首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

2.
The need for salinity tolerant turfgrasses is increasing because of the increased use of effluent or other low quality waters for turfgrass irrigation. Greenhouse container and hydroponic experiments were conducted to determine the relative salinity tolerance and growth responses of ‘Challenger’ Kentucky bluegrass (Poa pratensis L.) (KBG), ‘Arid’ tall fescue (Festuca arundinacea Schreb) (TF), ‘Fults’ alkaligrass (Puccinellia distans (L.) Parl.) (AG), and a saltgrass (Distichlis spicata (Torr.) Beetle) collection (SG). In the container experiments, irrigation waters of different salinity levels were applied to experimental plants grown in plastic pots filled with a mix of sand and Isolite. The results indicated that KBG, TF, AG, and SG experienced a 50% shoot growth reduction at 4.9, 10.0, 20.0, and 34.9 dS m−1, respectively, and a 50% root growth reduction at 5.8, 19.6, 24.9 and 41.0 dS m−1, respectively. In the hydroponic experiment, grasses were grown in saline solution at 2.0, 4.7, 9.4, 14.1, 18.8, and 23.5 dS m−1. Kentucky bluegrass, TF, AG, and SG experienced a 50% shoot growth reduction at 5.5, 14.2, 23.0, and 34.5 dS m−1, respectively, and a 50% root growth reduction at 7.9, 21.5, 30.4 and 40.8 dS m−1, respectively. Root to shoot ratio of KBG remained constant, whereas those of TF, AG, and SG increased at all salinity levels. Salinity caused root cortex cells to collapse, in KBG at 14.1 dS m−1 and in TF at 23.5 dS m−1. Alkaligrass and SG only had a few cell collapses even at 23.5 dS m−1. Bi-cellular salt glands were observed only on leaves of SG. The ranking for salinity tolerance of selected grasses was: SG>AG>TF>KBG. Salt glands present in SG, root growth stimulation of SG and AG, and maintenance of relatively high root to shoot ratio in TF are apparent adaptive mechanisms exhibited by these grasses for salinity tolerance.  相似文献   

3.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

4.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

5.
A field study was conducted in northwestern Negev to determine the effect of the amount of water and its salinity level on the yield of Pima cotton (cv. S5). Irrigations were applied by means of a double line-source sprinkler system using two parallel lines, each supplied with water of a different salinity. The water salinity ranged from 2 to 7.5 dS m−1 and the seasonal water application ranged from 30.0 to 68.0 cm. With water amounts of up to 50.0 cm (42% of Class A evaporation), an increase in water salinity caused a reduction in the seed cotton yield and the salinity threshold increased with an increasing amount of water. The maximum yield of seed cotton (about 5000 kg ha−1) was obtained with a water application of 50 cm and a water salinity between 4 to 5 dS m−1. With seasonal water applications exceeding 50 cm, an increase in salinity increased the yield. This is attributed to a depression of excessive vegetative growth in the presence of large amounts of water.  相似文献   

6.
Drainage water salinity data from 71 public deep tubewells and 79 pipe drainage units near Faisalabad, Pakistan, were studied. Drainage water salinity of the tubewells and the pipe drains remained approximately constant with time. This was attributed to the deep, highly conductive, unconfined aquifer underlying the area, which facilitates lateral groundwater inflow into the drained areas. Tubewells alongside surface drains showed average electrical conductivity, sodium adsorption ratio, and residual sodium carbonate values of 3.2 dS m−1, 17.2 (meq l−1)0.5, and 6.4 meq l−1, respectively. For pipe drains, which are situated in areas with comparable conditions, the corresponding values were 2.5 dS m−1, 12.2 (meq l−1)0.5, and 3.7 meq l−1, respectively. Tubewells have an inferior drainage water quality because they attract water from greater depths, where the water is more saline.  相似文献   

7.
Field experiments were conducted in moderately saline and saline soils during the 1996 dry and wet seasons and the 1997 dry season to document salt dynamics and establish their relationship with local hydrology. Topsoil (0–15 cm) salinity in the dry season varied from 4.0 to 9.0 dS m−1 in moderately saline soils at Mirzapur and from 5.0 to 12.0 dS m−1 in saline soils at Barodanga. In wet season, the corresponding figures were from 1.5 to 2.5 dS m−1 and from 2.0 to 3.0 dS m−1, respectively. Dry season cropping significantly reduced topsoil salinity at both the research sites. Overall peak salinity in non-plowed cropped lands was 25–38% lower than that of fallow lands, and in plowed cropped lands it was about 30–40% less than the non-plowed cropped lands.Multiple linear and non-linear regression models were developed to predict topsoil salinity of the fallow land for both moderately saline and saline soils by using daily rainfall and evaporation as independent variables. The prediction level was not significantly improved when a non-linear model was employed in place of linear model. Therefore, a linear model may be used to predict topsoil salinity of the coastal ricelands of Bangladesh.  相似文献   

8.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

9.
The great challenge of the agricultural sector is to produce more food from less water, which can be achieved by increasing Crop Water Productivity (CWP). Based on a review of 84 literature sources with results of experiments not older than 25 years, it was found that the ranges of CWP of wheat, rice, cotton and maize exceed in all cases those reported by FAO earlier. Globally measured average CWP values per unit water depletion are 1.09, 1.09, 0.65, 0.23 and 1.80 kg m−3 for wheat, rice, cottonseed, cottonlint and maize, respectively. The range of CWP is very large (wheat, 0.6–1.7 kg m−3; rice, 0.6–1.6 kg m−3; cottonseed, 0.41–0.95 kg m−3; cottonlint, 0.14–0.33 kg m−3 and maize, 1.1–2.7 kg m−3) and thus offers tremendous opportunities for maintaining or increasing agricultural production with 20–40% less water resources. The variability of CWP can be ascribed to: (i) climate; (ii) irrigation water management and (iii) soil (nutrient) management, among others. The vapour pressure deficit is inversely related to CWP. Vapour pressure deficit decreases with latitude, and thus favourable areas for water wise irrigated agriculture are located at the higher latitudes. The most outstanding conclusion is that CWP can be increased significantly if irrigation is reduced and crop water deficit is intendently induced.  相似文献   

10.
The potato (Solanum tuberosum L.) is widely planted in the Middle Anatolian Region, especially in the Nigde-Nevsehir district where 25% of the total potato growing area is located and produces 44% of the total yield. In recent years, the farmers in the Nigde-Nevsehir district have been applying high amounts of nitrogen (N) fertilizers (sometimes more than 900 kg N ha−1) and frequent irrigation at high rates in order to get a much higher yield. This situation results in increased irrigation and fertilization costs as well as polluted ground water resources and soil. Thus, it is critical to know the water and nitrogen requirements of the crop, as well as how to improve irrigation efficiency. Field experiments were conducted in the Nigde-Nevsehir (arid) region on a Fluvents (Entisols) soil to determine water and nitrogen requirements of potato crops under sprinkler and trickle irrigation methods. Irrigation treatments were based on Class A pan evaporation and nitrogen levels were formed with different nitrogen concentrations.The highest yield, averaging 47,505 kg ha−1, was measured in sprinkler-irrigated plots at the 60 g m−3 nitrogen concentration level in the irrigation treatment with limited irrigation (480 mm). Statistically higher tuber yields were obtained at the 45 and 60 g m−3 nitrogen concentration levels in irrigation treatments with full and limited irrigation. Maximum yields were obtained with about 17% less water in the sprinkler method as compared to the trickle method (not statistically significant). On the loam and sandy loam soils, tuber yields were reduced by deficit irrigation corresponding to 70% and 74% of evapotranspiration in sprinkler and trickle irrigations, respectively. Water use of the potato crop ranged from 490 to 760 mm for sprinkler-irrigated plots and 565–830 mm for trickle-irrigated treatments. The highest water use efficiency (WUE) levels of 7.37 and 4.79 kg m−3 were obtained in sprinkle and trickle irrigated plots, respectively. There were inverse effects of irrigation and nitrogen levels on the WUE of the potato crops. Significant linear relationships were found between tuber yield and water use for both irrigation methods. Yield response factors were calculated at 1.05 for sprinkler methods and 0.68 for trickle methods. There were statistically significant linear and polynomial relationships between tuber yield and nitrogen amounts used in trickle and sprinkler-irrigated treatments, respectively. In sprinkler-irrigated treatments, the maximum tuber yield was obtained with 199 kg N ha−1. The tuber cumulative nitrogen use efficiency (NUEcu) and incremental nitrogen use efficiency (NUEin) were affected quite differently by water, nitrogen levels and years. NUEcu varied from 16 to 472 g kg−1 and NUEin varied from 75 to 1035 g kg−1 depending on the irrigation method. In both years, the NH4-N concentrations were lower than NO3-N, and thus the removed nitrogen and nitrogen losses were found to be 19–87 kg ha−1 for sprinkler methods and 25–89 kg ha−1 for trickle methods. Nitrogen losses in sprinkler methods reached 76%, which were higher than losses in trickle methods.  相似文献   

11.
Rice (Oryza sativa L.) cultivation under non-flooded (NF) condition is a new alternative to the conventional flooded (CF) rice cultivation system in the regions where rainfall and fresh water resources are limited. Non-flooded rice cultivation may mediate rice growth performance and mulching may be good practice to reduce evapotranspiration and increase water use efficiency (WUE). The research objectives of this study were to investigate the effects of non-flooded cultivation with straw mulching on the rice agronomic traits and water use efficiency of the second rice cropping season (late rice). The treatments were conventional flooded rice cultivation, non-flooded rice cultivations without (NF-ZM) and with rice straw mulching (NF-SM). Irrigation water was 19950 m3 ha−1 in 2003 and 15,850 m3 ha−1 in 2004 in the CF treatments and 7200 m3 ha−1 in 2003 and 5045 m3 ha−1 in 2004 in the non-flooded rice fields (NF-ZM and NF-SM treatments).The field measurements showed that water seepage was 13,442 m3 ha−1 in the CF treatment, 5510 m3 ha−1 in the NF-ZM treatment and 5424 m3 ha−1 in the NF-SM treatment. Rice straw mulching decreased evapotranspiration by 33% and 63% (in 2003), 36.5% and 57.1% (in 2004) to the NF-ZM treatment and CF treatment, respectively. Compared with the NF-ZM treatment, mulch application significantly increased the leaf area per plant, main root length, tap root length and root dry weight per plant of crop. The yield of the NF-SM treatment (2003: 6489 kg/hm2; 2004: 8574.8 kg/hm2) was similar with the value of the CF treatment (2003: 6811.5; 2004: 8630.5 kg/hm2), and much higher than the NF-ZM treatment (2003: 4716; 2004: 6394.8 kg/hm2). The order of irrigation water use efficiency (IWUE) and water use efficiency were as follows: NF-SM > NF-ZM > CF.  相似文献   

12.
Greenhouse grown tomato was used to test partial root drying (PRD), a newly developing irrigation technique to save irrigation water, in Spring- and Fall-planted fresh-market tomato (Lycopersicon esculentum L., cv. Fantastic) cultivar. The PRD practice simply requires wetting of one half of the rooting zone and leaving the other half dry, thereby utilizing reduced amount of irrigation water applied. The wetted and dry sides are interchanged in the subsequent irrigations. Six irrigation treatments were tested during the two-year work in 2000 and 2001: (1) FULL, control treatment where the full amount of irrigation water, which was measured using Class-A pan evaporation data, was applied to the roots on all sides of the plant; (2) 1PRD30, 30% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged with every irrigation; (3) 1PRD50; (4) 2PRD50, 50% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged every and every other irrigation, respectively; (5) DI30 and (6) DI50, 30 and 50% deficit irrigations, respectively. The defined deficit levels were all in comparison to FULL irrigation. During the first year study in 2000, only three treatments (FULL, 1PRD30 and 2PRD50) were tested. Five treatments with exception of 2PRD50 were included in 2001. The FULL irrigation treatment, in Spring-planted tomato having a 153 day growth period, yielded 110.9 t ha−1. The resulting irrigation-water-use efficiency (IWUE) was 321.8 kg (ha mm)−1. The 1PRD50 treatment gave 86.6 t ha−1, which was not statistically different (P ≤ 0.05) from the FULL irrigation (the control) and had 56% higher IWUE. Although yield differences were not statistically significant in Fall-planted tomato, the highest fruit yield was again obtained under FULL irrigation treatment (205.2 t ha−1) over a growth period of 259 days after transplanting. The PRD treatments had 7–10% additional yield over the deficit irrigation receiving the same amount of water. The PRD treatments gave 10–27% higher marketable tomato yield (>60 g per fruit), compared with the DI treatments. Abscisic acid (ABA) concentrations measured in fresh leaf tissue was the highest under PRD practice relative to FULL and DI treatments. The high ABA content of fresh-leaf tissue observed in the work supports the root signalling mechanism reported earlier in plants having undergone partial root drying cycles.  相似文献   

13.
Hydroponics requires good quality water. For this purpose, water quality is based on concentrations of specific ions and phytotoxic substances as well as the presence of organisms and substances that can clog irrigation systems. Here, four irrigation reservoirs, i.e. two rainwater ponds, a peat ditch, and a natural lake, were analyzed to determine whether or not they conform to water quality guidelines. Based on our data, the four reservoirs could be divided into two categories in respect to their water quality. The two rainwater ponds belong to the category characterized by low input of ionic strength (480 μmol m−1), low concentration of unwanted ions, such as SO42− (63 μmol l−1) and Zn2+ (3.9 μmol l−1), a moderate bacterial population (lg 4.9 CFU m−1), and moderate algae density (lg 6.0 cells ml−1). The rainwater ponds were found to contain a good diversity in bacteria (45 species from 25 genera), and a poor diversity of algae (15 species from 4 groups). The other category, to which the peat ditch and natural lake belong, is characterized by a high ionic strength (12,200 μmol l−1), high concentrations of alkali ions (Mg2+: 890 μmol l−1; Ca2+: 3.260 μmol l−1; K+: 470 μmol l−1), a moderate bacterial (lg 4.7 CFU ml−1), but low algae density (lg 5.0 cells ml−1). In comparison to the first category, the diversity of the bacteria was poor (seven species from three genera). However, in sharp contrast was the rich algal community detected in the peat ditch, for which 32 species from six groups were found, whereas in the natural lake, only one group with seven species was identified. In all reservoirs, species of the genera Paenibacillus and Bacillus were detected, and small green algae, e.g. Scenedesmus spp., also dominated in each case. Overall, the bacterial and algal densities showed wide fluctuations between water sources, and neither caused filter clogging as observed in investigations of others. The quality of the rainwater investigated was assessed to be well suited for use in hydroponics due to appropriate nutrient concentration (except Zn2+ in one pond), and lack of potential bacterial and algal development. However, we recommend water from the natural lake and the peat ditch to be used with care because of the high nutrient concentration.  相似文献   

14.
15.
An experiment was conducted to evaluate the effect of residual sodium carbonates (RSC) of irrigation water on the growth and yield of sugarcane grown on sierozem light textured alkaline soil with sodic ground water and to study the performance of some promising sugarcane genotypes under these conditions. Treatments consisted of five levels of irrigations water viz RSC 2.8, 6.5, 12 me l−1 and RSC 6.5 and 12.0 me l−1 fully amended with gypsum. Plant and ratoon crops of eight genotypes of sugarcane were harvested. Cane yield and yield attributing characters like cane height, number of internodes per cane and number of millable canes were recorded. Juice quality viz percent juice extraction, percent sucrose, and commercial cane sugar (CCS%) in juice were determined at the harvest of crop. For both plant and ratoon crops, the average cane yield of all the genotypes of sugarcane and cane yield attributing characters decreased significantly with the increase in RSC of irrigation water to 6.5 and 12.0 me l−1 (35% and 51% decline in the average cane yield for plant crop). For ratoon crop, the corresponding decrease in the average cane yield was less than the plant crop (only 14% and 21%). Amending RSC with gypsum increased the yield in all genotypes. The cane yield of various genotypes obtained under amended RSC with gypsum treatments were almost equal to the yield obtained under RSC 2.8 me l−1 treatment (89% to 92% average cane yield for plant crop and 93% to 96% for ratoon crop). The effect of RSC of irrigation was variable for different genotypes (for example, for the plant crop of CoH 97, 65% and 76% and for CoH 108, 9% and 20% decline in the cane yield was observed with the application of high RSC irrigation water). As compared to plant crop, the ratoon crop of all genotypes recorded higher average cane yield and lesser decline in the cane yield with the application of high RSC irrigation water. Average juice extraction % decreased from 40.5% to 35.8%, and sugar yield decreased significantly (5.61 to 2.91 t ha−1 for plant crop and 6.18 to 5.38 t ha−1 for ratoon crop) with the increase in RSC of irrigation water, and amending RSC with gypsum increased the juice extraction % and sugar yield per unit area.  相似文献   

16.
A field experiment was conducted during summer season of 1998 at the Main Research Station, University of Agricultural Sciences, Hebbal, Bangalore. Experiment consisted of four irrigation levels and two methods of planting. Drip irrigation at 0.8 Epan with normal planting recorded significantly higher green cob (20.07 t ha−1) and fodder yield (24.87 t ha−1) compared to either drip at 0.6 Epan or weekly surface irrigation at 0.8 Epan, while drip at 0.4 Epan under paired planting (10.53 and 15.23 t ha−1, respectively registered the lowest. Drip at 0.4 Epan with normal planting recorded higher WUE of green cob and fodder (48.21 and 61.22 kg ha mm−1) with total water requirement of 330.46 mm. With increase in water use (drip at 0.6 Epan, drip/surface irrigation at 0.8 Epan) the water use efficiency decreased. Drip irrigation at 0.8 Epan resulted in higher leaf water potential (−4, −7, −8 bars) at 20, 40 and 60 DAS before irrigation. Consequently, the RWC in the leaf was 81.10% and the available soil moisture ranged from 55.62 to 61.91%.  相似文献   

17.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

18.
A significant portion of the irrigated acreage in the intermountain western U.S. is comprised of cool season grass pastures. Droughts, coupled with increasing demands for limited water supplies in the region, have decreased the water volumes available for irrigating these pastures and other crops. Consequently, relationship between crop yield and irrigation (water production functions) should be defined for various species and cultivars to help growers and water managers make appropriate selections based on water availability.During a 3-year study on the Colorado Plateau, a line-source irrigation system was used to evaluate the relationship between applied water and dry forage production of orchardgrass (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.), meadow brome (Bromus riparius Rehmann), smooth brome (Bromus inermis Leyss.), two cultivars of intermediate wheatgrass (Elytrigia intermedium [Host] Nevski), crested wheatgrass (Agropyron cristatum L. Gaertn. X desertorum [Fisch. ex Link] J.A. Schultes) and perennial ryegrass (Lolium perenne L.). Irrigation treatments, including precipitation, ranged from 457 to 970 mm in 1996, 427 to 754 mm in 1997 and 490 to 998 mm in 1998. There was a positive linear relationship between yield and irrigation for all cultivars when averaged over all years but the relationships varied between cultivars and years. Orchardgrass, meadow brome and tall fescue produced more dry forage than the other grasses at the highest irrigation levels in all years. These grasses also produced the greatest rates of yield increase per unit of irrigation (average of 0.0129 Mg ha−1 mm−1) and exhibited greater yield stability from year to year than the other grasses at irrigation levels above 700 mm. The intermediate wheatgrasses produced more forage than the other grasses under limited irrigation (less than 600 mm) but the average production rate with irrigation (0.0066 Mg ha−1 mm−1) was only about half that of the aforementioned grasses. The average rate of forage produced per mm of irrigation was intermediate in the smooth brome (0.0096 Mg ha−1) and lowest in the crested wheatgrass and perennial ryegrass (0.0048 and 0.0034 Mg ha−1, respectively). These results suggest that orchardgrass and meadow brome be included in irrigated pastures receiving more than 700 mm of water annually while the intermediate wheatgrasses be selected for pastures receiving an annual water application of less than 700 mm.  相似文献   

19.
Based on a field study on the semi-arid Loess Plateau of China, the strategies of limited irrigation in farmland in dry-period of normal-precipitation years are studied, and the effects on water use and grain yield of spring wheat of dry-period irrigation and fertilizer application when sowing are examined. The study includes four treatments: (1) with 90 mm dry-period irrigation but without fertilizer application (W); (2) with fertilizer application but without dry-period irrigation (F); (3) with 90 mm dry-period irrigation plus fertilizer application (WF); (4) without dry-period irrigation and fertilizer application (CK). The results indicate that dry-period irrigation resulted in larger and deeper root systems and larger leaf area index (LAI) compared with the non-irrigated treatments. The root/shoot ratio (R/S) in the irrigated treatments was significantly higher than in the non-irrigated treatments. The grain yields in F, W and WF are 1509, 2712 and 3291 kg ha−1, respectively, which are 13.7, 104.3 and 147.9% higher than that (1328 kg ha−1) of CK, and at the same time the grain yields in W and WF are also significantly higher than in F. Water use efficiencies (WUE) in terms of grain yield are 5.70 and 6.91 kg ha−1 mm−1 in W and WF, respectively, being 65.7 and 101.1% higher than that (3.44 kg ha−1 mm−1) of CK. The highest WUE and grain yield consistently occurred in WF, suggesting that the combination of dry-period irrigation and fertilizer application has a beneficial effect on improving WUE and grain yield of spring wheat.  相似文献   

20.
A 2-year experiment was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to determine water use and lint yield response to the length of irrigation season of drip irrigated cotton (Gossypium hirsutum L.). Crop evapotranspiration (ETcrop) and reference evapotranspiration (ETrye-grass) were directly measured at weekly basis during the 2001 growing period using crop and rye-grass drainage lysimeters. Crop coefficients (Kc) in the different growth stages were calculated as ETcrop/ETrye-grass. Then, the calculated Kc values were used in the 2002 growing period to estimate evapotranspiration of cotton using the FAO method by multiplying the calculated Kc values by ETrye-grass measured in 2002. The length of irrigation season was determined by terminating irrigation permanently at first open boll (S1), at early boll loading (S2), and at mid boll loading (S3). The three treatments were compared to a well-watered control (C) throughout the growing period. Lint yield was defined as a function of components including plant height at harvest, number of bolls per plant, and percentage of opened bolls per plant.Lysimeter-measured crop evapotranspiration (ETcrop) totaled 642 mm in 2001 for a total growing period of 134 days, while when estimated with the FAO method in 2002 it averaged 669 mm for a total growing period of 141 days from sowing to mature bolls. Average Kc values varied from 0.58 at initial growth stages (sowing to squaring), to 1.10 at mid growth stages (first bloom to first open boll), and 0.83 at late growth stages (early boll loading to mature bolls).Results showed that cotton lint yields were reduced as irrigation amounts increased. Average across years, the S1 treatment produced the highest yield of 639 kg ha−1 from total irrigations of 549 mm, compared to the S2 and S3 treatments, which yielded 577 and 547 kg ha−1 from total irrigations of 633 and 692 mm, respectively, while the control resulted in 457 kg ha−1 of lint yield from 738 mm of irrigation water. Water use efficiency (WUE) was found to be higher in S1 treatment and averaged 1.3 kg ha−1 mm−1, followed by S2 (1.1 kg ha−1 mm−1), and S3 (1.0 kg ha−1 mm−1), while in the control WUE was 0.80 kg ha−1 mm−1. Lint yield was negatively correlated with plant height and the number of bolls per plant and positively correlated with the percentage of opened bolls. This study suggests that terminating irrigation at first open boll stage has been found to provide the highest cotton yield with maximum WUE under the semi-arid conditions of the Bekaa Valley of Lebanon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号