首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this report was to evaluate the cardiorespiratory effects and efficacy of dexmedetomidine as a premedicant agent in cats undergoing ovariohysterectomy anaesthetized with propofol-sevoflurane. Cats were randomly divided into two groups of eight animals each. Dexmedetomidine (0.01 mg/kg) or 0.9% saline was administered intravenously (D and S, respectively). After 5 min, propofol was administered intravenously and anaesthesia was maintained with sevoflurane. Heart and respiratory rates, arterial blood pressure, oxygen saturation, rectal temperature and the amount of propofol needed for induction were measured. Premedication with dexmedetomidine reduced the requirement of propofol (6.7+/-3.8 mg/kg), but induced bradycardia, compared with the administration of saline (15.1+/-5.1 mg/kg). Recovery quality was significantly better in D but no significant difference in time to return of swallowing reflex was observed between groups (D=2.5+/-0.5 min; S=3.2+/-1.8 min). In conclusion, dexmedetomidine is a safe and effective agent for premedication in cats undergoing propofol-sevoflurane anaesthesia with minimal adverse effects.  相似文献   

2.
OBJECTIVE: To compare the cardiopulmonary effects of anesthesia maintained by continuous infusion of ketamine and propofol with anesthesia maintained by inhalation of sevoflurane in goats undergoing magnetic resonance imaging. ANIMALS: 8 Saanen goats. PROCEDURES: Goats were anesthetized twice (1-month interval) following sedation with midazolam (0.4 mg/kg, IV). Anesthesia was induced via IV administration of ketamine (3 mg/kg) and propofol (1 mg/kg) and maintained with an IV infusion of ketamine (0.03 mg/kg/min) and propofol (0.3 mg/kg/min) and 100% inspired oxygen (K-P treatment) or induced via IV administration of propofol (4 mg/kg) and maintained via inhalation of sevoflurane in oxygen (end-expired concentration, 2.3%; 1X minimum alveolar concentration; SEVO treatment). Cardiopulmonary and blood gas variables were assessed at intervals after induction of anesthesia. RESULTS: Mean +/- SD end-expired sevoflurane was 2.24 +/- 0.2%; ketamine and propofol were infused at rates of 0.03 +/- 0.002 mg/kg/min and 0.29 +/- 0.02 mg/kg/min, respectively. Overall, administration of ketamine and propofol for total IV anesthesia was associated with a degree of immobility and effects on cardiopulmonary parameters that were comparable to those associated with anesthesia maintained by inhalation of sevoflurane. Compared with the K-P treatment group, mean and diastolic blood pressure values in the SEVO treatment group were significantly lower at most or all time points after induction of anesthesia. After both treatments, recovery from anesthesia was good or excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ketamine-propofol total IV anesthesia in goats breathing 100% oxygen is practical and safe for performance of magnetic resonance imaging procedures.  相似文献   

3.
Midazolam was administered intravenously to 8 bitches in a randomised, placebo-controlled clinical trial before propofol induction of surgical anaesthesia. Anaesthesia was maintained with isoflurane-in-oxygen during surgical endoscopic examination of the uterus and ovariohysterectomy. Clenbuterol was administered at the start of surgery to improve uterine muscle relaxation, and to facilitate endoscopic examination of the uterus. Ventilation was controlled. Induction of anaesthesia with propofol to obtain loss of the pedal reflex resulted in a statistically significant (P < 0.05) decrease in minute volume and arterial oxygen partial pressure in the midazolam group. Apnoea also occurred in 50% of dogs in the midazolam group. The dose for propofol in the midazolam group was 7.4 mg/kg compared to 9.5 mg/kg in the control. Minute volume was significantly (P < 0.05) higher in both groups during isoflurane maintenance, compared to the value after incremental propofol to obtain loss of the pedal reflex. Propofol induction resulted in a 25-26% reduction in the mean arterial blood pressure in both groups, and the administration of clenbuterol at the start of surgery resulted in a transient, but statistically significant (P < 0.05), decrease in mean arterial blood pressure in the midazolam group during isoflurane anaesthesia. It is concluded that intravenous midazolam premedication did not adversely affect cardiovascular function during propofol induction, but intra-operative clenbuterol during isoflurane maintenance of anaesthesia may result in transient hypotension. Midazolam premedication may increase adverse respiratory effects when administered before propofol induction of anaesthesia.  相似文献   

4.
Anaesthesia using propofol alone and in combination with guaiphenesin, after detomidine premedication, was evaluated for performance of minor surgical procedures (castration and tenotomy) in horses. Twelve male horses were premedicated with 0.015 mg/kg of detomidine intravenously (iv) and divided into two groups of six. One group of horses received 2 mg/kg of propofol iv and the other group received 0.5 mg/kg of propofol mixed with 100 mg/kg of a 7.5% solution of guaiphenesin in saline iv. Induction of anaesthesia was fast and smooth in both groups. All horses were easily intubated immediately afterwards but intubation was easier in the horses which received propofol and guaiphenesin. Heart rate fell by 20% in both groups after detomidine injection, stabilising between 45 and 53 beats/minute during anaesthesia with no difference between the groups. Respiratory depression developed after detomidine injection and was slightly intensified after induction of anaesthesia. Respiratory rate was significantly lower in the propofol group (14 ± 3 breaths/minute) than with propofol/guaiphenesin (19 ± 4 breaths/minute) at five minutes after induction. Anaesthesia induced respiratory acidosis in both groups and hypoxaemia also occurred, but once the horses stood up the arterial blood oxygen partial pressure returned to basal values. Surgical time ranged between 8 and 16 minutes and with the exception of one horse in the propofol/guaiphenesin group the horses did not show signs of pain or discomfort during surgery. Recovery to standing was fast and took 26 ± 2 minutes in the propofol and 29 ± 5 minutes in the propofol/ guaiphenesin group. Most horses stood up at the first attempt with minimal ataxia. These two anaesthetic techniques appear to be useful for minor surgical procedures performed within 16 minutes of induction of anaesthesia.  相似文献   

5.
OBJECTIVE: To determine induction doses, anesthetic constant rate infusions (CRI), and cardiopulmonary effects of propofol in red-tailed hawks and great horned owls and propofol pharmacokinetics in the owls during CRI. ANIMALS: 6 red-tailed hawks and 6 great horned owls. PROCEDURE: The CRI dose necessary for a loss of withdrawal reflex was determined via specific stimuli. Anesthesia was induced by IV administration of propofol (1 mg/kg/min) and maintained by CRI at the predetermined dose for 30 minutes. Heart and respiratory rates, arterial blood pressures, and blood gas tensions were obtained in awake birds and at various times after induction. End-tidal CO2 (ETCO2) concentration and esophageal temperature were obtained after induction. Propofol plasma concentrations were obtained after induction and after completion of the CRI in the owls. Recovery times were recorded. RESULTS: Mean +/- SD doses for induction and CRI were 4.48 +/- 1.09 mg/kg and 0.48 +/- 0.06 mg/kg/min, respectively, for hawks and 3.36 +/- 0.71 mg/kg and 0.56 +/- 0.15 mg/kg/min, respectively, for owls. Significant increases in PaCO2, HCO3, and ETCO2 in hawks and owls and significant decreases in arterial pH in hawks were detected. A 2-compartment model best described the owl pharmacodynamic data. Recovery times after infusion were prolonged and varied widely. Central nervous system excitatory signs were observed during recovery. CONCLUSIONS AND CLINICAL RELEVANCE: Effects on blood pressure were minimal, but effective ventilation was reduced, suggesting the need for careful monitoring during anesthesia. Prolonged recovery periods with moderate-to-severe excitatory CNS signs may occur in these species at these doses.  相似文献   

6.
Parenteral anesthetic protocols for short-term immobilization were evaluated in twenty 4-yr-old Gulf of Mexico sturgeon (Acipenser oxyrinchus de soti). An initial dose-response trial determined the efficacy of either propofol (3.5-7.5 mg/kg. i.v.) or combinations of medetomidine (0.03-0.07 mg/kg, i.m.)-ketamine (3-7 mg/kg, i.m.). A subsequent study evaluated the physiologic effects of propofol (6.5 mg/kg, i.v.)-induced anesthesia and anesthesia induced with a medetomidine (0.06 mg/kg, i.m.)-ketamine (6 mg/kg i.m.) combination. The effects of medetomidine were reversed at 30 min with atipamezole (0.30 mg/kg, i.m.). Both drug protocols provided adequate short-term immobilization for minor diagnostic procedures. Sturgeon receiving propofol were in a light plane of anesthesia within 5 min after drug administration, whereas only 30% of the medetomidine-ketamine group reached a light plane of anesthesia in the same time period. Both propofol and medetomidine-ketamine resulted in mild bradycardia and apparent respiratory depression, with propofol producing more profound effects. At the dosages used in this study, both propofol and the medetomidine-ketamine combination effectively induced a light plane of anesthesia. Induction times were shorter in the propofol group.  相似文献   

7.
This study aimed to evaluate the analgesic efficacy of gabapentin as an adjuvant for postoperative pain management in dogs. Twenty dogs undergoing mastectomy were randomized to receive perioperative oral placebo or gabapentin (10 mg/kg). All dogs were premedicated with intramuscular acepromazine (0.03 mg/kg) and morphine (0.3 mg/ kg). Anesthesia was induced with propofol (4 mg/kg) intravenously and maintained with isoflurane. Intravenous meloxicam (0.2 mg/kg) was administered preoperatively. Postoperative analgesia was evaluated for 72 hr. Rescue analgesia was provided with intramuscular morphine (0.5 mg/kg). Dogs in the Placebo group received significantly more morphine doses than the Gabapentin group (P=0.021), despite no significant differences in pain scores. Perioperative gabapentin reduced the postoperative morphine requirements in dogs after mastectomy.  相似文献   

8.
OBJECTIVE: To determine the minimum infusion rate (MIR50) for propofol alone and in combination with ketamine required to attenuate reflexes commonly used in the assessment of anesthetic depth in cats. ANIMALS: 6 cats. PROCEDURE: Propofol infusion started at 0.05 to 0.1 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine (low-dose ILD] constant rate infusion [CRI] of 23 microg/kg/min or high-dose [HD] CRI of 46 microg/kg/min), and after 15 minutes, responses of different reflexes were tested. Following a response, the propofol dose was increased by 0.05 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine, and after 15 minutes, reflexes were retested. RESULTS: The MIR50 for propofol alone required to attenuate blinking in response to touching the medial canthus or eyelashes; swallowing in response to placement of a finger or laryngoscope in the pharynx; and to toe pinch, tetanus, and tail-clamp stimuli were determined. Addition of LD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, finger, toe pinch, and tetanus stimuli but did not change those for laryngoscope or tail-clamp stimuli. Addition of HD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, toe pinch, tetanus, and tail-clamp stimuli but did not change finger or laryngoscope responses. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol alone or combined with ketamine may be used for total IV anesthesia in healthy cats at the infusion rates determined in this study for attenuation of specific reflex activity.  相似文献   

9.
This study examined the pharmacokinetics of propofol by infusion in ponies using an analyser for the rapid measurement of propofol concentrations. The analyser (Pelorus 1000; Sphere Medical Ltd., Cambridge, UK) has a measurement cycle of approximately five minutes. Ten Welsh‐cross ponies (weighing 135–300 kg) undergoing minor procedures were studied after premedication with acepromazine 0.03 mg/kg and detomidine 0.015 mg/kg. Anaesthesia was induced with ketamine 2 mg/kg and diazepam 0.03 mg/kg, and maintained with an infusion of propofol at an initial rate of 0.16 mg/kg/min for the first thirty minutes, after a bolus of 0.3 mg/kg; and ketamine by infusion (20–40 μg/kg/min). Blood samples (<2 mL) were collected prior to, during and after the infusion, and on assuming standing position. Anaesthesia was uneventful; with the duration of infusion 31–89 min. Blood propofol concentrations during the infusion ranged between 1.52 and 7.65 μg/mL; pseudo‐steady state concentrations 3.64–6.78 μg/mL, and concentrations on assuming standing position 0.75–1.40 μg/mL. Propofol clearance and volume of distribution were 31.4 (SD 6.1) mL/min/kg and 220.7 (132.0) mL/kg, respectively. The propofol analyser allows titration of propofol to a given concentration; and may be useful for anaesthesia in animals where kinetics are unknown; in disease states; and where intercurrent therapies affect propofol disposition.  相似文献   

10.
The quality of induction of general anesthesia produced by ketamine and propofol, 2 of the most commonly used anaesthetic agents in cats, was assessed. Eighteen cats admitted for elective procedures were randomly assigned to 3 groups and then premedicated with xylazine 0.75 mg/kg intramuscularly before anaesthesia was induced with ketamine 15 mg/kg intramuscularly (KetIM group), ketamine 10 mg/kg intravenously (KetIV group) or propofol 4 mg/kg intravenously (PropIV group). Quality of induction of general anaesthesia was determined by scoring ease of intubation, degree of struggling, and vocalisation during the induction period. The quality of induction of anaesthesia of intramuscularly administered ketamine was inferior to that of intravenously administered ketamine, while intravenously administered propofol showed little difference in quality of induction from ketamine administered by both the intramuscular and intravenous routes. There were no significant differences between groups in the ease of intubation scores, while vocalisation and struggling were more common in cats that received ketamine intramuscularly than in those that received intravenously administered ketamine or propofol for induction of anaesthesia. Laryngospasms occurred in 2 cats that received propofol. The heart rates and respiratory rates decreased after xylazine premedication and either remained the same or decreased further after induction for all 3 groups, but remained within normal acceptable limits. This study indicates that the 3 regimens are associated with acceptable induction characteristics, but administration of ketamine intravenously is superior to its administration intramuscularly and laryngeal desensitisation is recommended to avoid laryngospasms.  相似文献   

11.
The present study evaluates the organization and complexity of the temporal pattern of locomotion after an acute administration of propofol in Japanese quail by using traditional and fractal analysis. Birds were administered with propofol 0, 10, 20, 40 or 80 mg/kg. Ten min after administration, they were placed in an open-field apparatus and their locomotor activity was recorded during 45 min at a resolution of 0.5 s. A significant dose dependant increase in the latency to initiate ambulation was observed for doses of 20, 40 and 80 mg/kg when compared to the control group. A rapid recuperation of normal locomotor activity was observed after sedation with 20 mg/kg. Birds administered with propofol 40 mg/kg showed signs of recuperation of normal locomotion after 30 and 40 min (males and females, respectively) of propofol administration, that was not observed in quail treated with propofol 80 mg/kg. Our results suggest that depending on the dose, propofol administration in quail may allow full locomotor recovery of a sedative/anesthetic dose as early as 30 min post-administration.  相似文献   

12.
Objective-To compare the anesthetic and cardiorespiratory effects of total IV anesthesia with propofol (P-TIVA) or a ketamine-medetomidine-propofol combination (KMP-TIVA) in horses. Design-Randomized experimental trial. Animals-12 horses. Procedure-Horses received medetomidine (0.005 mg/kg [0.002 mg/lb], IV). Anesthesia was induced with midazolam (0.04 mg/kg [0.018 mg/lb], IV) and ketamine (2.5 mg/kg [1.14 mg/lb], IV). All horses received a loading dose of propofol (0.5 mg/kg [0.23 mg/lb], IV), and 6 horses underwent P-TIVA (propofol infusion). Six horses underwent KMP-TIVA (ketamine [1 mg/kg/h {0.45 mg/lb/h}] and medetomidine [0.00125 mg/kg/h {0.0006 mg/lb/h}] infusion; the rate of propofol infusion was adjusted to maintain anesthesia). Arterial blood pressure and heart rate were monitored. Qualities of anesthetic induction, transition to TIVA, and maintenance of and recovery from anesthesia were evaluated. Results-Administration of KMP IV provided satisfactory anesthesia in horses. Compared with the P-TIVA group, the propofol infusion rate was significantly less in horses undergoing KMP-TIVA (0.14 +/- 0.02 mg/kg/min [0.064 +/- 0.009 mg/lb/min] vs 0.22 +/- 0.03 mg/kg/min [0.1 +/- 0.014 mg/lb/min]). In the KMP-TIVA and P-TIVA groups, anesthesia time was 115 +/- 17 minutes and 112 +/- 11 minutes, respectively, and heart rate and arterial blood pressure were maintained within acceptable limits. There was no significant difference in time to standing after cessation of anesthesia between groups. Recovery from KMP-TIVA and P-TIVA was considered good and satisfactory, respectively. Conclusions and Clinical Relevance-In horses, KMP-TIVA and P-TIVA provided clinically useful anesthesia; the ketamine-medetomidine infusion provided a sparing effect on propofol requirement for maintaining anesthesia.  相似文献   

13.
In the present study the influence of three volatile agents (halothane, isoflurane and sevoflurane) in oxygen at two concentrations [1.5 and 2 minimum alveolar concentration (MAC)] on non-invasive cardio-respiratory parameters (heart and respirators rates, non-invasive blood pressures at 15, 30, 60 min and after extubation) and on the recovery times (appearance of the first eyelid reflex, emergence time) after clinical anaesthesia was studied. After premedication with fentanyl-droperidol (5 microg/kg and 0.25 mg/kg, intramuscularly) and induction with propofol (5 mg/kg, intravenously) six dogs were randomly anaesthetized for 1 h for a standard neurologic stimulation test. A wide individual variation in respiration rate (induced by an initial hyperpnea) was observed in the 1.5 MAC protocols, without significant differences. Heart rate was significantly lower during 1.5 and 2 MAC halothane when compared to isoflurane and sevoflurane. An increase from 1.5 to 2 MAC induced significant decreases in diastolic (DAP) and mean arterial blood pressure in all groups without significant changes in the systolic arterial pressures. Only DAP in sevoflurane protocol was significantly different at 1.5 and 2 MAC compared to halothane. Time had no significant influences in the non-invasive blood pressures in all protocols. Extubation induced a significant increase of all parameters in all protocols. The time for a first eyelid reflex was significantly longer after 2 MAC compared to the 1.5 MAC protocol. There was no significant difference between the three anaesthetic agents. Although emergence time was longest for halothane at both anaesthetic concentrations, no significant difference in emergence time was observed for the three volatile agents.  相似文献   

14.
The effects of propofol alone or propofol and ketamine for the induction of anaesthesia in dogs were compared. Thirty healthy dogs were premedicated with acepromazine and pethidine, then randomly allocated to either treatment. Anaesthesia was induced with propofol (4 mg/kg bodyweight intravenously) (group 1), or propofol and ketamine (2 mg/kg bodyweight of each intravenously) (group 2). Anaesthesia was maintained with halothane, delivered in a mixture of oxygen and nitrous oxide (1:2) via a non-rebreathing Bain circuit. Various cardiorespiratory parameters were monitored at two, five, 10, 15, 20, 25 and 30 minutes after induction, and the animals were observed during anaesthesia and recovery, and any adverse effects were recorded. During anaesthesia, the heart rate, but not the systolic arterial pressure, was consistently higher in group 2 (range 95 to 102 beats per minute) than in group 1 (range 73 to 90 beats per minute). Post-induction apnoea was more common in group 2 (11 of 15) than in group 1 (six of 15). Muscle twitching was observed in three dogs in each group. Recovery times were similar in both groups. Propofol followed by ketamine was comparable with propofol alone for the induction of anaesthesia in healthy dogs.  相似文献   

15.
OBJECTIVE: To compare anesthetic and cardiorespiratory effects of a 1:1 (vol:vol) mixture of propofol and thiopental sodium with either drug used alone in dogs. DESIGN: Randomized crossover study. ANIMALS: 10 healthy Walker Hounds. PROCEDURE: Dogs received propofol (6 mg/kg [2.7 mg/lb] of body weight), thiopental (15 mg/kg [6.8 mg/lb]), or a mixture of propofol (6 mg/kg) and thiopental (15 mg/kg) at 1-week intervals. Drugs were slowly administered i.v. over 90 seconds or until dogs lost consciousness. Increments of 10% of the initial dose were administered until intubation was possible. Amount of drug required for intubation, quality of induction and recovery, times from induction to intubation and to walking with minimal ataxia, and duration of intubation and lateral recumbency were recorded. Heart and respiratory rates, mean, systolic, and diastolic blood pressure, hemoglobin saturation of oxygen (SpO2), and end-tidal CO2 concentration (ETCO2) were determined before and after intubation. RESULTS: Amounts of propofol and thiopental required to permit intubation were less, but not significantly so, when administered in combination than when administered alone. Duration of lateral recumbency and time from induction to walking were greater and recovery quality was worse in the thiopental group, compared with the other groups. Dogs in all groups remained normotensive. Respiratory rate, heart rate, ETCO2, and SpO2 did not differ among groups. CONCLUSIONS AND CLINICAL RELEVANCE: A 1:1 mixture of propofol and thiopental induced anesthesia of similar quality to propofol or thiopental alone. Recovery quality and recovery times were similar to those of propofol and superior to those of thiopental.  相似文献   

16.
Reasons for performing study: Studies have demonstrated the clinical usefulness of propofol for anaesthesia in horses but the use of a concentrated solution requires further investigation. Objectives: To determine the anaesthetic and cardiorespiratory responses to a bolus injection of 10% propofol solution in mature horses. Methods: Three randomised crossover experimental trials were completed. Trial 1: 6 horses were selected randomly to receive 10% propofol (2, 4 or 8 mg/kg bwt i.v.). Trial 2: 6 horses received 1.1 mg/kg bwt i.v. xylazine before being assigned at random to receive one of 5 different doses (1–5 mg/kg bwt) of 10% propofol. Trial 3: 6 horses were sedated with xylazine (0.5 mg/kg bwt, i.v.) and assigned randomly to receive 10% propofol (3, 4 or 5 mg/kg bwt, i.v.); anaesthesia was maintained for 60 min using an infusion of 1% propofol (0.2‐0.4 mg/kg bwt/min). Cardiorespiratory data, the quality of anaesthesia, and times for induction, maintenance and recovery from anaesthesia and the number of attempts to stand were recorded. Results: Trial 1 was terminated after 2 horses had received each dose of 10% propofol. The quality of induction, anaesthesia and recovery from anaesthesia was judged to be unsatisfactory. Trial 2: 3 horses administered 1 mg/kg bwt and one administered 2 mg/kg bwt were not considered to be anaesthetised. Horses administered 3–5 mg/kg bwt i.v. propofol were anaesthetised for periods ranging from approximately 10–25 min. The PaO2 was significantly decreased in horses administered 3–5 mg/kg bwt i.v. propofol. Trial 3: The quality of induction and recovery from anaesthesia were judged to be acceptable in all horses. Heart rate and rhythm, and arterial blood pressure were unchanged or decreased slightly during propofol infusion period. Conclusions: Anaesthesia can be induced with a 10% propofol solution and maintained with a 1% propofol solution in horses administered xylazine as preanaesthetic medication. Hypoventilation and hypoxaemia may occur following administration to mature horses. Potential relevance: Adequate preanaesthetic sedation and oxygen supplementation are required in horses anaesthetised with propofol.  相似文献   

17.
Two different methods, administered both subcutaneously and intravenously, to reverse intramuscular midazolam-medetomidine-ketamine, are evaluated. Eighteen cats were anaesthetized twice each 5 min after premedication with atropine 0.04 mg/kg using midazolam 0.5 mg/kg, medetomidine 0.02 mg/kg and ketamine 2.0 mg/kg intramuscularly in one syringe. Because this study was conducted in co-operation with a dental prophylaxis project, cats had to be immobilized for approximately 1 h. Therefore, anaesthesia was prolonged with propofol to effect, if necessary. After 68+/-11 min on average, immobilization was partially reversed by either atipamezole 0.05 mg/kg subcutaneously (group A/SC, n=7) or intravenously (group A/IV, n=10), or by atipamezole 0.05 mg/kg and flumazenil 0.05 mg/kg subcutaneously (group AF/SC, n=10) or intravenously (group AF/IV, n=9), respectively. These four groups were additionally compared with a non-reversed group. Recovery time and total time of immobilization (until cats regained a standing position) were not significantly shortened using the antagonists. However, unconsciousness and sedation (expressed through parameters like the time taken to head lifting, crawling, sitting and the return of righting reflex) were significantly shortened by the antagonists, especially if administered intravenously. Abnormal behaviour, such as vocalization, licking, hyperaesthesia, restlessness or salivation, was observed in all groups. However, excitation and hyperaesthesia were not observed in group AF/IV, whereas in this group only intensified salivation occurred. The addition of flumazenil showed no significant difference to atipamezole alone, but subcutaneous administration of atipamezole alone was not sufficient in the dosage used to show an advantage compared to non-reversed cats.  相似文献   

18.
Parameters calculated from the auditory-evoked potential (AEP) recorded over the auditory cortex and from the electroencephalogram (EEG) recorded over the near vertex were compared in rats at three different infusion rates of propofol (62.5, 35 and 25 mg/kg/h). Depth of anaesthesia was assessed clinically using the strength of the pedal withdrawal reflex. Well-defined AEP responses were consistently obtained. As the propofol concentration was reduced, peak latencies decreased and peak to peak amplitudes increased. Amplitude and latency values were closely associated with the strength of the pedal withdrawal responses. Parameters calculated from the EEG showed no significant change as the propofol concentration was reduced. Periods of burst suppression became more frequent as the propofol infusion rate was increased. The study showed some of the difficulties that may be encountered when using EEG as a tool to assess depth of anaesthesia during propofol infusion. The AEP showed dose dependent changes in rats at different infusion rates of propofol. However, large variability between animals limits the use of this technique for monitoring depth of anaesthesia.  相似文献   

19.
Sharks are important exhibit animals in aquariums and zoologic institutions worldwide. Although veterinarians are encountering these species more frequently in these institutions, our knowledge regarding safe restraint and anesthesia is limited. To date there have been only a few anecdotal reports or studies evaluating the effects of tricaine methane sulfonate (MS-222), ketamine hydrochloride, and tiletamine and zolazepam (Telazol) in sharks. The purpose of this study was to evaluate the clinical and cardiorespiratory effects of propofol in spotted bamboo sharks (Chylloscyllium plagiosum). Nine wild-caught adult female spotted bamboo sharks (mean weight 2.4 kg+/-SD 1.45 kg) were used in this study. Propofol (2.5 mg/kg) was administered over 30 sec via the caudal tail vein. Heart rate, respiratory rate, time to relaxation, escape response, loss of righting reflex, and response to noxious stimuli (fin pinch) were evaluated and recorded at baseline and 5, 10, 15, 30, 45, 60, and 75 min after propofol administration. A surgical plane of anesthesia was achieved when the shark lost its righting reflex, did not respond to noxious painful stimuli, and no longer resisted handling. The righting reflex was lost within 5 min of propofol administration, and a surgical plane of anesthesia was observed in all nine sharks. Heart rate (P = 0.5) and respiratory rate (P = 0.5) did not change significantly over time. The righting response returned within 60 min in 44% (4/9) of the sharks, 75 min in 22% (2/ 9) of the sharks, and over 200 min in 33% (3/9) of the sharks. All nine animals recovered uneventfully. Propofol provided a safe anesthetic event for spotted bamboo sharks.  相似文献   

20.
Prolonged surgical anaesthesia in the dog was induced with propofol (6.5 ± 1.3 mg/kg) followed by alfentanil (25.5 ± 5 μg/kg) (mean ± 1 sd) and maintained with a continuous infusion of propofol (0.14 to 0.18 mg/kg/min) and alfentanil (2 to 3 μg/kg/min). Neuromuscular blockade was produced with vecuronium (0.1 mg/kg). After induction of anaesthesia with propofol, administration of alfentanil to dogs which had received no pre-anaesthetic medication produced cardiac arrest and apnoea. Administration of atropine intravenously immediately prior to alfentanil prevented these cardiac depressant effects. The cardiac depressant effect of alfentanil was not as severe in a second group of dogs in which anaesthesia was induced with thiopentone. After commencing the continuous infusion anaesthetic regime and establishment of IPPV, blood pressure and heart rate remained stable during the remaining 4 to 6 h period of anaesthesia. Recovery from anaesthesia was smooth and uneventful. The depressant effects of alfentanil on respiration and on consciousness were reversed rapidly by administration of nalbuphine (10 mg total dose). The smooth recovery and the integration of anaesthesia and post operative analgesia attained by the reversal of alfentanil with nalbuphine make this an attractive anaesthetic regime for major surgery in dogs, provided that facilities for IPPV are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号