首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of a long-acting oxytetracycline preparation administered i.v. and i.m. to American alligators (Alligator mississippiensis) at 10 mg/kg was determined. Plasma levels of oxytetracycline were measured using high-performance liquid chromatography, and the resulting concentration versus time curve was analyzed using compartmental modeling and noncompartmental modeling techniques for i.v. and i.m. samples, respectively. A two-compartment model best represented the i.v. data. Intravenous administration of oxytetracycline resulted in an extrapolated mean plasma concentration at time zero of 60.63 +/- 28.26 microg/ml, with average plasma drug levels of 2.82 +/- 0.71 microg/ml at the end of the 192-hr sampling period. Plasma volume of distribution for i.v. oxytetracycline was 0.20 +/- 0.09 L/kg, with a harmonic mean elimination half-life of 15.15 hr and mean total body clearance rate of 0.007 +/- 0.002 L/hr/kg. Intramuscular administration of oxytetracycline achieved a mean peak plasma concentration of 6.85 +/- 1.96 microg/ml at 1 hr after administration, with average plasma drug levels of 4.96 +/- 1.97 microg/ml at the end of the 192-hr sampling period. The harmonic mean terminal elimination half-life for i.m. oxytetracycline was 131.23 hr. Based on the results of this study, long-acting preparations of oxytetracycline administered parenterally to American alligators at 10 mg/kg q 5 days is expected to maintain plasma concentrations above the minimum inhibitory concentration of 4.0 microg/ml for susceptible organisms.  相似文献   

2.
The pharmocodynamics of single injections of florfenicol in yearling loggerhead sea turtles (Caretta caretta) were determined. Eight juvenile loggerhead sea turtles weighing 1.25 (+/- 0.18) kg were divided into two groups. Four animals received 30 mg/kg of florfenicol i.v., and four received the same dose i.m. Plasma florfenicol concentrations were analyzed by reverse-phase high performance liquid chromatography. After the i.v. dose, there was a biphasic decline in plasma florfenicol concentration. The initial steep phase from 3 min to 1 hr had a half-life of 3 min, and there was a longer slow phase of elimination, with a half-life that ranged from 2 to 7.8 hr among turtles. The volume of distribution varied greatly and ranged from 10.46 to -60 L/kg. Clearance after the i.v. dose was 3.6-6.3 L/kg/hr. After the i.m. injection, there was a peak within 30 min of 1.4-5.6 microg/ml, and florfenicol was thereafter eliminated with a half-life of 3.2-4.3 hr. With either route, florfenicol plasma concentrations were below the minimum inhibitory concentrations for sensitive bacteria within 1 hr. Florfenicol does not appear to be a practical antibiotic in sea turtles when administered at these doses.  相似文献   

3.
The pharmacokinetics of a single dose of enrofloxacin administered orally, both pilled and in fish, and i.v. to African penguins (Spheniscus demersus) at 15 mg/kg were determined. Plasma concentrations of enrofloxacin and its metabolite ciprofloxacin were measured via high-pressure liquid chromatography with mass spectrometry. An i.v. administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 7.86 microg/ml at time zero. Plasma volume of distribution for i.v. administration was 3.00 L/kg, with a mean elimination half-life of 13.67 hr and a mean total body clearance rate of 3.03 ml/min/kg. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of4.38 microg/ml at 4.8 hr after administration when pilled, whereas mean maximum plasma concentration was 4.77 microg/ml at 1.59 hr after administration when given in fish. Mean terminal elimination half-life was 13.79 hr pilled and 11.93 hr when given in fish. Low concentrations of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration. Enrofloxacin administered to African penguins at 15 mg/kg p.o.q. 24 hr, whether in fish or pilled, is expected to achieve the surrogate markers of efficacy for bacteria with a minimum inhibitory concentration of 0.5 microg/ml or less; however, clinical studies are needed to determine efficacy.  相似文献   

4.
Superficial and systemic mycotic infections are common among clinically ill sea turtles, which places growing importance on the establishment of pharmacokinetic-based dosage regimens for antifungal drugs. The pharmacokinetic properties of the antifungal drug fluconazole, after intravenous (i.v.) and subcutaneous (s.c.) injections, were studied in juvenile loggerhead sea turtles (Caretta caretta) housed at 23.0-26.5 degrees C. Fluconazole pharmacokinetic properties were further assessed in a multiple-dose s.c. regimen derived from the pharmacokinetic parameters determined in the single-dose study. Pharmacokinetic parameters were calculated, using a two-compartment model, from plasma concentration-time data obtained after single i.v. and s.c. administrations of fluconazole at a dosage of 2.5 mg/ kg body weight in six juvenile sea turtles. Blood samples were collected at intervals through 120 hr after each dose, and the concentration of fluconazole in plasma was measured by reverse-phase high-performance liquid chromatography. The i.v. and s.c. elimination half-lives were 139.5 +/- 36.0 and 132.6 +/- 48.7 hr (mean +/- SD), respectively. Systemic clearance of fluconazole was 8.2 +/- 4.3 ml/kg x hr, and the apparent volume of distribution at steady state was 1.38 +/- 0.29 L/kg. A multiple-dose regimen was derived, which consisted of a loading dose of 21 mg/kg body weight and subsequent doses of 10 mg/kg administered through s.c. injection every 120 hr (5 days). This regimen was administered to four juvenile sea turtles for 10 days, and blood samples were taken to determine peak and trough plasma concentrations of fluconazole. The mean concentrations for the two peak concentrations were 16.9 +/- 1.1 and 19.1 +/- 2.8 microg/ml 4 hr after dosing, and the mean concentrations for the three trough concentrations were 7.2 +/- 2.2, 10.4 +/- 2.7, and 10.7 +/- 2.9 microg/ml 120 hr after dosing. The terminal half-life after the last dose was calculated at 143 hr. Throughout the multiple dosing, fluconazole concentrations remained above approximately 8 microg/ml, a concentration targeted when treating mycotic infections in humans. The results of this study suggest that fluconazole can be effectively administered to sea turtles at a dosage of 10 mg/kg every 5 days after a loading dose of 21 mg/kg.  相似文献   

5.
The pharmacokinetics of enrofloxacin administered orally and i.v. to American alligators (Alligator mississippiensis) at 5 mg/kg was determined. Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured using high-performance liquid chromatography and the resulting concentration versus time curve analyzed using compartmental modeling techniques for the i.v. data and noncompartmental modeling techniques for the oral data. A two-compartment model best represented the i.v. data. Intravenous administration of enrofloxacin resulted in an extrapolated mean plasma concentration of 4.19 +/- 4.23 microg/ml at time zero, with average plasma drug levels remaining above 1.0 microg/ml for an average of 36 hr. Plasma volume of distribution for i.v. enrofloxacin was 1.88 +/- 0.96 L/kg, with a harmonic mean elimination half-life of 21.05 hr and mean total body clearance rate of 0.047 +/- 0.021 L/hr/kg. Plasma levels of p.o. enrofloxacin remained below 1.0 microg/ml in all test animals, and average concentrations ranged from 0.08 to 0.50 microg/ml throughout the sampling period. Oral administration of enrofloxacin achieved a mean maximum plasma concentration of 0.50 +/- 0.27 microg/ml at 55 +/- 29 hr after administration, with a harmonic mean terminal elimination half-life of 77.73 hr. Minimal levels of ciprofloxacin were detected after both oral and i.v. enrofloxacin administration, with concentrations below minimum inhibitory concentrations for most susceptible organisms. On the basis of the results of this study, enrofloxacin administered to American alligators at 5 mg/kg i.v. q 36 hr is expected to maintain plasma concentrations that approximate the minimum inhibitory concentration for susceptible organisms (0.5 microg/ml). Enrofloxacin administered to American alligators at 5 mg/kg p.o. is not expected to achieve minimum inhibitory values for susceptible organisms.  相似文献   

6.
This study describes the pharmacokinetics of enrofloxacin following oral and i.v. administration to goral (Nemorrhaedus goral arnouxianus). The objective of this study was to expand upon current antimicrobial treatment options available for use in goral by measuring plasma concentrations and examining the pharmacokinetics of enrofloxacin in these animals. Two single-dose treatments of enrofloxacin were administered to four goral in a crossover design. Single-dose treatments consisted of administration of injectable enrofloxacin i.v. (5 mg/kg) and enrofloxacin tablets (136 mg chewable tablets) dissolved in a grain slurry and administered p.o. (10 mg/kg). Plasma levels of enrofloxacin and its metabolite ciprofloxacin were measured with the use of high-performance liquid chromatography with UV detection. Plasma volume of distribution for i.v. enrofloxacin was 2.15 - 1.01 L/kg, with a mean elimination half-life of 13.3 hr and total body clearance of 0.19+/-0.14 L/kg/hr. The maximum plasma concentration measured for oral enrofloxacin was 2.77 microg/ml, with a mean half-life of 5.2 hr and systemic availability of 14.6%. The area under the plasma concentration over time curve (AUC) for oral enrofloxacin was 21.06 microg/hr/ml. The area under the plasma concentration over time curve generated for oral enrofloxacin in goral yields an area under the plasma concentration over time curve to minimum inhibitory concentration ratio > 100 for many gram-positive and gram-negative bacterial pathogens common to small ruminants. Based on these results, oral enrofloxacin may be considered for further study as a treatment option for susceptible infections in goral.  相似文献   

7.
Three captive loggerhead sea turtles, Caretta caretta, were used in four trials, one i.v. and three i.m., to determine the pharmacokinetic properties of a single dose of ticarcillin. For the i.v. study, each turtle received a single 50 mg/kg dose and blood samples were collected at 0, 0.5, 1, 2, 4, 6, 8, and 12 hr and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, and 14 days after administration. For the i.m. study, each turtle received one of three dosages (25, 50, or 100 mg/kg) in a randomized complete block design and blood samples were collected at the same time intervals. Each trial was separated by a minimum of 28 days to allow for complete drug clearance. Drug concentration in plasma was determined by a validated liquid chromatography-mass spectrometry assay. For the i.v. study, the elimination half-life was 5.0 hr. The apparent volume of distribution and plasma clearance were 0.17 L/kg and 0.0218 L/hr/kg, respectively. For the i.m. study, mean time to maximum plasma concentrations ranged from 1.7 ( +/- 0.58) hr in the 50 mg/kg group to 3.7 (+/- 2.5) hr in the 100 mg/kg group. Mean bioavailability ranged from 45% ( +/- 15%) in the 50 mg/kg group to 58% (+/- 12%) in the 100 mg/kg group, and the mean residence time ranged from 7.5 ( +/- 2.6) hr in the 25 mg/kg group to 16 (+/- 6.8) hr in the 100 mg/kg group. Two turtles had slight alanine aminotransferase elevations that were not clinically apparent at two different dosages, but otherwise, blood chemistries were unaffected. Possible i.m. dosage regimens for loggerhead sea turtles are 50 mg/kg q24 hr or 100 mg/kg q48 hr. Liver enzymes should be monitored during treatment.  相似文献   

8.
Plasma concentrations and pharmacokinetics of enrofloxacin were determined in 12 loggerhead sea turtles (Caretta caretta) after oral administration. Six turtles in group 1 and group 2 received enrofloxacin at 10 mg/kg and 20 mg/kg of body weight, respectively. Blood was collected from the cervical sinus before administration and at timed intervals up to 168 hr following administration. Plasma concentrations of enrofloxacin were determined using a microbiologic assay. The mean peak plasma concentration (Cmax) was 4.07 microg/ml and 21.30 microg/ml for groups 1 and 2, respectively. Plasma levels were detectable at 168 hr postadministration, with mean values of 0.380 microg/ml for group I and 2.769 microg/ml for group 2. The mean elimination half-life for enrofloxacin was 37.80 hr for group I and 54.42 hr for group 2. These findings indicated that enrofloxacin is absorbed following oral administration in loggerhead sea turtles, and blood levels are maintained up to 168 hr following administration.  相似文献   

9.
Mycoplasma iguanae proposed species nova was isolated from vertebral abscesses of two feral iguanas (Iguana iguana) from Florida. Three strains were evaluated for sensitivity to a variety of antibiotics. The minimum inhibitory concentrations for M. iguanae, assessed by broth dilution methods, of clindamycin, doxycycline, enrofloxacin, oxytetracycline, and tylosin (all <1 microg/ml) were lower than those of chloramphenicol (32 micro/ml) and erythromycin (64 microg/ml). The profile was identical to that of Mycoplasma alligatoris, previously isolated from American alligators (Alligator mississippiensis). M. iguanae strain 2327T was subcultured without antibiotics to assess mycoplasmacidal activity. Clindamycin, doxycycline, oxytetracycline, and tylosin were bacteriostatic from 0.1 to 0.5 microg/ml, whereas enrofloxacin was bactericidal at 20 ng/ml. An enrofloxacin dosage of 5-10 mg/kg achieves peak plasma concentrations >1 microg/ml, with an elimination half-life of 6-20 hr, in alligators. Although concentrations achieved in the vertebrae by i.m. or i.v. injection are probably lower than those in plasma, these data suggest that enrofloxacin may be useful to treat M. iguanae mycoplasmosis in iguanas.  相似文献   

10.
Serum oxytetracycline pharmacokinetics were studied in 18 African elephant (Loxodonta africana) calves. Each elephant received separate injections of oxytetracycline at approximately 18 mg/kg i.m. and 8 mg/kg i.v. in a cross-over study. Blood samples were drawn at 0, 24, 48, 72, and 96 hr postinjection. An additional sample was drawn 110 hr before the animals were reinjected in the cross-over study and a final blood sample was drawn 48 hr after the second dose. No lameness or stiffness was observed following i.m. injections. Serum oxytetracycline concentrations >0.5 microg/ml were present 48 hr after initial dosing for all elephants (i.m., i.v., high or low dosage). Only elephants given the high i.m. dosage (18 mg/kg) maintained levels >0.5 microg/ml 72 hr postinjection. No significant difference in serum oxytetracycline concentration with time was observed between the groups given different i.v. dosages. These studies demonstrated that quantifiable serum oxytetracycline concentrations can be maintained in young African elephants with a low-dosage multidose i.m. regimen.  相似文献   

11.
Clarithromycin is a new, safe orally administered macrolide antibiotic active against Mycoplasma sp. in humans. Single-dose and multidose pharmacokinetic parameters were determined for clarithromycin in wild-caught desert tortoises (Gopherus agassizii) seropositive for M. agassizii. Clarithromycin blood levels were measured in three tortoises for up to 72 hr after a single oral dose of 7.5 mg/kg. In a second group of six tortoises, levels were measured after a dose of 15 mg/kg. Noncompartmental iterative two-stage Bayesian and nonparametric expectation maximization pharmacokinetic parameters were determined for each animal assuming first order rate constants. At 15 mg/kg, the maximum concentration was 1.37 microg/ml, the time to maximum concentration was 8.0 hr, and a plasma half-life of 11.69 hr was derived from the latter method. The absorption constant was 0.08/hr, the absorption half-life was 8.47 hr, and the weight-normalized volume of distribution was 5.30 L/kg. Predictions derived by the latter method suggested a dosage of 15 mg/kg p.o. every 24 hr to achieve maximal blood levels of > or =1 microg/ml for multiple dosing. However, results from a preliminary multidose study with three tortoises indicate that the drug is accumulated; therefore, the predicted dose may be closer to 15 mg/kg p.o. every 2-3 days to maintain blood levels of 2-7.5 microg/ml. (For n = 3, 2-point linear regression median estimates for the apparent elimination rate constant (K) and half-life are 0.0227/hr and 30.52 hr, respectively.) This multidose accumulation reflects a slower apparent elimination than that predicted in the eight single-dose tortoises (i.e., K = 0.0593/hr, t1/2 = 11.69 hr). This study highlights a potential pitfall of depending solely on single-dose studies and the potential value of oral administration in reptiles.  相似文献   

12.
The pharmacokinetics of ceftazidime in yearling loggerhead sea turtles (Caretta caretta) following single i.m and i.v. injections were studied. Eight juvenile 1.25+/-0.18 kg turtles were divided into two groups. Four animals received 20 mg/kg of ceftazidime i.v. and four received the same dose i.m. Plasma ceftazidime concentrations were analyzed by reverse-phase high-performance liquid chromatography. The i.v. and i.m. administration half-lives were 20.59+/-3.24 hr and 19.08+/-0.77 hr, respectively. The volume of distribution was 0.42+/-0.07 L/kg, and the systemic clearance was 0.217+/-0.005 ml/min/kg. Ceftazidime was detected in all blood samples and its concentration exceeded the minimum inhibitory concentration for Pseudomonas for 60 hr after i.m. and i.v. injections.  相似文献   

13.
Single-dose pharmacokinetics of sulfadimethoxine were determined in six adult camels (Camelus dromedarius) following administration of a mean dosage of 17.5 +/- 2.7 mg/kg both i.v. and p.o. Serial blood samples were collected through an indwelling jugular catheter intermittently for 5 days for both routes. Sulfadimethoxine was assayed using high-performance liquid chromatography. Serum drug concentration versus time data for each animal was subjected to linear regression, with the best-fit model selected based on residual analysis. The data fit best into a two-compartment open model, with first-order input for oral administration. For orally administered drug, mean maximum serum concentration of 19.3 +/- 1.7 microg/ml was reached at 11.41 +/- 2.59 hr, with an elimination rate constant of 0.09/hr +/- 0.05/hr and an elimination half-life of 11.7 +/- 3 hr. Mean peak serum concentration following i.v. administration was 223 +/- 48 microg/ml. Mean volume of distribution at steady state was 0.393 +/- 0.049 L/kg. Elimination rate constants differed with i.v. and oral administration, suggesting a flip-flop model. Oral bioavailability was 103% +/- 38%. Comparison of maximum serum concentrations to the microbial breakpoint concentration reported for sulfadimethoxine (512 microg/ml) suggests that the dose used in this study, 17.5 +/- 2.7 mg/kg, is insufficient for achieving therapeutic serum levels.  相似文献   

14.
The pharmacokinetics of the biliary elimination of oxytetracycline (OTC) and tissue concentrations in certain organs were studied in 10 Leghorn hens. The animals were anaesthetized using xylazine/ketamine administered by the intramuscular (i.m.) route and were immobilized for right laparotomy. Both bile ducts were cannulated and a dose of 20 mg/kg of oxytetracycline hydrochloride was administered intravenously (i.v.). Samples of bile excreted were taken at predetermined intervals during 6 h. At 6 h animals were slaughtered and tissue samples of blood, liver, kidney, pancreas, spleen, heart, lung and pectoral muscle were taken. The values for OTC biliary elimination rate times were best fitted to a one-exponential equation. The maximum value for OTC biliary excretion rate (3.69+/-0.6 microg/min/kg) was reached at approximately 17.5 min (time to maximum concentration (tmax)). The first-order rate constant for the biliary excretion (k) and the half-life (t1/2) were 6.7x10(-3) min(-1) and 110.55 min, respectively. The mean value of area under the biliary excretion rate time curve (AUC) indicated that 839.77 microg/kg body weight (b.w.) were eliminated by the biliary route. The cumulative biliary excretion data indicated that approximately 4.20% of the dose was eliminated by this route, 3.28% being eliminated during the first 6 h and 0.92% thereafter. The highest mean concentrations were found in the kidney (35.82 microg/kg) and liver (16.77 microg/g). Significant differences were found between the concentrations of the various tissues studied. Plasma concentration was lower than that of the other tissues (except lung).  相似文献   

15.
To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for Hawksbill turtles. Therefore, the present study aimed to assess the pharmacokinetic features of tolfenamic acid (TA) in Hawksbill turtles, Eretmochelys imbricata, after single intravenous (i.v.) and intramuscular (i.m.) administration at dosage 4 mg/kg body weight (b.w.). The study (parallel design) used 10 Hawksbill turtles randomly divided into equal groups. Blood samples were collected at assigned times up to 144 hr. The concentrations of TA in plasma were quantified by a validated liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). The concentration of TA in the experimental turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 89.33 ± 6.99 µg/ml following i.m. administration. The elimination half-life values were 38.92 ± 6.31 hr and 41.09 ± 9.32 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 94.46%, and the average binding percentage of TA to plasma protein was 31.39%. TA demonstrated a long half-life and high bioavailability following i.m. administration. Therefore, the i.m. administration is recommended for use in clinical practice because it is both easier to perform and provides similar plasma concentrations to the i.v. administration. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

16.
The present study aimed to evaluate the pharmacokinetic features of tolfenamic acid (TA) in green sea turtles, Chelonia mydas. Green sea turtles were administered single either intravenous (i.v.) or intramuscular (i.m.) injection of TA, at a dose of 4 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 168 hr. The plasma concentrations of TA were measured using a validated liquid chromatography tandem mass spectrometry method. Tolfenamic acid plasma concentrations were quantifiable for up to 168 hr after i.v. and i.m. administration. The concentration of TA in the experimental green sea turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 55.01 ± 8.34 µg/ml following i.m. administration. The elimination half-life values were 32.76 ± 4.68 hr and 53.69 ± 3.38 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 72.02 ± 10.23%, and the average binding percentage of TA to plasma protein was 19.43 ± 6.75%. Based on the pharmacokinetic data, the i.m. administration of TA at a dosage of 4 mg/kg b.w. might be sufficient to produce a long-lasting anti-inflammatory effect (7 days) for green sea turtles. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

17.
Concentrations of the potent diuretic bumetanide were determined by a sensitive high performance liquid chromatographic procedure in plasma and urine from horses following intravenous and intramuscular administration of a dose rate of 15 micrograms/kg. The elimination half-life was found to be 6.3 min, the volume of distribution at steady state 68 ml/kg and the total plasma clearance 10.9 ml/min/kg. The onset of diuresis occurred within 15 min and diuresis was no longer apparent 1 h after i.v. administration. Given by the intramuscular (i.m.) route, bumetanide was rapidly absorbed; bioavailability was 70-80%. i.m. administration of bumetanide prolonged its plasma half-life (11-27 min) and enhanced and prolonged its diuretic effect.  相似文献   

18.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

19.
A comparative randomized crossover study was conducted to determine the pharmacokinetics of theophylline in male and female camels (Camelus dromedarius) and goats (Caprus hircus). Theophylline is an established 'probe drug' to evaluate the drug metabolizing enzyme activity of animals. It was administered by the intravenous (i.v.) route and then intramuscularly (i.m.) at a dose of 2 mg/kg. The concentration of the drug in plasma was measured using a high-performance liquid chromatography (HPLC) technique on samples collected at frequent intervals after administration. Following i.v. injection, the overall elimination rate constant (lambda z,) in goats was 0.006 +/- 0.00076/min and in camels was 0.0046 +/- 0.0008/min (P < 0.01). The elimination half-life (t 1/2 lambda z) in goats (112 .7 min) was lower than in camels (154.7 min) (P < 0.01). The apparent volume of distribution (Vz) and the total body clearance (Cl) in goats were 1440.1 +/- 166.6 ml/kg and 8.9 +/- 1.4 ml/min/kg, respectively. The corresponding values in camels were 1720.3 +/- 345.3 ml/kg and 6.1 +/- 1.0 ml/min/kg, respectively. After i.m. administration, theophylline reached a peak plasma concentration (Cmax) of 1.8 +/- 0.1 and 1.7 +/- 0.2 microg/ml at a post-injection time (Tmax) of 67.5 +/- 8.6 and 122.3 +/- 6.7 min in goats and camels, respectively. The mean bioavailability (T) in both goats and camels was 0.9 +/- 0.2. The above data suggest that camels eliminate theophylline at a slower rate than goats.  相似文献   

20.
Pharmacokinetics of diminazene in female Boran (Bos indicus) cattle   总被引:1,自引:0,他引:1  
The disposition kinetics and bioavailability of diminazene in five healthy heifers were determined after single intravenous (i.v.) and intramuscular (i.m.) administration of the drug in sequence with a wash-out period between administrations of 6 weeks. Intact diminazene in plasma, whole blood and urine samples was analysed using high-performance liquid chromatography. Nonlinear regression analysis of the i.v. and i.m. data indicated that, for either route, the plasma disappearance curves of diminazene were best described by triexponential equations. The i.v. bolus was followed by rapid and biphasic distribution with half-life values of 0.04 h and 0.58 h, Vd(ss) was 1.91 ± 0.42 1/kg, elimination half-life was 31.71 h while CI averaged 1.74 ± 0.40 ml/min/kg. Within 30 min of the i.v. dose, the erythrocyte/plasma partition ratio of diminazene was 0.30 ± 0.15. Diminazene was rapidly absorbed following i.m. administration; t ½ka was 0.60 h. Cmax, 4.68 ± 1.12 μg/ml, was attained in 10–15 min and systemic availability was 102.42 ± 7.25%. The half-life of the terminal disappearance phase was 145.48 h. About 8.26% of the i.m. dose was excreted intact in the urine within the first 24 h of treatment. In vitro , diminazene was bound to bovine plasma albumin to the extent of 38.01–91.10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号