首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
徐帅琳 《中国水产》2016,(10):112-115
正本实验研究了光合细菌、放线菌、枯草芽孢杆菌三种细菌优化配比成的复合功能菌去除养殖水体有机氮效果。结果表明,光合细菌、放线菌、枯草芽孢杆菌混合培养生态制剂能有效去除养殖水体中的有机氮,对高浓度的氨氮、亚硝酸盐氮的去除率可达99.6%和94%。  相似文献   

2.
在9个容积为100 L的圆柱形养殖水桶中,用鳗鱼饲料为原料培养絮体,比较了3种盐度调节方式培养盐度为30的生物絮凝系统的启动效率。第一组为盐度直接调节组:试验开始时盐度即调为30;第二组为盐度缓慢调节组:闷曝结束后每日盐度增加5,每3 h增加1度;第三组为淡水驯化组:将培养好的淡水生物絮凝系统,按照盐度缓慢调节组的增加方式增加盐度。启动完成后,监测3个处理组对10 mg/L氨氮的去除效果。结果显示,盐度调至30时,淡水驯化组和盐度缓慢调节组系统中氨氮和亚硝酸盐氮含量先于盐度直接调节组降至低水平。培养期间,盐度缓慢调节组和淡水驯化组的絮体沉降性能较盐度直接调节组好。高通量测序分析结果表明,黄杆菌纲是盐度为30的生物絮凝系统中的优势菌纲,鞘脂杆菌纲是盐度直接调节组系统中的优势菌纲,放线菌纲是淡水驯化组中的优势菌纲。Leptobactrrium和norank_f_Segniliparacea是盐度为30的生物絮凝系统的主要优势菌属。启动完成后3个处理组氨氮的去除效果差异不显著(P>0.05),盐度缓慢调节组最有利于海水生物絮凝系统的构建。  相似文献   

3.
网箱养草对养殖水体的净化效果   总被引:2,自引:0,他引:2  
在室外养殖池塘中进行异育银鲫和网箱养草(菹草)的混养实验,旨在通过监测室外池塘养殖系统中水体主要理化因子,探讨网箱养草对养殖水体主要营养盐的去除效果。结果表明:在本次试验的鱼草共生系统中,网箱养草对水体具有明显的净化效果,能有效去除水体中的N、P等营养性物质。  相似文献   

4.
养殖的淡水鱼类之所以价格不高,除了肉质较松及鱼刺多外,主要是容易含有土腥味。经研究发现,土腥味是水中的藻类及微生物所引起的,鱼腥藻、放线菌属等含有的土腥素是淡水鱼带有土腥味的罪魁祸首,特别是水温高、有机质高的水体越易产生。那么怎样去除呢?解决的方法有以下几种:一是清除塘底过多淤泥;二是经常换水;三是减少饵料残留;四是用化学药剂控制池中藻类;五是将上市鱼在干净水中蓄养几天。如根据规定,出口活鳗停饵时间不得低于48小时,在清水中蓄养须在12小时以上,以消除异味,提高品质怎样去除淡水鱼的土腥味  相似文献   

5.
刘利平  李慷  闫莉 《水产学报》2021,45(5):813-829
土腥味一直是影响水产品品质与消费行为的主要因素,长期困扰水产养殖相关产业.开展水产动物体内土腥味物质的来源、积累、检测和防控与去除方法等的研究,对提高水产品品质具有重要意义.本文综述了水产动物体内土腥味物质的来源,对放线菌、蓝藻等引起水产品土腥味的主要源头进行了分析和总结;阐述了土腥味物质在水产品养殖过程中的积累途径....  相似文献   

6.
为探究凡纳滨对虾(Litopenaeus vannamei)工厂化循环水养殖系统的养殖水体水质情况以及微生物菌群的组成结构,本研究利用高通量测序技术和生物信息学分析手段,测定凡纳滨对虾工厂化循环水养殖过程一级移动床生物净化、二级固定床生物净化、养殖水体的水质指标、水体和生物净化载体以及对虾肠道微生物菌群的组成。结果显示,水体的氨氮(NH4+-N)和亚硝态氮(NO2-N)质量浓度显著降低,分别为0.85和0.21 mg/L。养殖系统水体、生物净化载体和虾肠道样品中共有的优势菌为变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes),此外,一级、二级生物净化系统水体中的放线菌门(Actinobacteria)为优势菌,生物净化载体中浮霉菌门(Planctomycetes)和硝化螺旋菌门(Nitrospirae)为优势菌;对虾肠道中的厚壁菌门(Firmicutes)为优势菌。另外,对虾养殖循环水系统中生物净化载体上的细菌物种含量比水样中的细菌物种少,但微生物多样性高于养殖水体,...  相似文献   

7.
<正>氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。养殖水体中的氨氮来源主要有以下三个方面:①水生动物的排泄物、施加的肥料、残饵、动植物尸体中含有大量的蛋白质,被池塘中的微生物菌分解后形成氨基酸,再进一步分解成氨氮;②当养殖水体中氧气不足时,水体发生反硝化反应,亚硝酸盐、硝酸盐在反硝化细菌的作用下分解而产生氨氮;③鱼类可通  相似文献   

8.
养殖用水重复利用过程中的C/N   总被引:2,自引:0,他引:2  
环境基质中的C/N会影响水体中细菌菌体组成的C/N、细菌群落组成和细菌氮素代谢途径,进而会影响养殖水体的自养硝化、异养反硝化和氨氮同化过程的效率,影响养殖水体的重复利用率。文章对养殖水体中主要功能菌对基质中C/N的响应、养殖水体中C/N对硝化作用、反硝化作用和无机氮同化的影响及相应调控策略进行了分析和总结,可为提高水产养殖用水的氮素控制效率和养殖用水的重复利用率提供参考。  相似文献   

9.
养殖废水中氮元素的积累可能造成水体富营养化。为了实现养殖废水中氮的去除,通常采用传统的自养硝化异养反硝化生物脱氮工艺,而异养硝化-好氧反硝化(heterotrophic nitrification-artobic denitrification, HN-AD)菌的出现实现了生物脱氮技术的突破。HN-AD菌能同步实现硝化和反硝化作用,具有分布范围广、适应能力强、世代时间短和脱氮速率快等优势,因此在养殖废水处理领域具有广阔的应用前景。本研究系统综述HN-AD菌的生物脱氮特性、影响因素、作用机制、相关催化酶系以及在实际废水处理中的应用,并从HN-AD菌株筛选、脱氮原理和实际应用等方面提出建议,旨在为HN-AD菌在养殖废水处理中的应用研究提供基础资料。[中国渔业质量与标准,2023,13(1):33-41]  相似文献   

10.
循环水养殖系统的关键技术是养殖废水的处理和再利用。作为循环水养殖系统水处理的核心单元,生物膜对于养殖水体中污染物的去除起着至关重要的作用。水温、盐度、pH和溶氧等环境因子都会影响生物膜的功能,环境因子的突然变化会引起生物膜脱落、影响循环水养殖系统生物膜的形成过程及运行效果。控制好水温、盐度、pH和溶氧,生物膜净化效率就能达到较为理想的状态,养殖废水的处理效果就会更好。因此,有必要研究各个环境因子变量条件下的养殖废水去除动力学特征,以期为循环水养殖系统优化设计与运行管理提供理论依据。  相似文献   

11.
12.
Aquatic animals raised in recirculating aquaculture systems (RAS) can develop preharvest “off-flavors” such as “earthy” or “musty” which are caused by the bioaccumulation of the odorous compounds geosmin or 2-methylisoborneol (MIB), respectively, in their flesh. Tainted aquatic products cause large economic losses to producers due to the inability to market them. Certain species of actinomycetes, a group of filamentous bacteria, have been attributed as the main sources of geosmin and MIB in RAS. Previous studies have demonstrated that certain nutritional factors can stimulate or inhibit bacterial biomass and geosmin production by certain actinomycetes. In the current study, the effects of two nitrate-nitrogen (NO3--N) levels (20–40 mg/L and 80–100 mg/L) on geosmin and MIB levels in culture water and the flesh of rainbow trout (Oncorhynchus mykiss) raised in RAS were monitored. Water and fish tissue samples were collected over an approximately nine-week period from six RAS, three replicates each of low and high NO3--N, and analyzed for geosmin concentrations using solid phase microextraction–gas chromatography–mass spectrometry. Results indicated no significant difference in geosmin concentrations in water or fish flesh between the low and high NO3--N RAS. Therefore, higher NO3--N levels that may occur in RAS will not adversely or beneficially impact geosmin-related off-flavor problems.  相似文献   

13.
我国内陆、滨海地区有丰富且尚未有效开发利用的盐碱水资源,在盐碱水域进行水产养殖已成为其重要的开发利用途径之一,而盐碱水体的高pH、高盐、高碱特点严重限制了水产养殖对象的生长发育。益生菌具有净化水质、调节pH、降低氨氮和提高鱼类盐碱耐受能力等综合作用,是一种高效无污染的水质改良剂。合理使用益生菌可有效改良盐碱水体,提高水产养殖效益。文章综述了光合细菌、乳酸菌、芽孢杆菌、酵母菌等不同菌种制剂及其在适应、改良盐碱水体方面的研究进展。  相似文献   

14.
The ‘earthy’ and ‘muddy’ off‐flavours in pond‐reared fish are due to the presence of geosmin or 2‐methylisoborneol in the flesh of the fish. Similar off‐flavours have been reported in fish raised in recirculating aquaculture systems (RAS); however, little information is available regarding the cause of these off‐flavours. Our hypothesis was that earthy and muddy off‐flavour compounds, found previously in pond‐raised fish, are also responsible for off‐flavours in fish raised in RAS. In this preliminary study, we examined water, biofilms in RAS and fillets from cultured arctic charr known to have off‐flavours and requiring depuration using instrumental [solid‐phase microextraction procedure and gas chromatograph‐mass spectrometry (GC‐MS)] and human sensory analyses. Geosmin was present in the samples taken from the biofilter and on the side walls of the tanks. Two‐methylisoborneol was only found in low levels in the samples. The GC‐MS results indicated the presence of geosmin in the fillets (705 ng kg?1), but lower levels were found in the water (30.5 ng L?1). Sensory analyses also detected an earthy flavour (i.e., geosmin presence) in the fillets, and, therefore, it appears that geosmin is the main compound responsible for the off‐flavour in RAS. Further studies are being performed to identify the microorganisms responsible for geosmin production in RAS.  相似文献   

15.
Taste preferences in fishes   总被引:2,自引:0,他引:2  
The fish gustatory system provides the final sensory evaluation in the feeding process. Unlike other vertebrates, the gustatory system in fish may be divided into two distinct subsystems, oral and extraoral, both of them mediating behavioural responses to food items brought in contact with the fish. The abundance of taste buds is another peculiarity of the fish gustatory system. For many years, morphological and electrophysiological techniques dominated the studies of the fish gustatory system, and systematic investigations of fish taste preferences have only been performed during the last 10 years. In the present review, basic principles in the taste preferences of fish are formulated. Categories or types of taste substances are defined in accordance with their effects on fish feeding behaviour and further mediation by the oral or extraoral taste systems (incitants, suppressants, stimulants, deterrents, enhancers and indifferent substances). Information on taste preferences to different types of substances including classical taste substances, free amino acids, betaine, nucleotides, nucleosides, amines, sugars and other hydrocarbons, organic acids, alcohols and aldehydes, and their mixtures, is summarised. The threshold concentrations for taste substances are discussed, and the relationship between fish taste preferences with fish systematic position and fish ecology is evaluated. Fish taste preferences are highly species‐specific, and the differences among fish species are apparent when comparing the width and composition of spectra for both the stimulants and the deterrents. What is evident is that there is a strong similarity in the taste preferences between geographically isolated fish populations of the same species, and that taste preferences are similar in males and females, although at the individual level, it may vary dramatically among conspecifics. What is noteworthy is that taste responses are more stable and invariable for highly palatable substances than for substances with a low level of palatability. Taste preferences as a function of pH is analysed. There is a good correspondence between development of the gustatory system in fish ontogeny and its ability to discriminate taste properties of food items. There is also a correspondence between oral and extraoral taste preferences for a given species; however, there is no correlation between smell and taste preferences. Taste preferences in fish show low plasticity (in relation to the diet), appear to be determined genetically and seem to be patroclinous. Fish feeding motivation and various environmental factors like water temperature and pollutants such as heavy metals and low pH water may shift fish taste preferences. Comparisons between bioassay and electrophysiological data show that palatability is not synonymous with excitability in the gustatory system. The chemical nature of stimulants and deterrents in various hydrobionts is outlined. The significance of basic knowledge in fish taste preferences for aquaculture and fisheries is emphasised.  相似文献   

16.

Aquaculture is growing post-haste in recent years particularly in the fish and shrimp production. The rapid growth of aquaculture and increasing demand for fish have led to a rapid development of the fish and shrimp industry, resulting in increased production of both fish and shrimps. As a result, there is a greater risk of disease outbreaks. Mass mortalities in aquaculture are primarily due to infectious diseases caused by bacteria, viruses, and fungi. Among them, viral diseases are the most devastating, causing huge loss in the production of both cultured fish and shellfishes. There are several effective methods of treatment for these disease outbreaks. This review focuses on various methods of controlling the viral pathogens using various treatment methods like use of medicinal plants and seaweed extracts, bioactive compounds from actinomycetes, vaccines, probiotic microbes, chemicals, nanoparticles, and green synthesis of nanoparticles.

  相似文献   

17.
18.
3种滤料生物滤器的挂膜与黑鲷幼鱼循环水养殖效果   总被引:2,自引:1,他引:1  
采用微生态净水剂作为菌种,对3种生物滤料(陶环、弹性毛刷和爆炸棉)构建的生物滤器进行生物膜培养,并以3种生物滤器为基础构建简易循环水养殖系统,进行黑鲷(Sparus macrocephalus)幼鱼养殖实验。结果表明,陶环生物滤器、弹性毛刷生物滤器和爆炸棉生物滤器的生物膜成熟时间分别为25 d、32 d和28 d。黑鲷幼鱼经过40d的饲喂,3个实验组鱼的体质量与对照组相比,均差异显著(P<0.05),成活率均达到95%以上;实验组鱼血清溶菌酶(LSZ)活性和肝组织总超氧化物歧化酶(T-SOD)活性均显著高于对照组(P<0.05);实验组鱼体消化道内菌群数量及其多样性要明显高于对照组。结果表明,不同滤料在相同工况条件下挂膜成熟时间不同;微生态净水剂作为挂膜菌种效果良好;循环水系统养殖模式不仅可以提高鱼体的生长速度,还能增强鱼体免疫性能。  相似文献   

19.
Regardless of the degree of closure of a recirculation system, effluents are produced and replacement water is needed, which limits the possibility of locating a seawater production system away from the shoreline. At the Palavas Ifremer station, in the south of France, a High Rate Algal Pond (HRAP) was operated during several years to treat the effluent from a recirculating aquaculture system before reusing it. The effect of the HRAP-treated water on the recirculation system and on the fish was investigated and the optimal algae growing conditions were defined. The experiments were carried out in three rearing systems: one flow through, one recirculating and one recirculating with a HRAP. The water flow rate, temperature, pH and salinity conditions were similar in all systems.The effect of reusing the HRAP-treated water is very limited (1) on the functioning of the recirculation system and (2) on fish performance, but it allows a significant reduction of the dissolved inorganic nitrogen and phosphorus concentration in the rearing water. HRAP treatment reduced metal accumulation in muscle and liver of RAS fish, except for chromium and arsenic. All biomarkers presented no significant difference between systems, except for Superoxide Dismutase (SOD) and EROD, which showed a higher concentration in RAS and in both recirculating system respectively.  相似文献   

20.
Abstract. The growth of the aquaculture industry and the general awareness of the environment have increased the concern of' the environmental impact from aquaculture.
As fish farms are open systems, all material that is not harvested as fish is released to the environment. The most important effluents are solid particles like feed and faeces, dissolved substances like nutrients and excretion products, and antibacterial agents.
The effect of these substances varies with their nature and quantity and with local conditions. Production and biomass of phytoplankton seem to be little influenced. The benthic community beneath and close to the cages is often altered. At poorly flushed sites the sea-bed may be anoxic and methane and hydrogensulphide are released from the sediments. Wild fauna, like fish, otters and birds are attracted to the farms.
The respiration and excretion of the fish directly influence water quality. Usually the oxygen tension is somewhat reduced in the net cages, while the concentration of ammonia is elevated in the net. Such conditions are assumed to influence fish growth and health.
Most of the antibiotic agents used in fish farming are persistent and may remain in high concentrations in the sediments up to one year after medication. The frequency of resistant bacteria in the sea-bed is normally increased, and there is a temporary drop in sediment metabolism after medication. Wild fish have been found to have high residues of antibiotic agents.
The organic loading of the sea-bed, the evolution of resistant bacteria and residues in the wild flsh are considered to be the most severe environmental impact of aquaculture. These are all associated with effluent of large particles, and thus mainly restricted to the site area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号