首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrated pest management systems were developed originally in response to the appearance of insect populations with resistance to common insecticides. Cotton with its heavy dependence on insecticidal sprays was one of the first crops in which the effectiveness of control declined due to resistance in the target pests. Although insecticide resistance is more of a problem in large scale production systems, the IPM approach can also benefit the smallholder by reducing the number of sprays required with consequent cost savings. Where crop growth is adversely affected by diseases, competition from weeds or poor management, the full benefit of insecticide spray programmes cannot be realised. To be fully effective, insect control should therefore be integrated with other crop protection activities. This paper reviews the insect pests, diseases and weed problems of cotton in Africa and discusses the possibilities for extending the principles of IPM to cover all the crop protection activities with practical examples drawn from both small scale and larger scale production systems.  相似文献   

2.
Many insects, especially nocturnal insects, exhibit positive phototaxis to artificial lights. Light traps are currently used to monitor and manage insect pest populations, and play a crucial role in physical pest control. Efficient use of light traps to attract target insect pests is an important topic in the application of integrated pest management (IPM). Phototactic responses of insects vary among species, light characteristics and the physiological status of the insects. In addition, light can cause several biological responses, including biochemical, physiological, molecular and fitness changes in insects. In this review, we discuss several hypotheses on insect phototaxis, factors affecting insect phototaxis, insect‐sensitive wavelengths, biological responses of insects to light, and countermeasures for conserving beneficial insects and increasing the effect of trapping. In addition, we provide information on the different sensitivities to wavelengths causing positive phototactic behavior in > 70 insect pest and beneficial insect species. The use of advanced light traps equipped with superior light sources, such as light‐emitting diodes (LEDs), will make physical pest control in IPM more efficient. © 2019 Society of Chemical Industry  相似文献   

3.
The past 40 years have seen insect resistance to insecticides develop from a scientific curiosity to an immense practical problem that threatens man's ability to control not only the insect pests of agriculture but also the insect vectors that transmit major human and animal diseases. The spread of genes for cross and multiple resistance among insect pests has rendered most of our present insecticides obsolescent and very few novel insecticides are under development as substitutes. The most feasible strategy to maintain adequate control of insect pests is integrated pest management or I P M, in which insecticide management is a useful component. However, much of our present planning for the future of insect control is carried out in ignorance of past failures. We must learn from the past if we are to retain the use of chemical insecticides as a viable component of IPM.  相似文献   

4.
Resistance to three organophosphate and four pyrethroid insecticides was monitored from 1992 to 2000 in field populations of adult whiteflies, Bemisia tabaci, from Pakistan using a leaf-dip method. There was generally a very high resistance to dimethoate and deltamethrin, and a moderate resistance to monocrotophos during 1992 to 1996. From 1997 to 2000, resistance to these insecticides dropped to low levels because of less reliance on them for whitefly control, and introduction of new chemistries with novel modes of action that had no cross-resistance to conventional insecticides. Concurrently, whitefly resistance to acephate, fenpropathrin, lambda-cyhalothrin and bifenthrin mostly remained low. An insecticide resistance management strategy is recommended that particularly emphasizes the rotation of still-effective insecticides from different chemical classes along with the use of novel chemicals and other tactics of integrated pest management.  相似文献   

5.
Integrated Pest Management (IPM) is considered the central paradigm of insect pest management and is often characterized as a comprehensive use of multiple control tactics to reduce pest status while minimizing economic and environmental costs. As the principal precursor of IPM, the integrated control concept formulated the economic theory behind pest management decisions and specified an applied methodology for carrying out pest control. Sampling, economic thresholds and selective insecticides were three of the critical elements of that methodology and are now considered indispensable to the goals of IPM. We examine each of these elements in the context of contemporaneous information as well as accumulated experience and knowledge required for their skillful implementation in an IPM program. We conclude that while IPM is principally about integrating control tactics into an effective and sustainable approach to pest control, this overarching goal can only be achieved through well‐trained practitioners, knowledgeable of the tenets conceived in the integrated control concept that ultimately yield informed pest management. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Studies were conducted on experimental cabbage plantings in 2009 and on experimental and commercial plantings in 2010, comparing farmers' current chemical standard pesticide practices with an integrated pest management (IPM) program based on the use of neem (Aza‐Direct) and DiPel (Bacillus thuringiensis). In experimental plantings, the IPM program used six or eight applications of neem and DiPel on a rotational basis. The standard‐practice treatments consisted of six or eight applications of carbaryl and malathion or control treatment. RESULTS: The IPM treatments reduced pest populations and damage, resulting in a better yield than with the standard chemical or control treatment. When IPM treatment included three applications of neem plus three applications of DiPel (on a rotational basis in experimental fields), it again reduced the pest population and damage and produced a better yield than the standard practice. The lower input costs of the IPM program resulted in better economic returns in both trials. CONCLUSIONS: The IPM components neem and DiPel are suitable for use in an IPM program for managing insect pests on cabbage (Brassica spp.). Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well‐recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right – the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision‐making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling – aiming to use spatial analysis in area‐wide surveys – to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry  相似文献   

8.
BACKGROUND: The Southern Nursery Integrated Pest Management (SNIPM) working group surveyed ornamental nursery crop growers in the southeastern United States to determine their pest management practices. Respondents answered questions about monitoring practices for insects, diseases and weeds, prevention techniques, intervention decisions, concerns about IPM and educational opportunities. Survey respondents were categorized into three groups based on IPM knowledge and pest management practices adopted. RESULTS: The three groups differed in the use of standardized sampling plans for scouting pests, in monitoring techniques, e.g. sticky cards, phenology and growing degree days, in record‐keeping, in the use of spot‐spraying and in the number of samples sent to a diagnostic clinic for identification and management recommendation. CONCLUSIONS: Stronger emphasis is needed on deliberate scouting techniques and tools to monitor pest populations to provide earlier pest detection and greater flexibility of management options. Most respondents thought that IPM was effective and beneficial for both the environment and employees, but had concerns about the ability of natural enemies to control insect pests, and about the availability and effectiveness of alternatives to chemical controls. Research and field demonstration is needed for selecting appropriate natural enemies for augmentative biological control. Two groups utilized cooperative extension almost exclusively, which would be an avenue for educating those respondents. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
Management of stored-grain insect pests by farmers or elevator managers should be based upon a knowledge of the grain storage environment and the ecology of insect pests. Grain storage facilities and practices, geographical location, government policies, and marketing demands for grain quality are discussed as factors influencing stored-grain insect pest management decisions in the United States. Typical practices include a small number of grain samples designed to provide grain quality information for segregation, blending and marketing. This low sampling rate results in subjective evaluation and inconsistent penalties for insect-related quality factors. Information on the efficacy of insect pest management practices in the United States, mainly for farm-stored wheat, is discussed, and stored-grain integrated pest management (IPM) is compared to field-crop IPM. The transition from traditional stored-grain insect pest control to IPM will require greater emphasis on sampling to estimate insect densities, the development of sound economic thresholds and decision-making strategies, more selective use of pesticides, and greater use of nonchemical methods such as aeration. New developments in insect monitoring, predictive computer models, grain cooling by aeration, biological control, and fumigation are reviewed, their potential for improving insect pest management is discussed, and future research needs are examined.  相似文献   

10.
Helicoverpa armigera is a major pest of agriculture, horticulture and floriculture throughout the Old World and recently invaded parts of the New World. We overview of the evolution in thinking about the application of area‐wide approaches to assist with its control by the Australian Cotton Industry to highlight important lessons and future challenges to achieving the same in the New World. An over‐reliance of broad‐spectrum insecticides led to Helicoverpa spp. in Australian cotton rapidly became resistant to DDT, synthetic pyrethroids, organophosphates, carbamates and endosulfan. Voluntary strategies were developed to slow the development of insecticide resistance, which included rotating chemistries and basing spray decisions on thresholds. Despite adoption of these practices, insecticide resistance continued to develop until the introduction of genetically modified cotton provided a platform for augmenting Integrated Pest Management in the Australian cotton industry. Compliance with mandatory resistance management plans for Bt cotton necessitated a shift from pest control at the level of individual fields or farms towards a coordinated area‐wide landscape approach. Our take‐home message for control of H. armigera is that resistance management is essential in genetically modified crops and must be season long and area‐wide to be effective. © 2016 Society of Chemical Industry  相似文献   

11.
拓宽生物防治 持续治理虫害   总被引:2,自引:0,他引:2  
本文针对我国生物防治资源极其丰富和农民经济实力薄弱的特点,结合我国生物防治成果,论述了应如何发展和拓宽具有我国特色的害虫生物防治,进一步提高综合防治水平,促进农业可持续发展。  相似文献   

12.
Multifamily housing facilities serving low‐income populations have been at the forefront of bed bug outbreaks. Research conducted in the past 8 years has consistently proven that integrated pest management (IPM) is the best approach for successful suppression of bed bug infestations. Bed bug IPM in multifamily settings is especially dependent upon a collaborative community or building‐wide effort involving residents, building staff and pest control technicians. Other components of a bed bug IPM program include regular monitoring to detect early‐stage bed bug infestations and combined use of non‐chemical and chemical interventions. Lastly, to reduce reinfestation rates and costs associated with bed bug control, it is critical to continue periodic monitoring and implement preventive control measures even after successful elimination of bed bugs has been achieved. © 2015 Society of Chemical Industry  相似文献   

13.
Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in ‘omics’ technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost‐effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

14.
Resistance management, targeting insect pests is one of the key components in developing integrated pest management strategies. Arguably, resistance monitoring is a scientific undertaking that can support and inform resistance management tactics and strategies. To monitor the current resistance status in Amrasca devastans against conventional insecticides (deltamethrin, bifenthrin, cypermethrin, chlorpyrifos, profenofos, acephate, and methomyl) which are used by the farming community as the predominant means to control this pest. Field populations of A. devastans were collected from six different districts: Multan, Bahawalpur, Khanewal, Lahore, Dera Ghazi Khan and Muzaffargarh from Punjab in Pakistan. The adult populations tested were 11.10–92.87 times more resistant to deltamethrin, 5.87–14.11 times more to bifenthrin, 3.16–17.5 times more to cypermethrin, 2.65–36.42 times more to chlorpyrifos, 7.28–57.71 times more to profenofos, 1.65–11.13 times more to acephate and 2.55–43.31 times more to methomyl as compared to control (lab population). In our study, no to high levels of resistance were observed against pyrethroids and organophosphates. Development of resistance to these pyrethroids and organophosphates might be due to the injudicious use of these types of insecticides in field crops. This study suggests that use of these insecticides should be minimized to avoid development of resistance in A. devastans. Future studies are also recommended to use new chemistry insecticides with novel modes of action and/or insecticide mixtures that may reduce the reliance of the farming communities on these insecticides.  相似文献   

15.
Over the last few decades, the use of Farmer Field Schools (FFS) have been considered one of the best approaches to disseminate integrated pest management (IPM) practices that aim to reduce reliance on and misuse of chemical pest control methods in agriculture. However, the published empirical literature has been decidedly mixed in terms of the effectiveness of the IPM‐FFS approach to improve economic outcomes in the short‐term (e.g. reduce chemical use, improve profits), and the potential for scaling‐up and IPM dissemination in the medium‐term. This article briefly explores the empirical IPM‐FFS literature and draws implications for future research directions that can potentially enhance IPM knowledge diffusion methods (including IPM‐FFS) and increase the economic impact of IPM techniques in low‐income countries. We find that promising research directions to improve understanding of IPM dissemination and IPM impacts will need to involve: (i) interdisciplinary long‐run studies using rigorous evaluation methods; (ii) in‐depth assessments of spillover effects; (iii) careful examination of IPM and IPM‐FFS impact heterogeneity; (iv) evaluation of novel IPM packages with herbicide‐ and genetics‐centered components; (v) piloting and impact assessments of alternative IPM knowledge diffusion structures; and (vi) piloting and impact analysis of IPM dissemination and learning programs with private sector involvement. © 2020 Society of Chemical Industry  相似文献   

16.
The tomato borer Tuta absoluta (Lepidoptera: Gelechiidae) has been a recognized pest in South America since the 1960s, quickly spreading to the major tomato‐producing countries in the region. A series of studies regarding this pest's biology, ecology and management were conducted to contain tomato losses within acceptable levels. Although cultural control methods were attempted against T. absoluta, as were the development of resistant tomato varieties and the use of pheromones and natural enemies, insecticides are still the main control method used. The sex pheromone of T. absoluta was identified, confirmed and synthesized in the late 1990s and it is currently used for detection and monitoring of this species, but improved sampling plans are still necessary for its use in decision‐making regarding insecticide use. Insecticide use has shifted from earlier reliance on organophosphates, pyrethroids, cartap and abamectin to insect growth regulators and, more recently, to novel insecticides. Unfortunately, the overreliance on insecticide use led to problems with insecticide resistance in the region, which is a current matter of concern not only in South America, but also elsewhere since introduced strains may carry insecticide‐resistance genes at high frequency even without local selection in the site of introduction.  相似文献   

17.
ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.  相似文献   

18.
Fleischer SJ  Blom PE  Weisz R 《Phytopathology》1999,89(11):1112-1118
ABSTRACT Measuring and understanding spatial variation of pests is a fundamental component of population dynamics. The resulting maps can drive spatially variable pest management, which we define as precision integrated pest management (IPM). Precision IPM has the potential to reduce insecticide use and slow the rate of resistance development because of the creation of temporally dynamic refuges. This approach to IPM requires sampling in which the objective is to measure spatial variation and map pest density or pressure. Interpolation of spatially referenced data is reviewed, and the influence of sampling design is suggested to be critical to the mapped visualization. Spatial sampling created problems with poor precision and small sample sizes that were partially alleviated with choosing sampling units based on their geostatistical properties, adopting global positioning system technology, and mapping local means. Mapping the probability of exceeding a threshold with indicator kriging is discussed as a decision-making tool for precision IPM. The different types of sampling patterns to deploy are discussed relative to the pest mapping objective.  相似文献   

19.
During the past 2 years, there has been a rapid expansion of integrated pest management (IPM) in the ornamental sector of the glasshouse industry. Most of this expansion has resulted from improved availability of Amblyseius spp. for the control of thrips, although there is little information on the likelihood of success with this predator. IPM was done on 20 plant species on 21 nurseries in south-east England and there were many successes with crops that would normally receive intensive insecticide programmes to control thrips. Each plant species required its own IPM programme to be devised according to its pest complex. Techniques, particularly to monitor IPM, were devised and some staff were trained to assist in the monitoring. IPM is generally twice as expensive as routine insecticide programmes but has other advantages such as a safer environment for staff and better crop quality.  相似文献   

20.
The western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is a serious pest on a wide range of crops throughout the world. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to insecticides. Pesticide resistance can have a negative impact on integrated pest management programmes with chemical control as one of the components. Resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity, and a haplodiploid breeding system. The mechanisms conferring insecticide resistance in insects can be divided into four levels. First, an altered behaviour can aid the insect to avoid coming into contact with the insecticide. Second, a delayed penetration through the integument will reduce the effect of the insecticide at the target site. Third, inside the insect, detoxification enzymes may metabolise and thereby inactivate the insecticide. Fourth, the last level of resistance mechanisms is alterations at the target site for the insecticide. Knowledge of resistance mechanisms can give information and tools to be used in management of the resistance problem. Recently, studies have been carried out to investigate the underlying mechanisms conferring resistance in F. occidentalis. It appears that resistance in F. occidentalis is polyfactorial; different mechanisms can confer resistance in different populations and different mechanisms may coexist in the same population. Possible resistance mechanisms in F. occidentalis include: reduced penetration, detoxification by P450-monooxygenases, esterases and glutathione S-transferases, and alterations of acetylcholinesterase, the target site for organophosphate and carbamate insecticides. Target site resistance to pyrethroids (knockdown resistance) may also be a resistance mechanism in F. occidentalis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号