首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen dogs with hyperadrenocorticism were studied. Three dogs had functioning adrenocortical tumors and 14 had pituitary-dependent hyperadrenocorticism. Each dog was evaluated by determining the endogenous plasma ACTH concentration and by performing 4 tests: ACTH stimulation, dexamethasone screening, dexamethasone suppression, and a 6-hour combined dexamethasone suppression/ACTH stimulation test. The combined test was less reliable as a screening test in diagnosing hyperadrenocorticism than was the dexamethasone screening test or the ACTH stimulation test. Compared with the endogenous plasma ACTH concentration, results of the dexamethasone suppression portion of the combined test were less reliable in distinguishing dogs with adrenocortical tumors from those with pituitary-dependent hyperadrenocorticism. It was concluded that the combined test cannot be recommended for use.  相似文献   

2.
This retrospective study identifies parameters that might separate dogs with hyperadrenocorticism caused by adrenocortical tumors from dogs with pituitary-dependent hyperadrenocorticism. Further, an attempt was made to identify factors that could separate dogs with adrenocortical adenomas from dogs with carcinomas. The records of 41 dogs with hyperadrenocorticism caused by adrenocortical neoplasia were reviewed. The history, physical examination, urinalysis, hemogram (CBC), chemistry profile adrenocorticotrophic hormone (ACTH) stimulation and low dose dexamethasone test results were typical of the nonspecific diagnosis of hyperadrenocorticism. The preceding information on the 41 dogs with adrenocortical tumors was compared with that from 44 previously diagnosed pituitary-dependent hyperadrenocorticoid dogs. There was no parameter which aided in separating these two groups of dogs. Thirty dogs with adrenocortical tumors were tested with a high-dose dexamethasone test and none had suppressed plasma cortisol concentrations 8 hours after IV administration of 0.1 mg/kg of dexamethasone. In 29 of the 41 adrenal tumor dogs, plasma endogenous ACTH was not detectable on at least one measurement (less than 20 pg/ml). The remaining 12 dogs from this group had nondiagnostic concentrations (20-45 pg/ml). Thirteen of 22 dogs (59%) with adrenocortical carcinomas had adrenal masses identified on abdominal radiographs and seven of 13 dogs (54%) with adrenocortical adenomas had radiographically visible adrenal masses. Thirteen of 17 adrenocortical carcinomas (76%) and five of eight adenomas (62%) were identified with ultrasonography. Radiographs of the thorax and ultrasonography of the abdomen identified most of the dogs (8 of 11) with metastatic lesions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Pituitary neoplasm was identified in 43 dogs with pituitary-dependent hyperadrenocorticism via necropsy (n = 33), diagnostic imaging with computerized tomography or magnetic resonance imaging (n = 5), or diagnostic imaging and necropsy (n = 5). All dogs had clinical signs and clinicopathologic test results typical of hyperadrenocorticism. Thirty-seven dogs had grossly visible pituitary tumors, and 6 dogs had microscopic pituitary tumors. Fifteen dogs had developed neurologic signs typical of those resulting from an enlarging pituitary mass. Twenty-three dogs had pituitary tumors greater than or equal to 1 cm in diameter. Provocative testing of the pituitary-adrenocortical axis was performed on all dogs. Dogs with grossly visible pituitary tumors and dogs with neurologic signs had significantly (P less than 0.05) higher mean plasma endogenous ACTH concentrations, compared with values from dogs with microscopic tumors and dogs without neurologic signs, respectively. Dogs with grossly visible pituitary tumors and dogs with tumors greater than or equal to 1 cm in diameter had significantly (P less than 0.05) lower adrenocortical responsiveness to exogenous ACTH, compared with dogs with microscopic pituitary tumors and dogs with tumors less than 1 cm in diameter, respectively. Despite these differences, there was overlap between test results among dogs. On the basis of endocrine test results, it would appear difficult to distinguish dogs with pituitary-dependent hyperadrenocorticism and large pituitary tumors from those with pituitary-dependent hyperadrenocorticism and microscopic pituitary tumors prior to onset of neurologic signs.  相似文献   

4.
A study was designed to evaluate the response of blood cortisol content in dogs tentatively diagnosed as having hyperadrenocorticism by using the combined dexamethasone suppression/ACTH stimulation test procedure. Four groups of abnormal responses were identified in 54 dogs. In group I (14.8% of the dogs with abnormal responses), the only abnormality was partial suppression with dexamethasone (clinically normal dogs suppressed to less than 10 ng/ml). In group II (29.6%), 2 abnormalities were found: partial suppression with dexamethasone and hyperreactivity to the ACTH stimulation test. In group III (typical pituitary-dependent hypercortisolism, 48.1%), 3 abnormalities were found: base-line hypercortisolemia, partial suppression with dexamethasone, and hyperreactivity to the ACTH stimulation test. In group IV (7.4%), 2 abnormalities were found: base-line hypercortisolemia and partial suppression with dexamethasone. Base-line blood cortisol content was normal in 44.4% of the adrenopathic dogs. A normal response to ACTH stimulation was seen in 25.9% of the dogs, and 74.1% of the dogs hyperreacted to the ACTH stimulation test. All of the adrenopathic dogs were found to suppress partially with dexamethasone. Failure to suppress the adrenal gland completely (less than 10 ng/ml) with dexamethasone was the most consistent finding in adrenopathic dogs when using the combined dexamethasone suppression/ACTH stimulation test procedure. It was concluded that the test procedure is feasible, flexible, and convenient for clinical situations. Also, these results suggested that there may be several stages in the negative feedback failure associated with hyperadrenocorticism in dogs.  相似文献   

5.
A presumptive diagnosis of hyperadrenocorticism in dogs can be made from clinical signs, physical examination, routine laboratory tests, and diagnostic imaging findings, but the diagnosis must be confirmed by use of pituitary-adrenal function tests. Screening tests designed to diagnose hyperadrenocorticism include the corticotropin (adrenocorticotropic hormone; ACTH) stimulation test, low-dose dexamethasone suppression test, and the urinary cortisol:creatinine ratio. None of these screening tests are perfect, and all are capable of giving false-negative and false-positive test results. Because of the limitation of these diagnostic tests, screening for hyperadrenocorticism must be reserved for dogs in which the disease is strongly suspected on the basis of historical and clinical findings. Once a diagnosis has been confirmed, the next step in the workup is to use one or more tests and procedures to distinguish pituitary-dependent from adrenal-dependent hyperadrenocorticism. Endocrine tests in this category include the high-dose dexamethasone suppression test and endogenous plasma ACTH measurements. Imaging techniques such as abdominal radiography, ultrasonography, computed tomography, and magnetic resonance imaging can also be extremely helpful in determining the cause.  相似文献   

6.
OBJECTIVE: To evaluate adrenal sex hormone concentrations in response to ACTH stimulation in healthy dogs, dogs with adrenal tumors, and dogs with pituitary-dependent hyperadrenocorticism (PDH). DESIGN: Prospective study. ANIMALS: 11 healthy control dogs, 9 dogs with adrenal-dependent hyperadrenocorticism (adenocarcinoma [ACA] or other tumor); 11 dogs with PDH, and 6 dogs with noncortisol-secreting adrenal tumors (ATs). PROCEDURE: Hyperadrenocorticism was diagnosed on the basis of clinical signs; physical examination findings; and results of ACTH stimulation test, low-dose dexamethasone suppression test, or both. Dogs with noncortisol-secreting ATs did not have hyperadrenocorticism but had ultrasonographic evidence of an AT. Concentrations of cortisol, androstenedione, estradiol, progesterone, testosterone, and 17-hydroxyprogesterone were measured before and 1 hour after i.m. administration of 0.25 mg of synthetic ACTH. RESULTS: All dogs with ACA, 10 dogs with PDH, and 4 dogs with ATs had 1 or more sex hormone concentrations greater than the reference range after ACTH stimulation. The absolute difference for progesterone, 17-hydroxyprogesterone, and testosterone concentrations (value obtained after ACTH administration minus value obtained before ACTH administration) was significantly greater for dogs with ACA, compared with the other 3 groups. The absolute difference for androstenedione was significantly greater for dogs with ACA, compared with dogs with AT and healthy control dogs. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs with ACA secrete increased concentrations of adrenal sex hormones, compared with dogs with PDH, noncortisol-secreting ATs, and healthy dogs. Dogs with noncortisol-secreting ATs also have increased concentrations of sex hormones. There is great interdog variability in sex hormone concentrations in dogs with ACA after stimulation with ACTH.  相似文献   

7.
Two low-dose dexamethasone suppression test protocols were evaluated in 18 dogs with hyperadrenocorticism (14 dogs with pituitary-dependent hyperadrenocorticism [PDH] and 4 dogs with adrenocortical tumor) and in 5 healthy control dogs. Blood was obtained immediately before and 2, 4, 6, and 8 hours after IV administration of either 0.01 mg of dexamethasone sodium phosphate/kg of body weight or 0.015 mg of dexamethasone polyethylene glycol/kg. At 8 hours after dexamethasone administration, 18 of 18 (100%) dogs with hyperadrenocorticism given the sodium phosphate preparation and 16 of 18 (89%) affected dogs given the polyethylene glycol preparation failed to have suppression of plasma cortisol concentration (less than 1.4 micrograms/dl). Plasma cortisol concentration was suppressed to less than 1.4 micrograms/dl at 2, 4, and/or 6 hours after administration of either dexamethasone preparation in 5 of 14 dogs with PDH and to less than 50% of baseline cortisol concentration in 10 of 14 dogs with PDH. Suppression, as identified by these 2 criteria, was not observed at 2, 4, 6, or 8 hours after administration of either dexamethasone preparation in dogs with adrenocortical tumor. For both protocols, the 8-hour plasma cortisol concentration was suppressed to less than 1.4 micrograms/dl and to less than 50% of baseline in the 5 control dogs. Both protocols were comparable for use as screening tests in establishing a diagnosis of hyperadrenocorticism. Suppression of plasma cortisol concentration to less than 50% of baseline (or less than 1.4 micrograms/dl) during the test was consistent with diagnosis of PDH. Failure to have such suppression, however, was observed in dogs with PDH as well as in those with adrenocortical tumor.  相似文献   

8.
A 5-year-old female dog with hyperadrenocorticism was determined to have pituitary-dependent hyperadrenocorticism even though plasma cortisol concentrations were not suppressed after high-dosage dexamethasone administration. The diagnosis was based on a supranormal response of plasma cortisol to ACTH administration and a lack of suppression of plasma cortisol concentration after administration of 0.1 mg of dexamethasone/kg. Although a higher dosage of dexamethasone (1 mg/kg) did not cause suppression of plasma cortisol, plasma ACTH concentrations in the dog were increased above those in clinically normal dogs, supporting a diagnosis of pituitary-dependent hyperadrenocorticism. During treatment with mitotane, the dog became unconscious and died. Necropsy revealed a pituitary tumor that had compressed and displaced the hypothalamus. Although high-dosage dexamethasone suppression tests often are useful in the differential diagnosis of hyperadrenocorticism, a lack of suppression of plasma cortisol does not necessarily exclude pituitary-dependent hyperadrenocorticism.  相似文献   

9.
The results of adrenocorticotropin (ACTH) stimulation and low-dose dexamethasone suppression tests (LDDST) were evaluated retrospectively in eight dogs with clinical signs of hyperadrenocorticism arising from functional adrenocortical tumours, and compared with the results from 12 dogs with confirmed pituitary-dependent hyperadrenocorticism (PDH). The post-ACTH cortisol concentration in the dogs with adrenocortical tumours ranged from 61 to 345-6 nmol/litre (median 251.5 nmol/litre) and they were within the reference range (150 to 450 nmol/litre) in five and unexpectedly low (< 150 nmol/litre) in three dogs. Both the basal and post-ACTH cortisol concentrations were significantly lower in the dogs with adrenocortical neoplasia than in the dogs with PDH. Eight hours after the LDDST, only two of six dogs with adrenocortical tumours had a cortisol concentration above 30 nmol/litre, and the median resting, three, and eight-hour cortisol concentrations were 31.5, 23.0, and 22.7 nmol/litre respectively. There was no significant cortisol suppression during the LDDST, although interpretation was complicated by the low cortisol concentrations, but two dogs showed a pattern of apparent suppression. Two dogs with adrenal tumours showed a diagnostically significant increase in 17-OH-progesterone concentration in response to ACTH although their cortisol concentrations did not increase greatly. These results differ from previous reports of the response of functional adrenal tumours to dynamic endocrine tests.  相似文献   

10.
The plasma cortisol response to exogenous ACTH (ACTH stimulation test) was evaluated in 22 dogs with hyperadrenocorticism caused by adrenocortical neoplasia. The mean basal cortisol concentration (6.3 microgram/dl) was high, but 7 dogs had basal cortisol concentrations that were within normal range. Administration of exogenous ACTH increased the plasma cortisol concentrations in each dog. Normal post-ACTH cortisol concentrations were found in 9 (41%) of the 22 dogs; 13 (59%) had an exaggerated increase in cortisol concentrations after ACTH administration. In 9 of 13 dogs with carcinoma and in 4 of 9 with adenoma, the cortisol response was exaggerated. The mean post-ACTH cortisol concentration in the dogs with carcinoma was approximately 4 times that of the dogs with adenoma; the 7 dogs with the highest concentrations had carcinoma. Repeat studies were performed in 6 dogs 2 to 8 weeks after initial testing. In 5 of the 6 dogs, repeat testing yielded data of similar diagnostic significance. One dog, however, had an abnormally high post-ACTH cortisol concentration at initial evaluation, but had only a minimal response to ACTH administration, with a normal post-ACTH cortisol concentration, at time of resting. Although ACTH stimulation testing is useful in diagnosing hyperadrenocorticism, it can not reliably separate dogs with hyperfunction adrenocortical tumors from clinically normal dogs or from dogs with pituitary-dependent hyperadrenocorticism (bilateral adrenocortical hyperplasia).  相似文献   

11.
OBJECTIVE: To evaluate serum 17-hydroxyprogesterone (17-OHP) concentration measurement after administration of ACTH for use in the diagnosis of hyperadrenocorticism in dogs. DESIGN: Prospective study. ANIMALS: 110 dogs. PROCEDURE: Serum 17-OHP concentrations were measured before and after ACTH stimulation in 53 healthy dogs to establish reference values for this study. Affected dogs had pituitary-dependent (n = 40) or adrenal tumor-associated (12) hyperadrenocorticism or potentially had atypical hyperadrenocorticism (5; diagnosis confirmed in 1 dog). In affected dogs, frequency interval and borderline and abnormal serum 17-OHP concentrations after ACTH stimulation were determined. Serum cortisol concentrations were assessed via low-dose dexamethasone suppression and ACTH stimulation tests. RESULTS: In healthy dogs, serum 17-OHP concentration frequency intervals were grouped by sex and reproductive status (defined as < 95th percentile). Frequency intervals of serum 17-OHP concentrations after ACTH stimulation were < 77, < 2.0, < 3.2, and < 3.4 ng/mL (< 23.3, < 6.1, < 9.7, and < 10.3 nmol/L) for sexually intact and neutered females and sexually intact and neutered males, respectively. In 53 dogs with confirmed hyperadrenocorticism, serum cortisol concentrations after ACTH stimulation and 8 hours after administration of dexamethasone and serum 17-OHP concentrations after ACTH stimulation were considered borderline or abnormal in 79%, 93%, and 69% of dogs, respectively. Two of 5 dogs considered to have atypical hyperadrenocorticism had abnormal serum 17-OHP concentrations after ACTH stimulation. CONCLUSIONS AND CLINICAL RELEVANCE: Serum 17-OHP concentration measurement after ACTH stimulation may be useful in the diagnosis of hyperadrenocorticism in dogs when other test results are equivocal.  相似文献   

12.
Of cases of hyperadrenocorticism in small animals 80-85% are the result of adrenocortical hyperplasia. Middle-aged or older Poodles, Dachshunds, Boston Terriers and Boxers are most commonly affected, and cats rarely. Clinical signs include polydipsia, polyuria, alopecia, abdominal distension, lethargy, weakness, hepatomegaly, calcinosis cutis, testicular atrophy and anestrus. Hematologic and biochemical changes may include neutrophilia, lymphopenia, monocytosis, eosinopenia, increased blood levels of alkaline phosphatase, SGPT, cholesterol, Na and glucose, and decreased K and T4 levels. The high-dosage dexamethasone suppression test helps differentiate pituitary-dependent hyperadrenocorticism from that caused by adrenal tumors. The low-dosage dexamethasone suppression test, determination of plasma ACTH levels, and ACTH response test are additional diagnostic aids in the diagnosis of Cushing's disease. Medical treatment involves oral use of mitotane (o,p'-DDD) at 50 mg/kg/day for 7 days and prednisone or prednisolone at 0.05 mg/kg/day. Hypophysectomy has been used with only 5% mortality in cases of pituitary-dependent hyperadrenocorticism. Adrenalectomy is indicated in cases of adrenal neoplasia.  相似文献   

13.
Hyperadrenocorticism in cats: seven cases (1978-1987)   总被引:1,自引:0,他引:1  
Hyperadrenocorticism was diagnosed in 7 cats with concurrent diabetes mellitus. Four cats had pituitary adenoma with bilateral adrenocortical hyperplasia, 1 cat had pituitary carcinoma with bilateral adrenocortical hyperplasia, 1 cat had adrenocortical carcinoma, and 1 cat had adrenocortical adenoma of the left adrenal gland. One year later, adrenocortical adenoma involving the right adrenal gland also was diagnosed in this cat. Clinical signs included polyuria and polydipsia (n = 7), development of pot-bellied appearance (n = 5), dermatologic alterations (n = 5), lethargy (n = 3), weight loss (n = 3), dyspnea/panting (n = 2), and recurrent bacterial infections (n = 2). In 6 cats, the diagnosis of hyperadrenocorticism was established before death on the basis of results of the ACTH stimulation test (n = 3) and the dexamethasone screening test (n = 5). Pituitary-dependent hyperadrenocorticism was differentiated from adrenocortical neoplasia on the basis of results of the dexamethasone suppression test (n = 4), endogenous ACTH concentration (n = 3), results of abdominal radiography and ultrasonography (n = 3), and exploratory celiotomy (n = 1). Four cats died or were euthanatized without treatment attempts. Treatment with mitotane followed by 60Co teletherapy was ineffective in one cat with pituitary adenoma. One cat with pituitary carcinoma died one week after bilateral adrenalectomy. Bilateral adrenocortical adenomas were removed surgically in the affected cat.  相似文献   

14.
Pituitary-dependent hyperadrenocorticism in a cat   总被引:1,自引:0,他引:1  
Pituitary-dependent hyperadrenocorticism was diagnosed in a 9-year-old, male castrated cat that had polyuria, polyphagia, pendulous abdomen, truncal hair loss, congestive heart failure, and insulin-resistant diabetes mellitus. Results of pituitary-adrenal function testing revealed inadequate serum cortisol suppression following dexamethasone administration, exaggerated serum cortisol responses after exogenous ACTH stimulation, and high plasma ACTH concentrations. The pathologic findings of bilateral adrenocortical hyperplasia and a pituitary adenoma that immunostained well for ACTH-related peptides confirmed pituitary-dependent hyperadrenocorticism.  相似文献   

15.
OBJECTIVE: To describe the clinicopathologic characteristics of dogs with hyperadrenocorticism and concurrent pituitary and adrenal tumors. DESIGN: Retrospective study. ANIMALS: 17 client-owned dogs. PROCEDURE: Signalment, response to treatment, and results of CBC, serum biochemical analysis, urinalysis, endocrine testing, and histologic examinations were obtained from medical records of dogs with hyperadrenocorticism and concurrent adrenal and chromophobe pituitary tumors. RESULTS: On the basis of results of adrenal function tests and histologic examination of tissue specimens collected during surgery and necropsy, concurrent pituitary and adrenal tumors were identified in 17 of approximately 1,500 dogs with hyperadrenocorticism. Twelve were neutered females, 5 were males (3 sexually intact, 2 neutered); and median age was 12 years (range, 7 to 16 years). Hyperadrenocorticism had been diagnosed by use of low-dose dexamethasone suppression tests and ACTH stimulation tests. During high-dose dexamethasone suppression testing of 16 dogs, serum cortisol concentrations remained high in 11 dogs but decreased in 5 dogs. Plasma concentrations of endogenous ACTH were either high or within the higher limits of the reference range (12/16 dogs), within the lower limits of the reference range (2/16), or low (2/16). Adrenal lesions identified by histologic examination included unilateral cortical adenoma with contralateral hyperplasia (10/17), bilateral cortical adenomas (4/17), and unilateral carcinoma with contralateral hyperplasia (3/17). Pituitary lesions included a chromophobe microadenoma (12/17), macroadenoma (4/17), and carcinoma (1/17). CLINICAL IMPLICATIONS: Pituitary and adrenal tumors can coexist in dogs with hyperadrenocorticism, resulting in a confusing mixture of test results that may complicate diagnosis and treatment of hyperadrenocorticism.  相似文献   

16.
The purpose of this study was to determine the sensitivity of dogs with hyperadrenocorticism to treatment with the adrenocorticolytic agent mitotane. Specifically, we looked for differences in response to treatment using this drug in dogs with adrenocortical tumors (adrenal tumor hyperadrenocorticism, ATH) vs those with pituitary-dependent hyperadrenocorticism (PDH). For inclusion in this study, each dog must have had clinical signs, data base laboratory abnormalities, and endocrine screening test results consistent with the diagnosis of hyperadrenocorticism. Further, each dog had to have been treated for at least 6 months with mitotane and have histologic evidence for adrenocortical or pituitary neoplasia (all dogs were necropsied). Thirteen dogs with ATH (8 carcinomas, 5 adenomas) were identified. The ages and body weights of these 13 dogs were computer-matched to 13 dogs with PDH. All dogs were initially treated with approximately 50 mg of mitotane/kg/d of body weight. Reexaminations were performed after 7, 30, 90, and 180 days of treatment. Individual dosages varied widely after the initial 5 to 12 days of treatment. The mean (+/- SD) dose of mitotane (mg/kg/d) for the first 7 days of treatment was 47.5 +/- 9.4 for dogs with ATH vs 45.7 +/- 11.9 for dogs with PDH. The mean plasma cortisol concentrations 1 hour after ACTH administration at the 7-day recheck were significantly higher in dogs with ATH (502 +/- 386 nmol/L) than in dogs with PDH (88 +/- 94 nmol/L).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of this study was to evaluate the efficacy and safety of aminoglutethimide in the treatment of dogs with pituitary-dependent hyperadrenocorticism (PDH). Ten dogs were diagnosed with PDH based on clinical and laboratory data, adrenal function tests (adrenocorticotropic hormone [ACTH] stimulation test and urinary cortisol/creatinine ratio [UCCR] combined with a high dose oral dexamethasone suppression test) and ultrasonographic evaluation of the adrenal glands. Aminoglutethimide was administered daily at a dose of 15 mg/kg bodyweight for one month. Median basal cortisol concentration and post-ACTH cortisol concentration one month after treatment were significantly lower than pretreatment values. Complete response was achieved in one dog, and partial response was obtained in three dogs. Severe side effects of anorexia, vomiting and weakness occurred in one dog and medication was withdrawn. Two further dogs developed decompensations of concurrent diseases and medication was stopped in these animals as well. Mild toxicity occurred in four dogs. Moderate to severe elevations in liver enzymes occurred in all dogs. The efficacy of this drug is lower than that observed using mitotane and ketoconazole, and adverse effects limit its use. Aminoglutethimide, using the protocol described, cannot be recommended for long-term management of PDH in the dog.  相似文献   

18.
Hypertestosteronemia was diagnosed in a spayed bitch with pituitary-dependent hyperadrenocorticism and perianal adenomas. Serum concentrations of cortisol and testosterone decreased after treatment with mitotane was instituted. Excessive testosterone in this dog was thought to have been produced by the adrenal cortex, possibly in response to excessive ACTH concentrations. Development of androgen- or estrogen-responsive tumors in castrated dogs may be an early indication of adrenocortical hyperfunction.  相似文献   

19.
A number of dogs are seen with clinical signs consistent with hyperadrenocorticism (HAC), supporting CBC and biochemical findings, but the disease cannot be confirmed with either the ACTH stimulation test or the low-dose dexamethasone suppression test (LDDST). Therefore, another screening test is required to aid diagnosis in these atypical cases of HAC. The aim of this study was to investigate whether measuring 17-hydroxyprogesterone (OHP) concentrations could be used in this role. Plasma cortisol and OHP concentrations were measured in dogs with clinical signs suggestive of HAC before and after administration of exogenous ACTH. In dogs with HAC, plasma OHP showed an exaggerated response to ACTH stimulation. This was seen in both typical cases of HAC with a positive cortisol response to ACTH administration and in atypical cases with negative screening test results. The test can be performed on plasma already taken for a conventional ACTH stimulation test. Post-ACTH OHP concentrations decreased after treatment with mitotane or adrenalectomy. These results suggest that OHP measurements can be used as an aid to diagnose and manage canine HAC.  相似文献   

20.
A cat that was suspected some insulin resistance was diagnosed as pituitary dependent hyperadrenocorticism from an adrenocorticotropic hormone (ACTH) stimulation test, dexamethasone suppression test and measure of endogenous plasma ACTH concentration. Histopathological examination revealed chromophobe adenoma in pituitary gland and hyperplasia in adrenal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号