首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential for field soils to cause Aphanomyces root rot of pea (Pisum sativum) was estimated for a large number of samples from commercial pea fields over a period of 5 years, using a greenhouse bioassay. The aim of the research project was to gain a mechanistic understanding of soil suppressiveness to the disease. Regression analysis showed that of the measured soil variables (Ca, Mg, K, P, pH), soil Ca concentrations had the strongest (negative) correlation with disease prevalence, and also a significant negative correlation with disease severity in samples with confirmed presence of the disease. Greenhouse bioassays using a set of non-infested soils inoculated with artificially produced oospore inoculum of the casual organism Aphanomyces euteiches, showed a similar negative correlation between soil Ca content and disease severity. Disease severity was not consistently affected by soil sterilisation, but was lowered by the addition of two different Ca salts. In contrast, addition of sodium bicarbonate to two soils lowered the content of water-soluble Ca in the soils and increased disease severity. Studies of cultures of A. euteiches exposed to varying Ca concentrations in vitro showed that zoospore production was inhibited at submillimolar concentrations, while mycelial growth was stimulated or unaffected. We conclude that free Ca is a major variable controlling the degree of soil suppressiveness against A. euteiches, and that inhibition of zoospore production from oospores is a possible mechanism.  相似文献   

2.
In Cameroon, andosols are suspected to be suppressive to cocoyam (Xanthosoma sagittifolium) root rot disease (CRRD) caused by the Oomycete pathogen Pythium myriotylum. To determine factors involved in disease suppressiveness, andosols were studied in comparison to ferralsols known to be disease-conducive. Soil samples were collected from six sites of which three were in andosols around Mount Cameroon (Boteva, Njonji, and Ekona) and the three others in ferralsols (Bakoa, Lapkwang, and Nko’o canane). Greenhouse plant experiments were used to assess soil suppressiveness. Soils were artificially infested with two levels of P. myriotylum inoculum (100 and 300 mycelia strands g−1 soil) prior to planting cocoyam. Disease severity was significantly higher in ferralsols than in andosols. Andosols partly lost their suppressiveness as a result of autoclaving and could recover suppressiveness following recolonisation by their original microflora. Soil microbial groups implicated in the disease suppression were investigated by assessing the effect of fungicide, bactericide, and pasteurisation on andosol suppressiveness. Andosols suppressiveness was significantly reduced following pasteurisation and treatment with fungicide and bactericide. The possible influence of microbial biomass on andosol suppressiveness was investigated by comparing microbial populations of suppressive andosols to those in andosols that had lost suppressiveness. A comparative analysis of suppressive and conducive soil properties was performed to identify soil variables, which may contribute to soil suppressiveness. Soil chemical analysis results showed that organic matter content was higher in andosols than in ferralsols. In addition, the content of mineral nutrients such as Ca, K, Mg and N, was higher in andosols than in ferralsols. These soil variables negatively correlated with disease severity. By contrast, sand and clay, which were higher in ferralsols than in andosols, were positively related to disease severity. This study has confirmed the suppressive nature of andosols from Mount Cameroon to CRRD. The results suggest that high organic matter content is likely mediating P. myriotylum suppression in andosols by improving soil structure, increasing soil nutrient content and microbial biomass, and sustaining microbial activity.  相似文献   

3.
Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from a pear orchard not having a cauliflower crop for at least 40 years. These two soils were subjected to five successive cropping cycles with cauliflower or remaining fallow in a greenhouse experiment. Soils were inoculated with R. solani AG 2-1 only once or before every crop. Disease decline occurred in all treatments cropped with cauliflower, either because of a decreased pathogen population or increased suppressiveness of the soil. Disease suppressiveness tests indicated that the conducive soil became suppressive after five subsequent cauliflower crops inoculated each cycle with R. solani AG 2-1. Suppressiveness of all treatments was measured in a seed germination test (pre-emergence damping-off) as well as by measuring the spread of R. solani symptoms in young plants (post-emergence damping-off). Results showed that suppressiveness was significantly stimulated by the successive R. solani inoculations; presence of the cauliflower crop had less effect. Suppressiveness was of biological origin, since it disappeared after sterilization of the soil. Moreover, suppressiveness could be translocated by adding 10% suppressive soil into sterilized soil. The suppressive soil contained higher numbers of culturable filamentous actinomycetes than the conducive soil, but treatments enhancing suppressiveness did not show an increased actinomycetes population. The suppressiveness of the soil samples did also not correlate with the number of pseudomonads. Moreover, no correlation was found with the presence of different mycoparasitic fungi, i.e. Volutella spp., Gliocladium roseum, Verticillium biguttatum and Trichoderma spp. The suppressive soil contained a high percentage of bacteria with a strong in vitro inhibition of R. solani. These bacteria were identified as Lysobacter (56%), Streptomyces (23%) and Pseudomonas (21%) spp. A potential role of Lysobacter in soil suppressiveness was confirmed by quantitative PCR detection (TaqMan), since a larger Lysobacter population was present in suppressive cauliflower soil than in conducive pear orchard soil. Our experiments showed that successive cauliflower plantings can cause a decline of the damage caused by R. solani AG 2-1, and that natural disease suppressiveness was most pronounced after subsequent inoculations with the pathogen. The mode of action of the decline is not yet understood, but antagonistic Lysobacter spp. are potential key organisms.  相似文献   

4.
Plant invasions alter soil microbial community composition; this study examined whether invasion-induced changes in the soil microbial community were reflected in soil aggregation, an ecosystem property strongly influenced by microorganisms. Soil aggregation is regulated by many biological factors including roots, arbuscular mycorrhizal fungal hyphae, and microbially-derived carbon compounds. We measured root biomass, fungal-derived glomalin-related soil protein (GRSP), and aggregate mean weight diameter in serpentine soils dominated by an invasive plant (Aegilops triuncialis (goatgrass) or Centaurea solstitialis (yellow starthistle)), or by native plants (Lasthenia californica and Plantago erecta, or Hemizonia congesta). Root biomass tended to increase in invaded soils. GRSP concentrations were lower in goatgrass-dominated soils than native soils. In contrast, starthistle dominated soil contained a higher amount of one fraction of GRSP, easily extractable immunoreactive soil protein (EE-IRSP) and a lower amount of another GRSP fraction, easily extractible Bradford reactive soil protein (EE-BRSP). Soil aggregation increased with goatgrass invasion, but did not increase with starthistle invasion. In highly aggregated serpentine soils, small increases in soil aggregation accompanying plant invasion were not related to changes in GRSP and likely have limited ecological significance.  相似文献   

5.
Arable fields of 10 organic farms from different locations in The Netherlands were sampled in three subsequent years. The soil samples were analysed for disease suppressiveness against Rhizoctonia solani AG2.2IIIB in sugar beet, Streptomyces scabies in radish and Verticillium longisporum in oilseed rape. In addition, a variety of microbial, chemical and physical soil characteristics were assessed. All data were correlated by multiple regression and multivariate analyses with the objective to find correlations between soil suppressiveness and biotic or abiotic soil characteristics. Significant differences in soil suppressiveness were found between the fields for all three diseases. Multiple regression indicated a significant correlation between suppressiveness against Rhizoctonia and the number of antagonistic Lysobacter spp., as well as with % active fungi and bacterial diversity. Grass-clover stimulated Rhizoctonia suppression as well as the presence of antagonistic Lysobacter spp. (mainly L. antibioticus and L. gummosus) in clay soils. Streptomyces suppression correlated with the number of antagonistic Streptomyces spp., % of active fungi and bacterial population size. The presence of antagonistic Streptomyces spp. correlated with a high fungal/bacterial biomass ratio. Verticillium suppression was only measured in 2004 and 2005, due to the inconsistent suppressiveness along the years. Nevertheless, a significant correlation with pH, potential nitrogen mineralization and bacterial biomass was found. Bacterial and fungal PCR-denaturing gel electrophoresis fingerprinting of bacterial and fungal communities, in general, did not significantly correlate with disease suppression. Highly significant explanatory factors of the composition of the dominating bacterial and fungal populations were % lutum, pH, C/N quotient, biomass and growth rate of bacteria. Additionally, the % of organic matter and years of organic farming were explaining significantly the composition of the bacterial population.Thus, significant correlations between several soil characteristics and suppressiveness of different soil-borne pathogens were found. For two of the three pathogens, suppression correlated with biotic soil characteristics combined with the presence of specific bacterial antagonists. Probably the soil suppressiveness measured in the organic fields is a combined effect of general and specific disease suppression.  相似文献   

6.
The objective of this study was to evaluate the effect of sewage sludge on soil suppressiveness to the pathogens Fusarium oxysporum f. sp. lycopersici on tomato, Sclerotium rolfsii on bean, Sclerotinia sclerotiorum on tomato, Rhizoctonia solani on radish, Pythium spp. on cucumber, and Ralstonia solanacearum on tomato. Soil samples were collected from an experimental corn field in which sewage sludge had been incorporated once a year, since 1999. Sludge from two sewage treatment stations in Brazil (Franca and Barueri, SP) were applied at the rates of one (1N), two (2N), four (4N) and eight (8N) times the N recommended doses for the corn crop. Soil suppressiveness was evaluated by methods using indicator host plants, baits and mycelial growth. There was no effect of sewage sludge on soil suppressiveness to Fusarium oxysporum f. sp. lycopersici in tomato plants. For S. rolfsii, reduction of the disease in bean was inversely proportional to the dose of Franca sludge. The incidence of dead plants, caused by S. sclerotiorum, was directly proportional to sludge doses applied. For R. solani and R. solanacearum, there was a linear trend with reduction in plant death in soils treated with increasing amounts of sludge from Franca. There was an increase in the pathogen community of Pythium spp., proportional to the amounts of sewage applied. The effects of sewage sludge varied depending on the pathogen, methodology applied and on the time interval between the sewage sludge incorporation and soil sampling.  相似文献   

7.
Two root-colonizing Fusarium strains, Ls-F-in-4-1 and Rs-F-in-11, isolated from roots of Brassicaceae plants, induced the resistance in Lepidium sativum seedlings against Pythium ultimum. These strains caused an increase in the content of benzyl isothiocyanate, and of its precursor glucotropaeolin, in the roots of the host plants. The increased isothiocyanate content is one of the factors contributing to the resistance of L. sativum against P. ultimum. To be transformed into the fungitoxic compound benzyl isothiocyanate, glucotropaeolin has to be hydrolyzed by myrosinase, which can be produced either by plants or microorganisms. The Fusarium strain Ls-F-in-4-1 has a myrosinase activity but the strain Rs-F-in-11 has not. These results suggest that both strains are able to trigger the metabolic pathway leading to benzyl isothiocyanate production in the plant. In the case of the myrosinase-negative strain Rs-F-in-11, hydrolyzation into isothiocyanate is only due to the myrosinase activity of the plant, and in the other case, the myrosinase produced by the strain Ls-F-in-11 also would contribute to the production of isothiocyanate. This paper reports a new mode of action of non-pathogenic Fusarium strains in controlling P. ultimum.  相似文献   

8.
Two fungal plant pathogens, Rhizoctonia solani AG 2-2 and Fusarium oxysporum f.sp. lini, were studied in relation to general responses of soil fungi and bacteria following incorporation of Brassica juncea. Our aim was to understand to what extent the changes in the biological and physicochemical characteristics of the soil could explain the effects on the studied pathogens and diseases, and to determine the temporal nature of the responses. Short-term effects of mustard incorporation (up to 4 months) were investigated in a microcosm experiment, and compared with a treatment where composted plant material was incorporated. In a field experiment, the responses were followed up to 11 months after removal or incorporation of a mustard crop. In general, responses in the variables measured changed more after incorporation of fresh mustard material than after addition of similar amounts of composted plant material (microcosms) or after removal of the mustard crop (field). The soil inoculum potential of R. solani AG 2-2 decreased directly after incorporation of mustard, but increased later to disease levels above those in the untreated soil. Neither of these effects could be explained by changes in the population density of R. solani AG 2-2. Fusarium spp. were less influenced, although an increase in the suppressiveness to Fusarium wilt was observed after mustard incorporation as compared with the treatment where mustard was removed. The microbial responses to mustard incorporation were more pronounced for bacteria than for fungi. After an initial substantial increase, the bacterial density decreased but remained above the levels in the control treatment throughout the experimental periods. The bacterial community structure was modified up to 8 months after mustard incorporation. We conclude that incorporation of fresh mustard influences soil microbial communities, especially the bacteria, and has a potential to control the pathogenic activity of R. solani 2-2 on a short-term perspective. The time dependency in microbial responses is important and should be taken into consideration for the evaluation of the potential of Brassicas to control plant disease on a field scale.  相似文献   

9.
Response of soil microbial communities to compost amendments   总被引:1,自引:0,他引:1  
Soil organic matter is considered as a major component of soil quality because it contributes directly or indirectly to many physical, chemical and biological properties. Thus, soil amendment with composts is an agricultural practice commonly used to improve soil quality and also to manage organic wastes. We evaluated in laboratory scale experiments the response of the soilborne microflora to the newly created soil environments resulting from the addition of three different composts in two different agricultural soils under controlled conditions. At a global level, total microbial densities were determined by classical plate count methods and global microbial activities were assessed by measuring basal respiration and substrate induced respiration (SIR). Soil suppressiveness to Rhizoctonia solani diseases was measured through bioassays performed in greenhouses. At a community level, the modifications of the metabolic and molecular structures of bacterial and fungal communities were assessed. Bacterial community level physiological profiles (CLPP) were determined using Biolog™ GN microtiter plates. Bacterial and fungal community structures were investigated using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting. Data sets were analyzed using analysis of variance and ordination methods of multivariate data. The impact of organic amendments on soil characteristics differed with the nature of the composts and the soil types. French and English spent mushroom composts altered all the biological parameters evaluated in the clayey soil and/or in the sandy silty clay soil, while green waste compost did not modify either bacterial and fungal densities, SIR values nor soil suppressiveness in any of the soils. The changes in bacterial T-RFLP fingerprints caused by compost amendments were not related to the changes in CLPP, suggesting the functional redundancy of soil microorganisms. Assessing the density, the activity and the structure of the soil microflora allowed us not only to detect the impact of compost amendment on soil microorganisms, but also to evaluate its effect at a functional level through the variation of soil disease suppressiveness. Differences in disease suppressiveness were related to differences in chemical composition, in availability of nutrients at short term and in microbial composition due to both incorporation and stimulation of microorganisms by the compost amendments.  相似文献   

10.
To test if native perennial bunchgrasses cultivate the same microbial community composition across a gradient in land-use intensification, soils were sampled in fall, winter and spring in areas under bunchgrasses (‘plant’) and in bare soils (‘removal’) in which plots were cleared of living plants adjacent to native perennial bunchgrasses (Nassella pulchra). The gradient in land-use intensification was represented by a relict perennial grassland, a restored perennial grassland, and a perennial grass agriculture site on the same soil type. An exotic annual grassland site was also included because perennial bunchgrasses often exist within a matrix of annual grasses in California. Differences in soil resource pools between ‘plant’ and ‘removal’ soils were observed mainly in the relict perennial grassland and perennial grass agriculture site. Seasonal responses occurred in all sites. Microbial biomass carbon (C) and dissolved organic C were greater under perennial bunchgrasses in the relict perennial grassland and perennial grass agriculture site when comparing treatment means of ‘plant’ vs. ‘removal’ soil. In general, soil moisture, microbial respiration, and nitrate decreased from fall to spring in ‘plant’ and ‘removal’ soils, while soil ammonium and net mineralizable nitrogen (N) increased only in ‘plant’ soils. A canonical correspondence analysis (CCA) of phospholipid fatty acid (PLFA) profiles from all sites showed that land-use history limits the similarity of microbial community composition as do soil C and N dynamics among sites. When PLFA profiles from individual sites were analyzed by CCA, different microbial PLFA markers were associated with N. pulchra in each site, indicating that the same plant species does not retain a unique microbial fingerprint across the gradient of land-use intensification.  相似文献   

11.
Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This results in low quality composts that can only be sold on bulk markets at low prices. A new market for quality compost could be potting mixes for horticultural container-grown crops to partially replace non-renewable peat and increase the disease suppressiveness of potting mixes. We report here on the effect of wetsieving biowaste prior to composting on compost quality and on disease suppressiveness against the plant pathogen Pythium ultimum of peat mixes amended with this compost. The increased organic matter and decreased salt content of the compost allow for significantly higher substitution rates of peat by compost. In this study up to 60% v/v compost peat replacement did not affect cucumber growth. However, disease suppressiveness of the potting mixes strongly increased from 31 to 94% when the compost amendment rate was increased from 20 to 60%. It was shown that general disease suppression for P. ultimum can only be effective when the basal respiration rate is sufficiently high to support microbial activity. In addition, organic matter of the compost should reach a sufficient stability level to turn from disease conducive to disease suppressive. Increasing the compost addition from 20 to 60% did not significantly affect plant yield, yield variation were due to differences in nutrient levels. It can be concluded that compost from wetsieved biowaste has high potential to replace peat in growing media for the professional market.  相似文献   

12.
Environmentally friendly control measures are needed for the soil-borne pathogen, Pythium ultimum. This pathogen can cause severe losses to field- and greenhouse-grown cucumber and other cucurbits. Live cells and ethanol extracts of cultures of the bacterium Serratia marcescens N4-5 provided significant suppression of damping-off of cucumber caused by P. ultimum when applied as a seed treatment. Live cells of this bacterium also suppressed damping-off caused by P. ultimum on cantaloupe, muskmelon, and pumpkin. Culture filtrates from strain N4-5 contained chitinase and protease activities while ethanol extracts contained the antibiotic prodigiosin, the surfactant serrawettin W1, and possibly other unidentified surfactants. Production of prodigiosin and serrawettin W1 was temperature-dependent, both compounds being detected in extracts from N4-5 grown at 28 °C but not in extracts from N4-5 grown at 37 °C. Ethanol extracts from strain N4-5 grown at 28 °C inhibited germination of sporangia and mycelial growth by P. ultimum in in vitro experiments. There was no in vitro inhibition of P. ultimum associated with ethanol extracts of strain N4-5 grown at 37 °C. Prodigiosin, purified from two consecutive thin-layer chromatography runs using different solvent systems, inhibited germination of sporangia and mycelial growth of P. ultimum. Another unidentified compound(s) also inhibited germination of sporangia but did not inhibit mycelial growth. There was no in vitro inhibition associated with serrawettin W1. These results demonstrate that live cells and cell-free extracts of S. marcescens N4-5 are effective for suppression of damping-off of cucumber caused by P. ultimum possibly due in part to the production of the antibiotic prodigiosin.  相似文献   

13.
We investigated the effectiveness of different inoculation approaches in enhancing the mineralization of [U-14C] labeled 1,2,4-trichlorobenzene (1,2,4-TCB) in soil. Inoculation was conducted with a soil-borne 1,2,4-TCB mineralizing microbial community (MC) as well as the Bordetella sp. strain F2 originally isolated from this community as the key degrader organism (IS). Both were applied either via liquid medium (LM) or attached on clay particles (CP). Fluorescence in-situ hybridization in combination with 14C-1,2,4-TCB mineralization measurements as well as measurements of 14C-residues in soil were used to investigate the bioaugmentation efficiency of the different approaches. Bordetella sp. cell numbers increased about 2-5 times during the incubation process, indicating that the bacteria could survive and develop in the new soil habitat. While the native soil showed negligible 1,2,4-TCB mineralization rates, soil inoculated with the MC attached on CP showed the highest 1,2,4-TCB mineralization rate per Bordetella cell, whereas the other inoculum approaches showed an increased but lower contaminant mineralization. Additionally, the MC-CP approach showed the highest cumulative 1,2,4-TCB mineralization as well as the highest formation of bound 14C-residues which is most likely equivalent to 14C incorporated into the microbial biomass. Thus, our results allow the conclusion that the application of a specific microbe-clay-particle-complex is the most promising approach for an accelerated in-situ mineralization of chemicals in agricultural soils.  相似文献   

14.
Calcisol, ferralsol and vertisol soils, representative of different bean production areas of Villa Clara province in Cuba, were selected to determine the impact of soil type on bean hypocotyl rot severity caused by Rhizoctonia solani AG4 HGI (isolate CuVC-Rs7). In inoculated autoclaved soil, hypocotyl rot was most severe in calcisol soil, followed by ferralsol soils and then vertisol soils. In inoculated natural soils, disease severity was lower in vertisol and calcisol soils and higher in ferralsol soil, indicating that biological factors are suppressing or stimulating the pathogenic efficiency of R. solani. Native binucleate Rhizoctonia AGF, Sclerotium rolfsii and R. solani AG 4 HGI were isolated from bean plants grown in natural calcisol, vertisol and ferralsol soils, respectively. Subsequent studies about the interaction between these fungi and R. solani indicated that they were involved in the variability of disease severity caused by R. solani. The addition of R. solani AG4 HGI (isolate CuVC-Rs7) into each autoclaved soil inoculated with binucleate Rhizoctonia or S. rolfsii resulted in a reduction of disease severity caused by this pathogen while in soils inoculated with native R. solani AG4 HGI, disease severity increased. Irrespective of fungal interactions, calcisol was always the most disease conducive soil and vertisol the most disease repressive soil. The mechanisms by which native pathogenic fungi could influence disease severity caused by R. solani are discussed.  相似文献   

15.
Application of organic amendments has been proposed as a strategy for the management of diseases caused by soilborne pathogens. However, inconsistent results seriously hinder their practical use. In this work we use an extensive data set of 2423 studies derived from 252 papers to explore this strategy. First, we assess the capability of a specific organic amendment to control different diseases; second, we investigate the influence of organic matter (OM) decomposition on disease suppressiveness; and third, we search for physical, chemical and biological parameters able to identify suppressive OM. OM was found to be consistently suppressive to different pathogens in only a few studies where a limited number of pathogens were tested. In the majority of studies a material suppressive to a pathogen was ineffective or even conducive to other pathogens, suggesting that OM suppressiveness is often pathogen-specific. OM decomposition in many studies (73%, n = 426) emerged as a crucial process affecting suppressiveness. During decomposition, disease suppression either increased, decreased, was unchanged or showed more complex responses, such as ‘hump-shaped’ dynamics. Peat suppressiveness generally decreased during decomposition, while responses of composts and crop residues were more complex. However, due to the many interactions of contributing factors (OM quality, microbial community composition, pathosystem tested and decomposition time), it was difficult to identify specific predictors of disease suppression. Among the 81 parameters analysed, only some of the 643 correlations showed a consistent relationship with disease suppression. The response of pathogen populations to OM amendments was a reliable feature only for some organic matter types (e.g. crop residues and organic wastes with C-to-N ratio lower than ∼15) and for pathogens with a limited saprophytic ability (e.g., Thielaviopsis basicola and Verticillium dahliae). Instead, population responses of the pathogenic fungi Phytophthora spp., Rhizoctonia solani and Pythium spp. appeared unrelated to disease suppression. Overall, enzymatic and microbiological parameters, rather than chemical ones, were much more informative for predicting suppressiveness. The most useful features were FDA activity, substrate respiration, microbial biomass, total culturable bacteria, fluorescent pseudomonads and Trichoderma populations. We conclude that the integration of different parameters (e.g. FDA hydrolysis and chemical composition by 13C NMR) may be a promising approach for identification of suppressive amendments.  相似文献   

16.
In Switzerland, similar types of rhizosphere pseudomonads producing the biocontrol compound 2,4-diacetylphloroglucinol (Phl) have been found in soils suppressive to Thielaviopsis basicola-mediated black root rot of tobacco as well as in conducive soils. However, most findings were based on the analysis of a limited number of Pseudomonas isolates, obtained from a single experiment and only from T. basicola-inoculated plants. Here, an approach based on denaturing gradient gel electrophoresis (DGGE) of dominant phlD alleles from tobacco rhizosphere provided different phlD migration patterns. Sequencing of phlD-DGGE bands revealed a novel phylogenetic cluster of phlD sequences found in both suppressive and conducive soils in addition to previously-documented phlD alleles. phlD-DGGE bands and alleles differed little from one plant to the next but more extensively from one sampling to the next during the three-year study. Three of the 13 bands and 12 of the 31 alleles were only found in suppressive soil, whereas five bands and 13 alleles were found exclusively in conducive soil. The population structure of phlD+ pseudomonads depended more on the individual soil considered and its suppressiveness status than on inoculation of tobacco with T. basicola. In conclusion, phlD-DGGE revealed additional phlD diversity compared with earlier analyses of individual Pseudomonas isolates, and showed differences in phlD+Pseudomonas population structure in relation to disease suppressiveness.  相似文献   

17.
The variance in survival of Sclerotinia sclerotiorum's sclerotia, carpogenic germination (apothecia) as well as Sclerotinia stem rot (SSR) severity (Disease Severity Index (DSI)) on soybean was partitioned among canopy, soil physico-chemistry and microbiology, cultural practices (2 or 3-y-corn rotation/soybean monoculture and mineral fertilization/urban compost), and spatial matrices in two soils. Partial multiple regression was used to partition the individual SSR variables variance while partial canonical redundancy analysis partitioned the DSI-apothecia and apothecia-survival variance. In clay loam, the sclerotial survival and apothecia variance were mainly explained by the spatial structure of soil physico-chemistry while the DSI did not share this spatial structure and was largely explained by the effects of 3-y-corn rotation on canopy and soil, i.e. lower weed biomass, enhanced soybean yield and fewer apothecia were correlated with disease suppressiveness. In sandy loam, the DSI variance was mostly explained by the spatial structure of canopy and physico-chemistry. Disease suppressiveness, by the interaction of 3-y-corn rotation with urban compost, was largely explained by the enhancement of soil properties, i.e. higher aggregate stability, microbial activity and soil solution concentration in exchangeable ions correlated negatively with carpogenic germination. Partitioning the SSR variance among four matrices of spatial and environmental factors allowed for the first time to interpret and quantify the variance of disease development explained by cultural practices in interaction with the main characteristics of this agroecosystem.  相似文献   

18.
A cultivation-based approach was used to determine the in vitro antagonistic potential of soil bacteria towards Rhizoctonia solani AG3 and Fusarium oxysporum f. sp. lini (Foln3). Four composite soil samples were collected from four agricultural sites with previous documentation of disease suppression, located in France (FR), the Netherlands (NL), Sweden (SE) and the United Kingdom (UK). Similarly, two sites from Germany (Berlin, G-BR; and Braunschweig, G-BS) without documentation of disease suppression were sampled. Total bacterial counts were determined by plating serial dilutions from the composite soil samples onto R2A, AGS and King's B media. A total of 1,788 isolates (approximately 100 isolates per medium and site) was screened for antifungal activity, and in vitro antagonists (327 isolates) were found amongst the dominant culturable bacteria isolated from all six soils. The overall proportion of antagonists and the number of isolates with inhibitory activity against F. oxysporum were highest in three of the suppressive soils (FR, NL and SE). Characterization of antagonistic bacteria revealed a high phenotypic and genotypic diversity. Siderophore and protease activity were the most prominent phenotypic traits amongst the antagonists. The composition and diversity of antagonists in each soil was site-specific. Nevertheless, none of the antimicrobial traits of bacteria potentially contributing to soil suppressiveness analyzed in this study could be regarded as specific to a given site.  相似文献   

19.
The transport of the spores of Pasteuria penetrans was studied in three contrasted textured soils (a sandy, a sandy-clay and a clay soils), cultivated with tomato, inoculated with juveniles of Meloidogyne javanica and watered with 25 or 150 mm day−1. One month after inoculation of the nematodes, 53% of the spores inoculated were leached by water flow in the sandy soil but only 14% in the sandy-clay soil and 0.1% in the clay soil. No nematodes survived in the clay soil, while the population was multiplied both in the sandy and in the sandy-clay soils. But juveniles of M. javanica were more infected by P. penetrans in the sandy-clay soil than in the sandy soil. Comparing different combinations of bare soils containing 1.1-57% of clay showed that the best spore percolation and retention balance occurred in soils amended with 10-30% clay. However, the spore recoveries decreased when the soil was enriched with more than 30% clay. The role of clay particles on the extractability of spores and on their availability to attach to the nematode cuticle in the soil is discussed.  相似文献   

20.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号