首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的从人参中快速批量分离提取人参皂苷Rc、Rd及Rb_1、Rb_2有效组分。方法人参提取总皂苷后,再经硅胶柱分离纯化。结果分离获得纯度达90%以上的人参皂苷Rc、Rd,以及Rb_1、Rb_2有效组分。结论此法适合于批量分离提取人参皂苷Rc、Rd及Rb_1、Rb_2有效组分  相似文献   

2.
目的分别对人参不同部位提取物和西洋参不同部位提取物中14种单体皂苷含量进行比较。方法采用高效液相色谱法进行检测,色谱柱:BDS柱(HYPERSIL C18250mm*4.6mm,5μm),紫外检测器;流动相:乙腈-水梯度洗脱。流速:1m L/min,柱温:40℃,检测波长:203m。结果通过比较人参和西洋参不同部位提取物中14种单体皂苷含量可知,Rb1、Rc、Rb2在人参根提取物中含量最高,Rf为人参根提取物中特有单体皂苷;Rg1、F1、Rb3在人参茎叶提取物中含量最高;Re、Rh1(S)、Rg2(S)、Rd、F2、Rg3(S)在人参果提取物中含量最高。Rb1、Rc在西洋参根提取物中含量最高;Rg1、Re、Rh1(S)、Rg2(S)、F1、Rd、F2在西洋参茎叶提取物中含量最高;Rb2、Rb3、Rg3(S)在西洋参果提取物中含量最高。结论通过对人参和西洋参不同部位提取物中14种单体皂苷含量比较可知,Rf为人参特有单体皂苷,在人参根中含有,西洋参中没有。Rb1、Rc均是在根中含量高,Rg1、F1均是在茎叶中含量高。高效液相色谱法分离、分析人参皂苷效果好、准确、迅速、简便,也可作为评价人参属植物质量的有效分析方法。建议对人参、西洋参中含量较高的人参皂苷进行提取分离,直接用于创新药物的开发。  相似文献   

3.
人参红皮病是人参主要病害之一,对人参的品质影响很大,对人参产业的可持续发展影响深远。为了了解人参红皮病发病指数对单体皂苷Rb1、Rb2、Re、Rg1的影响,采用超高效液相色谱法,测定人参四种单体皂苷的含量。结果表明人参红皮病发病指数与单体皂苷Rb2和Re呈显著负相关关系,与单体皂苷Rb1和Rg1没有显著相关关系。人参红皮病的发生将导致人参单体皂苷Rb2和Re含量降低,而对单体皂苷Rb1和Rg1的含量影响不明显。人参红皮病发病指数越高人参单体皂苷Rb2、Re含量越低。  相似文献   

4.
目的通过对比不同前处理方法提取出人参食品中人参皂苷Rg1、Re、Rb1的含量,建立一种操作性强,准确检测高蛋白、高脂肪类人参食品中人参皂苷的含量的方法。方法采用乙醇提取-大孔树脂法与传统药典法进行对比,并对样品中人参皂苷Rg1、Re、Rb1含量及加样回收率进行测定。结果乙醇提取-大孔树脂法提取出皂苷含量约是药典法的3倍,且加样回收率可达到85%以上。结论上述方法可操作性强、稳定性好,适用于高蛋白、高脂肪人参食品中人参皂苷的检验。  相似文献   

5.
目的建立一种同时测定人参根、茎叶、花中6种人参皂苷含量的HPLC检测方法,分析常见皂苷在人参不同药用部位的分布情况。方法以人参不同药用部位根、茎叶、花为研究对象,采用HPLC法,同时测定人参皂苷Rg1、Re、Rf、Rb1、Rc、Rd的含量,分析比较这几种皂苷在人参根、茎叶、花中的分布情况。结果对6种人参皂苷在人参根、茎叶、花中的分布情况进行了分析,所建立的方法线性关系、重复性和回收率良好,适用性强。6种单体皂苷总量花>茎叶>根,人参皂苷Rf是人参根的特征成分,人参皂苷Re在人参花中的含量明显高于人参根和茎叶,占人参花中6种皂苷含量总和一半以上,其次为人参皂苷Rd。  相似文献   

6.
用RP-HPLC法测定人参茎叶皂苷粉中人参皂苷Re含量   总被引:2,自引:0,他引:2  
过去对人参茎叶皂苷含量的测定只限于总皂苷的含量测定 ,对单体皂苷含量测定较少。本文用反相HPLC法测定了人参茎叶皂苷粉中人参皂苷Re的含量。色谱柱为Shim -packclc-ODS柱 (0 1 5m× 6 0mm ,,5μm)。流动相为 0 0 5 %磷酸 :乙腈 (4∶1 ) ,检测波长 2 0 3nm ,流速 1 2ml/min ,柱温 38℃。测得人参茎叶皂苷粉中人参皂苷Re含量为1 6 85 %。  相似文献   

7.
目的通过测定发酵前后西洋参中单体皂苷含量,探讨大型担子菌与西洋参共培养,单体皂苷生物转化规律。方法采用HPLC法测定。人参皂苷Rb1采用Hedera-ODS柱(4.6×250 mm,5μm),检测波长为203 nm,流动相:乙腈-水梯度洗脱,流速为1.0 m L/min,柱温为30℃。人参皂苷Rg3采用HederaODS柱(4.6×250 mm,5μm),检测波长为203 nm,流动相:乙腈-0.05%磷酸(37:63),流速为1.0 m L/min,柱温为30℃。结果二醇系皂苷Rb1发酵前为5.75 mg/g,发酵后为2.30 mg/g,而Rg3在发酵前西洋参中未检测到,发酵后为0.56 mg/g。结论大型担子菌与西洋参双向固体发酵,会促进西洋参中皂苷类成分的生物转化,产生某些稀有皂苷,本文的研究对人参皂苷的生物转化,西洋参新用途和新制品的开发有较大理论意义及实际应用价值。  相似文献   

8.
目的:三七总皂苷中人参皂苷Rg1的分离制备。方法:利用硅胶柱层析,对三七总皂苷中人参皂苷Rg1进行分离纯化,并通过理化性质与核磁共振法对其结构进行鉴定。结果:分离得到人参皂苷Rg1的纯度为97%以上,实际得率为10.5%,理论得率75%以上。结论:该方法简单易行,成本较低,适合大规模工业生产和药理活性试验研究。  相似文献   

9.
目的 建立一种测定人参茎叶中5种人参单体皂苷(Rg1、Re、Rb1、Rc、Rd)含量的方法,并对其进行方法学验证。方法 采用高效液相色谱法对10批次人参茎叶样品进行含量测定测定,同时进行线性关系考察,精密度、稳定性、重现性、加样回收率实验。结果 不同批次人参茎叶中人参单体皂苷的含量Rg1:4.928~5.401 mg/g,Re:10.502~11.364 mg/g,Rb1:0.579~0.764 mg/g,Rc:1.479~1.892mg/g,Rd:6.022~6.547 mg/g,该方法线性良好,R2值均大于0.9992,精密度RSD值范围在0.46%~0.67%、稳定性RSD值范围在0.49%~0.64%,重现性实验RSD值范围在1.60%~2.267%,5种人参皂苷对照品加样回收率值在65.7%~89.6%之间,平均回收率值RSD值小于3%(n=6)。结论 本研究所建立的测定方法快速、准确、重现性良好,人参茎叶中5种人参单体皂苷(Rg1、Re、Rb1、Rc、Rd)含量测定,为人参非传统药用部位成分研究及质量评价提供了理论参考。  相似文献   

10.
目的发酵鲜人参中人参皂苷compoundK的分离制备。方法利用硅胶柱层忻,对发酵鲜人参中人参皂苷compoundK进行分离纯化,并通过液相质谱联用仪及核磁共振法对其结构进行鉴定。结果分离得到人参皂苷compoundK的纯度为95%以上,纯品得率为0.6%,理论得率为80%以上。结论该方法简单易行,成本较低,适合大规模工业生产和药理活性试验研究。  相似文献   

11.
从人参根部土壤分离的菌株对人参主要皂苷进行微生物转化,结果发现一株真菌GH26能有效地将人参主要皂苷Rb1转化为人参稀有皂苷C-K。同时对最佳转化条件进行了测定,在YB培养基,pH为4.0~8.0,温度为60℃时,菌株GH26生成C-K的最大转化率为76.6%,经形态学和内转录间隔区(internal transcribed spacer,ITS)基因序列分析,该菌株属于真菌属Fungal。  相似文献   

12.
目的 初步探究人参皂苷Rb1是否具有抗皮肤衰老的作用,使用不同浓度过氧化氢探究并建立人体真皮成纤维细胞(HSF细胞)氧化衰老模型,随后观察人参皂苷Rb1预处理是否具有预防HSF细胞氧化衰老的作用,并研究人参皂苷Rb1对HSF细胞凋亡的影响。方法 使用不同浓度的过氧化氢处理HSF细胞并建立HSF细胞氧化衰老模型,随后使用人参皂苷Rb1预处理细胞后再加入过氧化氢诱导,观察各组细胞形态,计算细胞活力,以及检测细胞氧化应激水平以细胞及凋亡进程。结论 600μM的过氧化氢可引发HSF细胞的氧化应激,导致细胞活力下降及死亡;500μM的人参皂苷Rb1预处理细胞2小时后可有效缓解过氧化氢的引起的细胞毒性,降低细胞内活性氧ROS的水平,并且抑制HSF细胞的凋亡,本研究揭示了人参皂苷Rb1的抗氧化作用以及在皮肤衰老治疗的应用前景。  相似文献   

13.
人参不同部位人参皂苷类成分研究   总被引:6,自引:0,他引:6  
目的研究人参不同部位人参皂苷类成分的变化。方法采用超高效液相色谱法,测定人参不同部位人参皂苷Rg1、Re、Rf、Rb1、Rc、Rb2、Rb3、Rd的含量。结果人参地上和地下部位皂苷组成不同,人参叶中皂苷含量较高,人参根中人参皂苷主要集中于参皮。结论明确了人参不同部位皂苷组成差异,为人参资源的合理利用提供理论依据。  相似文献   

14.
目的对人参饼干中人参总皂苷、人参单体皂苷Rb1、及Re+Rg1含量测定和人参饼干中人参皂苷的定性鉴别,建立检测的吉林省地方标准。方法采用紫外分光光度法和液相色谱法。结果平均加样回收率为84%。结论上述方法可操作性、重现性好,稳定性强,适合于油脂、蛋白、杂色丰富的人参食品中人参成分的检验。  相似文献   

15.
目的测定益血糖浆中人参皂苷Rb1、Rg1、Re的含量。方法高效液相色谱法。色谱柱Agilent TC-C18(4.6mm×250mm,5μm),流动相采用梯度洗脱,A为乙睛,B为0.05%磷酸水溶液,0~50min(20:80);50~60min(20→29:80→71);60~110min(29:71),检测波长203nm,体积流量1.0mL/min,柱温40℃。结果人参皂苷Rb1在1.0~5.0μg范围内呈良好线性(r=0.9999,n=5),平均回收率为(99.08%);人参皂苷Rg1在0.7~3.5μg范围内呈良好线性(r=0.9999,n=5),平均回收率为(99.63%);人参皂苷Re在0.6~3.0μg范围内呈良好线性(r=0.9999,n=5),平均回收率为(100.7%)。结论本方法简便、准确、可靠,可用于益血糖浆中人参皂苷Rb1、Rg1、Re的含量测定。  相似文献   

16.
目的建立一种反相高效液相色谱法测定人参提取物及其胶囊中人参皂苷Rb1含量的方法.方法采用Hypersil C18(250mm×4.6mm,5 μ m)色谱柱,乙腈-水(3070,VV)为流动相,检测波长203nm.结果线性范围为0.124~1.984mg/ml,三水平的平均回收率(%)分别为100.46、100.71和100.72,RSD(%)分别为0.18、0.72和0.48.结论本法简便、准确、可靠,可作为人参提取物及其胶囊制剂的质量控制方法.  相似文献   

17.
利用23种菌株对人参皂苷Rb1进行生物转化研究,发现一种灰绿毛状GH-9菌株使人参皂苷Rb1有效地转化为C-K。经形态学和内转录间隔区(internal transcribed spacer,ITS)基因序列分析,该菌株属于青霉属(Penicillium),且接近于Penicillium dipodomyicola。  相似文献   

18.
目的建立心悦滴丸的质量标准。方法采用TLC对心悦滴丸中西洋参茎叶总皂苷进行定性鉴别;采用HPLC测定人参皂苷Rb2、Rb3、Rd的含量,色谱条件为Agilent ODS C18色谱柱(4.6mm×250mm,5 m),乙腈-0.05%磷酸水溶液为流动相梯度洗脱,流速1.0m L/min,检测波长203nm,柱温40℃。结果心悦滴丸中西洋参茎叶总皂苷的薄层色谱斑点清晰。人参皂苷Rb2在0.748~4.704μg范围内呈良好线性关系(r=0.9999),平均回收率为96.2%(RSD1.9%);人参皂苷Rb3在1.632~9.792μg范围内呈良好线性关系(r=0.9999),平均回率为97.5%(RSD1.7%);人参皂苷Rd在0.96~5.76μg范围内呈良好线性关系(r=0.9999),平均回收率为96.6%(RSD2.1%)。结论建立的方法操作简便、专属性强、灵敏度高、重复性好,可作为心悦滴丸的质量控制标准。  相似文献   

19.
目的通过测定比较普通人参、西洋参和长芦人参、西洋参的总皂苷及单体皂苷Re、Rg1、Rb1的含量,以阐明长芦人参、西洋参主要成分含量的品质特点。方法采用比色法测定总皂苷含量;采用高效液相色谱法测定人参单体皂苷Re、Rg1、Rb1的含量。结果比色法测定的线性范围为15.0~75.0μg,相关系数r=0.9929;平均回收率为100.09%,RSD为0.86%(n=6)。单体皂苷Re、Rg1、Rb1与生长年份成正相关。结论长芦人参、西洋参的总皂苷含量高于普通人参、西洋参,单体皂苷含量随着年份的增长而增加。  相似文献   

20.
通过对流动相和色谱柱的筛选,达到了人参皂苷高效液相-质谱测试条件优化。流动相组成醋酸铵(5mM)-氨水(1mM)-乙腈,梯度洗脱,色谱柱ZORBAX Eclipse XDB-C18。对人参皂苷Rb1、Rb2、Rc、Rd、Re、Rf、Rg1、Rg2、Rg3、Rh2和Ro进行了测试,质谱图中基峰是[M-H]-离子,几乎没有碎片离子,因此该条件适合人参皂苷的定性检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号