soils, to evaluate differences in total N and C as affected by more than 23 years of annual N applications. When N was applied at rates ≥90 kg ha−1, surface soil (0–30 cm) organic C was either equal to that of the check (no N applied) or slightly greater. Total soil N (0–30 cm) increased at the high N rates at all locations. However, at two locations, total soil N decreased at low N rates, indicating the presence of priming (increased net mineralization of organic N pools when low rates of fertilizer N are applied). At these two same sites, soil–plant inorganic N buffering (amount of N that could be applied in excess of that needed for maximum yield without resulting in increased soil profile inorganic N accumulation) was greater compared to the other two sites where no evidence of priming was found. In general, C:N ratios increased at the low rates of applied N and then decreased to levels below that found in check plots at high N rates (≥134 kg N ha−1 yr−1). Combined surface (0–30 cm) soil analyses of total N and organic C were useful in detecting where priming had taken place and where soil–plant inorganic N buffering was expected to be high in these long-term N fertilization experiments. Predictability of the priming effect combined with soil–plant inorganic N buffering should assist us in establishing environmentally safe N rates. Soil organic C increased when N was applied at rates in excess of that required for maximum yield.  相似文献   

9.
One hundred-eighteen surface soil samples (59 samples from cultivated areas and 59 samples from virgin soils) were studied to ascertain if potassium (K) quantity-intensity (Q/I) parameters of the soils are being changed by long-term sugar beet cropping. Long-term cultivation resulted in a significant decline in the equilibrium activity ratio (ARe K) values from 0.012 to 0.0047 (moles/L)1/2 (a drop of 61%) and from 0.013 to 0.008 (a drop of 38%) in Typic calcixerpts and Typic endoaquepts, respectively. Paired t-test revealed that continuous sugar beet cultivation led to significant changes in the easily exchangeable K (ΔK0) values from ?0.69 to ?0.28 cmolc/kg (a rise of 59%) the Typic calcixerepts soils. The highest values for PBCK were associated with the soil types which had the greatest clay contents and smectite clay minerals. Results suggest that continuous sugar beet cropping caused a great decline in K supplying power of the soils.  相似文献   

10.
Non-target effects of a bacterial (Pseudomonas fluorescens DR54) and a fungal (Clonostachys rosea IK726) microbial control agent (MCA), on the indigenous microbiota in bulk soil and rhizosphere of barley, and subsequent a sugar beet crop, were studied in a greenhouse experiment. MCAs were introduced by seed and soil inoculation. Bulk and rhizosphere soils were sampled regularly during the growth of barley and sugar beet. The soils were assayed for the fate of MCAs and various features of the indigenous soil microbiota. At the end of the experiment (193 d), DR54 and IK726 had declined by a factor of 106 and 20, respectively, and DR54 showed a short-lasting growth increase in the sugar beet rhizosphere. In general, the non-target effects were small and transient. IK726 seemed to have general stimulating effects on soil enzyme activity and the soil microbiota, and resulted in a significant increase in plant dry weight. The plant growth-promoting effect of DR54 was less pronounced and the DR54 displaced indigenous pseudomonads. DR54 stimulated growth of protozoans with a tolerance for the anti-fungal compound viscosinamide produced by DR54. Treatment with the fungicide Fungazil had no effects on plant growth or soil microorganisms. Phospholipid fatty acid (PLFA) analysis detected the perturbations of the soil microbial community structure in the MCA treatments as well as the return to non- perturbed conditions reflecting the decline of inoculant populations. The PLFA technique appears to be suitable for in situ monitoring of MCA non-target effects on the soil microbiota, but should be combined with assays for MCA survival and soil enzyme activity.  相似文献   

11.
The unsaturated soil hydraulic functions involving the soil–water retention curve (SWRC) and the hydraulic conductivity provide useful integrated indices of soil quality. Existing and newly devised methods were used to formulate pedotransfer functions (PTFs) that predict the SWRC from readily available soil data. The PTFs were calibrated using a large soils database from Hungary. The database contains measured soil–water retention data, the dry bulk density, sand, silt and clay percentages, and the organic matter content of 305 soil layers from some 80 soil profiles. A three-parameter van Genuchten type function was fitted to the measured retention data to obtain SWRC parameters for each soil sample in the database. Using a quasi-random procedure, the database was divided into “evaluation” (EVAL) and “test” (TEST) parts containing 225 and 80 soil samples, respectively. Linear PTFs for the SWRC parameters were calculated for the EVAL database. The PTFs used for this purpose particle-size percentages, dry bulk density, organic matter content, and the sand/silt ratio, as well as simple transforms (such as logarithms and products) of these independent variables. Of the various independent variables, the eight most significant were used to calculate the different PTFs. A nonlinear (NL) predictive method was obtained by substituting the linear PTFs directly into the SWRC equation, and subsequently adjusting the PTF parameters to all retention data of the EVAL database. The estimation error (SSQ) and efficiency (EE) were used to compare the effectiveness of the linear and nonlinearly adjusted PTFs. We found that EE of the EVAL and the TEST databases increased by 4 and 7%, respectively, using the second nonlinear optimization approach. To further increase EE, one measured retention data point was used as an additional (concomitant) variable in the PTFs. Using the 20 kPa water retention data point in the linear PTFs improved the EE by about 25% for the TEST data set. Nonlinear adjustment of the concomitant variable PTF using the 20 kPa retention data point as concomitant variable produced the best PTF. This PTF produced EE values of 93 and 88% for the EVAL and TEST soil data sets, respectively.  相似文献   

12.
为了提高圆盘式挖掘装置的工作性能,解决收获过程易壅堵等问题,该文结合圆盘式挖掘装置的结构及工作原理,从理论上分析了挖掘装置的参数关系及运动机理,建立了挖掘圆盘刃口的运动方程,得到了甜菜的运动轨迹,确定了圆盘式挖掘装置的关键性能参数,并以圆盘的张角、偏转角和挖掘深度为试验因素,甜菜的粘土率、折断率和损伤率为性能评价指标进行三因素三水平的正交试验。试验结果表明:作业深度对甜菜的粘土率和折断率的影响较大,张角和作业深度共同影响着甜菜的折断率,偏转角对这2个指标的影响均不明显;损伤率受张角、偏转角和作业深度的影响不大,可以忽略不计。综合考虑各评价指标,通过综合评分法得较优的参数组合。即当张角为15°,偏转角为30°,挖掘深度为120 mm时,甜菜收获的粘土率为12%,折断率为0,损伤率为0,加权综合指标为3.6%,整体收获效果相对较好。  相似文献   

13.
Alluvial soils with illite and vermiculite clay minerals are highly potassium (K)‐fixing. Such soils have been reported to require a huge amount of K fertilization for optimum plant growth. For halophytic plants such as sugar beet, sodium (Na) can be an alternative to K under such conditions. This study was conducted to investigate the possible substitution of K by Na fertilization with reference to K‐fixing soils. Three soils, i.e., Kleinlinden (subsoil), Giessen (alluvial), and Trebur (alluvial), differing in K‐fixing capacities, were selected, and sugar beet plants were grown in Ahr pots with 15 kg soil pot–1. Three treatments (no K and Na, K equal to K‐fixing capacity of soil, and Na equivalent to regular K fertilization) were applied. In a second experiment, containers (90 cm × 40 cm × 40 cm) were used with 170 kg Kleinlinden soil each, and one sugar beet plant per container was grown. In both experiments, plants were grown till beet maturity, and beets were analyzed for sucrose concentration and other quality parameters such as α‐amino nitrogen to calculate white‐sugar yield with the New Brunswick formula. The results showed that growth and quality of sugar beet were not affected by Na application, and ultimately there was no decrease in white‐sugar yield. Moreover, the soils with more K‐fixing capacity were more suitable for K substitution by Na. It is concluded that Na can substitute K in sugar beet nutrition to a high degree and soils with high K‐fixing capacity have more potential for this substitution.  相似文献   

14.
Heavy wheel traffic causes soil compaction, which adversely affects crop production and may persist for several years. We applied known compaction forces to entire plots annually for 5 years, and then determined the duration of the adverse effects on the properties of a Vertisol and the performance of crops under no-till dryland cropping with residue retention. For up to 5 years after a final treatment with a 10 Mg axle load on wet soil, soil shear strength at 70–100 mm and cone index at 180–360 mm were significantly (P < 0.05) higher than in a control treatment, and soil water storage and grain yield were lower. We conclude that compaction effects persisted because (1) there were insufficient wet–dry cycles to swell and shrink the entire compacted layer, (2) soil loosening by tillage was absent and (3) there were fewer earthworms in the compacted soil. Compaction of dry soil with 6 Mg had little effect at any time, indicating that by using wheel traffic only when the soil is dry, problems can be avoided. Unfortunately such a restriction is not always possible because sowing, tillage and harvest operations often need to be done when the soil is wet. A more generally applicable solution, which also ensures timely operations, is the permanent separation of wheel zones and crop zones in the field—the practice known as controlled traffic farming. Where a compacted layer already exists, even on a clay soil, management options to hasten repair should be considered, e.g. tillage, deep ripping, sowing a ley pasture or sowing crop species more effective at repairing compacted soil.  相似文献   

15.
Florence Carr  M. C. Girard 《Geoderma》2002,110(3-4):241-263
Nowadays, French soil scientists tend to gather new and existing soil data into a common database. The use of this database potentially allows for resolving environmental issues, largely through soil mapping. The purpose of this study is to present a methodology for mapping soil types illustrated by typical observations in the soil database, in this case from the La Rochelle area on the French Mid-Atlantic Coast. The main hypothesis underlying the method is that soil types result from environmental factors such as landform, parent material, and land cover. The method can be divided into four stages. The first step is to construct a local soil type classification from the database by a two-stage continuous classification procedure. The result of this procedure is that at each observation point, the soil is described by a vector of taxonomic distances to each of k centroidal soil types. In the example given, k=18. The second step involves fitting soil–environment equations, one for each centroidal soil type, by regressing taxonomic distances on layers of multivariate environmental data observed on a fine 20-m grid, by multiple linear regression. In this case, the layers are terrain attributes derived from a digital elevation model and land cover attributes derived from three bands of a SPOT image. The third step is to predict k maps or raster GIS layers representing taxonomic distances to soil types on the 20-m grid, using the soil–environment equations and the kriging of the residuals from the regressions. This results in many potential maps: a summary map depicting the nearest centroidal soil type (the soil type for which the taxonomic distance is least) at each location is possibly the most useful, and another one representing the minimum taxonomic distance which, if considered too large, might suggest locations for further field survey to refine the soil types. A map of standard errors of the kriged taxonomic distance residuals to the nearest centroidal soil type can be made to indicate spatial uncertainty. Continuous fuzzy membership maps can also be constructed from the distances. The fourth step involves validation with an independent soil data set allowing discovery of the nature of the actual prediction errors. Thirty-eight percent of sites in a validation sample of 1234 sites was unequivocally validated, 23% was equivocally validated, and the remainder was predicted wrongly by the method.  相似文献   

16.
Plant species differ in their potassium (K) efficiency, but the mechanisms are not clearly documented and understood. Therefore, K efficiency of spring wheat, spring barley, and sugar beet was studied under controlled conditions on a K fixing sandy clay loam. The effect of four K concentrations in soil solution ranging from low (5 and 20 μM K) to high (2.65 and 10 mM K) on plant growth and K uptake was investigated at 3 harvest dates (14, 21, and 31 days after sowing). The following parameters were determined: shoot dry matter (DM), K concentration in shoot dry matter, root length (RL), root length/shoot weight ratio (RSR), shoot growth rate/average root length ratio (GRs/aRL), K influx, and soil solution K concentrations. Wheat proved to have a higher agronomic K efficiency than barley and sugar beet, indicated by a greater relative yield under K‐deficient conditions. As compared to both cereals, sugar beet was characterized by higher K concentrations in the shoot dry matter, only 30—50 % of the root length, 15—30 % of the RSR and a 3 to 6 times higher GRs/aRL. This means that the shoot of sugar beet had a 3 to 6 times higher K demand per unit root length. Even at low K concentrations in the soil solution, sugar beet had a 7 to 10 times higher K influx than the cereals, indicating that sugar beet was more effective in removing low available soil K. Wheat and barley were characterized by slow shoot growth, low internal K requirement, i.e. high K utilization efficiency, and high RSR, resulting in a low K demand per unit root length. At low soil K concentrations, both cereals increased K influx with age, an indication of adaptation to K deficiency. The mechanism of this adaptation merits closer investigation. Model calculations were performed to estimate the K concentration difference between the bulk soil and the root surface (ΔCL) needed to drive the measured K influx. For the two cereals, the calculated ΔCL was smaller than the K concentration in the soil solution, but for sugar beet, ΔCL was up to seven times higher. This indicates that sugar beet was able to mobilize K in the rhizosphere, but the mechanisms responsible for this mobilization remain to be studied.  相似文献   

17.
C. Chinn  U.P.P. Pillai   《Geoderma》2008,144(3-4):491-501
Vertisols have the inherent ability to self-repair because of high clay contents and clay type that govern volume change. A study was undertaken to correlate soil inherent properties with two indicators of structure improvement based on tensile strength and clod porosity of compacted soil cores before and after wet/dry cycles. In order to minimize inter-soil differences Vertisols under similar cropping regimes and from the same climatic region in Queensland, Australia were selected. A soil repair index (RT(1)) based on compressive strength of soil cores was related to soil inherent properties and shrinkage indices, COLESTD and LSMOD using multiple regression. Results showed that compressive strength of soil cores after a single wet/dry cycle after compaction was sufficient to rank Vertisols in terms of their capacity to improve structure after compaction. Clay content and clay activity (CEC/clay) on their own were poor indicators of soil repair. Fine sand was shown to be an important component in the repair process. LSMOD and COLESTD predicted RT(1) equally well and indicated that Vertisols with COLESTD values > 0.15 and LSMOD > 12% would be expected to have sharper reductions in tensile strength compared to those with lower values after just one wet/dry cycle. Clod porosity was poorly related to soil inherent properties.  相似文献   

18.
A better understanding of tillage effects on soil organic matter is vital for development of effective soil conservation practices. The objective of this research is to determine the effect of tillage and crop sequence on soil organic carbon (OC) and total nitrogen (TN) content in an irrigated southern Alberta soil. A field experiment was conducted using a split–split plot design from 1994 to 1998 in Alberta, Canada. There were two crop sequences (Sequence 1: spring wheat (Triticum aestivum L.)–sugar beet (Beta vulgaris L.)–spring wheat–annual legume; and Sequence 2: spring wheat–spring wheat–annual legume–sugar beet) and two tillage practices (CT: conventional tillage and MT: minimum tillage). Surface soil under MT had significantly higher OC (30.1 Mg ha−1) content than under CT (28.3 Mg ha−1) after 4 years of treatment. The MT treatment retains crop residue at the soil surface, reduces soil erosion and slows organic matter decomposition, which are key factors in enhancing the soil fertility status of southern Alberta irrigated soils.  相似文献   

19.
To test the relative usefulness of different methods of chemical analysis for soil nitrogen fractions in the assessment of the fertilizer nitrogen needs of sugar beet, different doses of nitrogen were applied in field experiments laid out during the years 1985–1991. The chemical methods used were N mineral (NO 3 +NH + 4 ) analyses on soil samples taken in late winter, and extraction with 0.01 M CaCl2 from soil samples taken the preceding autumn and in late winter. The results of the chemical methods were evaluated in models using estimated optimum nitrogen fertilization, nitrogen present in beets or beets+leaves at leaf maximum and sugar yield as variables. In addition, parameters such as estimates of possible rooting depth and mineralization capacity of the soil were also included in the model. All models for estimating nitrogen fertilization need showed low R 2 values. The two methods of soil chemical analysis yielded similar R 2 values for nitrogen uptake in plots both with and without nitrogen fertilization. The N mineral method was least useful in predicting sugar yield. Addition of the covariables rooting depth and mineralization capacity appreciably improved the explanatory value of the models with 0.01 M CaCl2, especially when the analytical results of soil samples taken in autumn were used. For the N mineral method the addition of covariates was found to have far less influence.  相似文献   

20.
Collembola and microbial biomass C were investigated in a field experiment with controlled agricultural traffic and crop rotation over a period of 27 months. The wheel-induced compactive efforts were applied according to management practices within the crop rotation of sugar beet, winter wheat, and winter barley. Increasing wheel traffic produced increasing soil compaction, mainly due to a reduction in surface soil porosity. Increasing soil compaction was accompanied by a decrease in microbial biomass C and the density of collembola. The influence of soil compaction on microbial biomass C was smaller than that of the standing crop. However, for collembola, especially euedaphic species, a reduction in pore space appeared to be of more importance than the effects of a standing crop. Within the crop rotation, microbial biomass C and the density of collembola increased in the order sugar beet, winter wheat, and winter barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号