首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
花期干旱对不同基因型大豆叶绿素荧光特性的影响   总被引:6,自引:0,他引:6  
利用叶绿素荧光动力学测定技术,测定开花期干旱不同基因型大豆品种叶绿素荧光参数的变化.以3个不同基因型大豆品种为材料,应用OS52FL调制式叶绿素荧光仪研究在开花期干旱胁迫下,各荧光参数的变化及用方差分析进行综合评价.结果表明,大豆开花期受旱后,可变荧光与最大荧光比(Fv/Fm)、可变荧光与初始荧光比(Fv/Fo)、非光化学淬灭系数(NPQ)均降低,而电子传递速率(ETR)升高,说明光系统Ⅱ(PSⅡ)受到了伤害,使得PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、起光保护作用的热耗散降低,光合电子传递速率升高.且荧光参数之间具有相关性.花期干旱胁迫后,各参数存在基因型差异,新大豆1号在花期干旱条件下,光合机构受破坏较轻,其吸收的光能能较多的用于光化学转化能力,抗旱能力强.因此,花期干旱胁迫下,叶绿素荧光参数的变化与大豆品种抗旱性有关,利用大豆叶绿素荧光特性对干旱胁迫的反应差异鉴定品种抗旱性是可行的.  相似文献   

2.
干旱胁迫下氮肥对玉米叶片生理特性的影响   总被引:4,自引:0,他引:4  
采用盆栽控水试验,研究干旱胁迫下氮肥水平对玉米光合作用及保护酶活性的生理响应。结果表明,与正常灌水处理相比,干旱胁迫降低玉米叶片的气孔导度(Gs)、蒸腾速率(Tr)、PSⅡ最大光化学效率(Fv/Fm)、PSⅡ量子产量(φPSⅡ)和光化学猝灭系数(qP);增加胞间CO2浓度(Ci)、非光化学猝灭系数(qN)和丙二醛(MDA)含量;保护酶活性(SOD、POD和CAT)升高。干旱胁迫下适量施氮(225 kg/hm2)提高玉米叶片的Gs、Tr、Fv/Fm、φPSⅡ和qP;降低Ci和qN;同时显著提高保护酶活性(SOD、POD和CAT),降低膜质过氧化程度,全面改善叶片光合功能和内在的生理特性。不施氮肥和过量施氮(450 kg/hm2)均表现出与适量施氮处理相反的变化趋势。  相似文献   

3.
以17份黄淮海常用骨干系及自选系为材料,不同生育期进行干旱胁迫,筛选抗旱性强的玉米种植资源,并探讨其抗旱的生理机制。方差分析表明,与正常水分相比,胁迫后的抽雄至散粉间隔未达显著水平,但ASI间隔达显著水平;不同生育期自交系的叶绿素含量、Fv/Fm和Fv/Fo均下降,SOD和POD活性均提高,但不同自交系下降或上升的幅度不同,且不同自交系间、胁迫与对照间指标差异及两因素交互作用均达极显著水平。灰色关联度表明,POD活性无论是拔节期还是抽雄期都与ASI关联度很高,可作为筛选抗旱型材料的一个重要指标。模糊隶属函数法鉴定出超4F、郑36、CIMBL12、郑63、HCL645、郑6611和PH6WC在两个生育期均属于抗旱型自交系,其中,超4F、郑36和郑63拔节期和抽雄期干旱胁迫后,ASI增大幅度较小,叶绿素含量、叶绿素荧光参数Fv/Fm和Fv/Fo抗旱指数均较高,说明这3个自交系遭受干旱胁迫时主要通过调节光合系统这种机制来提高抗旱性。  相似文献   

4.
利用木薯光系统II(PSII)最大光化学效率(Fv/Fm)量化木薯受到干旱胁迫的程度,并测量木薯叶片与离层的内源乙烯在不同程度干旱胁迫下的量,以探讨内源乙烯的产生、Fv/Fm的下降速度与木薯抗旱性之间的关系。结果表明,抗旱性越强的品种,Fv/Fm下降速度越慢,内源乙烯上升的时间也越靠后。  相似文献   

5.
几个小麦基因型苗期抗旱性鉴定及相关生理指标分析   总被引:5,自引:1,他引:4  
为了明确小麦抗旱性与果聚糖含量和叶绿素荧光特性间的关系,选用扬麦6号、扬麦12、新春9号、Bobwhite、宁春27、CB9945、03S58、8139等8个小麦基因型,从分蘖期开始进行干旱胁迫处理,每隔一定时期取叶片测定果聚糖含量,36 d后复水,统计存活率,抽穗期测定旗叶叶绿素荧光参数.结果表明,扬麦6号干旱胁迫处理后植株存活率(60.71%)显著高于其他几个基因型(1.19%~28.57%),表现出较强的抗旱性;干旱胁迫期间,扬麦6号叶片中果聚糖舍量明显增加,而其他基因型叶片中果聚糖含量几乎没有变化;扬麦6号PSⅡ原初光能转换效率(Fv,/Fm)最高(O.7977),显著高于03S58(0.6932)、Bobwhite(0.6879)和宁春27号(0.6285);PSⅡ潜在活性(Fv/Fo)也以扬麦6号最高(3.9484),显著高于Bobwhite(2.7303)、新春9号(2.7187)、03S58(2.4034)和宁春27号(2.1619).这说明小麦苗期抗旱性与果聚糖含量和叶绿素荧光特性间有一定的关系,抗旱性强的基因型干旱胁迫期间果聚糖含量、叶绿素荧光参数Fv/Fm均较高.  相似文献   

6.
低温胁迫对玉米幼苗电导率和叶绿素荧光参数的影响   总被引:10,自引:3,他引:7  
以3个玉米品种为试验材料,通过盆栽试验,研究低温胁迫下电导率和叶绿素荧光参数的变化。结果表明,3个品种的抗低温性为金玉5>兴垦3>吉单198,随着低温处理时间的延长,3个品种叶片电导率和初始荧光(F0)上升,Fv/Fm、Fv/F0、NPQ整体上均呈下降趋势。说明低温胁迫使叶绿素所吸收的光能被用于光合作用的部分减少,玉米叶光系统Ⅱ(PSⅡ)活性中心受损。  相似文献   

7.
以杂交苎麻品种川苎11号为材料,采用盆栽控水试验,设置正常供水(对照)、轻度干旱、中度干旱和重度干旱,研究了苎麻旺长期干旱胁迫持续18天对苎麻叶绿素荧光特性的影响。结果表明,干旱胁迫条件下苎麻光系统II ( PSII)最大光化学量子效率( Fv/Fm)、 PSII有效光化学量子效率( F’ v/F’ m)、 PSII光化学量子产量(φPSI )、电子传递速率( ETR)、光化学猝灭系数( qP)降低,非光化学猝灭系数( NPQ)提高;干旱条件下苎麻叶绿素荧光特性的变化与干旱胁迫程度密切相关,轻度干旱胁迫对苎麻叶绿素荧光特性影响小,中度、重度胁迫显著影响苎麻叶绿素荧光特性;苎麻能忍耐一定程度的水分胁迫,在苎麻生产中,旱情达到中度干旱时应及时采取抗旱措施,确保苎麻正常生长和发育。  相似文献   

8.
为明确不同抗旱性冬小麦品种灌浆期旗叶的叶绿素荧光特性及其与籽粒产量的关系,在防雨棚控水条件下,测定和分析了干旱胁迫后强抗旱性品种晋麦47、弱抗旱性品种偃展4110和中等抗旱性品种矮抗58旗叶荧光参数、籽粒产量和水分利用效率的变化.结果表明,随着先量子密度(PFD)的增加,冬小麦旗叶实际荧光(F)、表观电子传递速率(ETR)和非光化学淬灭系数(NPQ)值逐渐升高,PFD超过189 μmol·m-2·s-2后,F值基本稳定,而光下最大荧光(Fm)值持续降低,导致其他叶绿素荧光参数改变,PFD在189~1 360μtmol·m-2·s-2时Fm变化幅度较大.干旱胁迫降低了小麦旗叶F、Fm、实际量子产量(Yie1d)、ETR、NPQ值.不同品种荧光参数值受干旱胁迫的影响程度不同,偃展4110受影响最大,晋麦47较为稳定.干旱胁迫条件下3个品种的产量差异显著,表现为晋麦47>矮抗58>偃展4110.灌浆中期旗叶主要叶绿素荧光参数与产量间具有显著的相关性,可以作为高产品种筛选的生理指标;而干旱处理与适水处理的F比值、Fm比值则与两种水分条件下的产量比值呈显著正相关,可以作为品种抗旱性鉴定的生理指标.  相似文献   

9.
独脚金内酯缓解油菜渍水胁迫的生理机制   总被引:2,自引:0,他引:2  
为了缓解渍水危害,维持并促进油菜生长,探究独脚金内酯对渍水处理后油菜生长的影响,以中双11号为材料进行盆栽试验,五叶期渍水处理7d后,分别用0、0.1、1和5μmol/L独脚金内酯(SL)对渍水胁迫组(W)和正常水分组(C)进行灌根处理。在灌根后第3d和7d测定油菜干鲜重、光合气体交换参数、荧光参数、叶绿素含量以及抗氧化酶活性的变化。结果表明,1μmol/独脚金内酯显著提高了渍水处理7d后油菜的地上部和地下部的生物量;显著提高了净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr),降低了胞间CO_2浓度(Ci);增加了相对电子传递效率(rETR)、PSⅡ最大光能转换效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ有效光化学量子产量(Fv'/Fm')和PSⅡ实际光能转换效率(Ф_(PSⅡ));降低了非光化学淬灭系数(q N);提高了叶片的叶绿素含量、POD以及CAT酶活性,而降低了SOD酶活性。可见采用1μmol/L独脚金内酯灌根能够有效缓解渍水胁迫,通过提高生物量的积累、光合作用效率、光合色素含量、部分叶绿体荧光参数,降低非光化学猝灭和SOD酶活性等以促进受渍油菜幼苗恢复生长。  相似文献   

10.
以10份具有耐热性差异的玉米自交系为材料,在田间采用高温胁迫试验,室内检测玉米自交系的主要生理指标,探讨高温胁迫下玉米自交系的主要生物学特性及其耐热胁迫的生理指标筛选。结果表明,高温胁迫下,具有不同耐热性玉米自交系的丙二醛含量、叶绿素含量和花粉粒活性差异较大,部分耐热性不同的玉米自交系间差异显著。6个叶绿素荧光参数Fm’、Fo’、Fm、Fo、Fm’/Fv’和Fm/Fv的大小能大致反映10个玉米自交系的耐热性差异。结果表明,花粉粒活性、叶绿素含量、丙二醛含量及叶绿素荧光参数可作为玉米耐热种质的筛选指标。  相似文献   

11.
12.
Summary

The efficiency of N fertilizers is usually poor; often less than 50% of the applied N is taken up by the crop. This review focuses on various N fertilizers with respect to the significance of different N loss pathways, namely (i) ammonia volatilization, (ii) dinitrogen and nitrogen oxide emissions, and (iii) nitrate leaching. Further, the significance of biological N immobilization, ammonium fixation and, finally, the impact of nitrate vs. ammonium uptake on crop yield are also discussed. The reviewed literature shows that N fertilizers may differ markedly in their susceptibility to losses. There is, however, considerable scope to improve N efficiency of each N source by proper N management practices.  相似文献   

13.
Summary The effects of the leaves of five plant species, one from each of the generaAmbrosia, Anemone, Eupatorium, Eucalyptus andLantana, on potato tuber moth were investigated under indigenous storage conditions at the Central Potato Research Station, Shillong (1800 m above sea level). Their action was compared with that of a biological insecticide (spores ofBacillus thuringiensis), a chemical insecticide (carbaryl), and an untreated control. The data collected after six months storage on tuber damage, sprout damage and the rotting indicated that the leaves ofLantana aculeata provided most protection to the tubers, reducing damage from over 70% in the check to below 5%, and sprout damage from over 45% to below 3%. Next best wasEucalyptus globulus followed byB. thuringiensis. They may be used on tubers stored for table use or for seed as they had no adverse effect on germination or on the yield of a subsequent crop.  相似文献   

14.
15.
Novel food and non-food uses for sorghum and millets   总被引:4,自引:3,他引:4  
Sorghum and millets have considerable potential in foods and beverages. As they are gluten-free they are suitable for coeliacs. Sorghum is also a potentially important source of nutraceuticals such antioxidant phenolics and cholesterol-lowering waxes. Cakes, cookies, pasta, a parboiled rice-like product and snack foods have been successfully produced from sorghum and, in some cases, millets. Wheat-free sorghum or millet bread remains the main challenge. Additives such as native and pre-gelatinised starches, hydrocolloids, fat, egg and rye pentosans improve bread quality. However, specific volumes are lower than those for wheat bread or gluten-free breads based on pure starches, and in many cases, breads tend to stale faster. Lager and stout beers with sorghum are brewed commercially. Sorghum's high-starch gelatinisation temperature and low beta-amylase activity remain problems with regard to complete substitution of barley malt with sorghum malt . The role of the sorghum endosperm matrix protein and cell wall components in limiting extract is a research focus. Brewing with millets is still at an experimental stage. Sorghum could be important for bioethanol and other bio-industrial products. Bioethanol research has focused on improving the economics of the process through cultivar selection, method development for low-quality grain and pre-processing to recover valuable by-products. Potential by-products such as the kafirin prolamin proteins and the pericarp wax have potential as bioplastic films and coatings for foods, primarily due to their hydrophobicity.  相似文献   

16.
Summary The in vitro antimicrobial activity of extracts from accessions ofSolanum commersonii Dun. collected in the south of Uruguay was investigated against five microorganisms including the pathogenRalstonia solanacearum. A total of 30 extracts corresponding to organic and aqueous extracts were studied. Interestingly, most of the positive results for growth inhibition were againstR. solanacearum. The extracts were also analyzed for the presence of glycoalkaloids and lectins. Six of the ten aqueous extracts showed lectin presence and a wide variation in the type and amounts of glycoalkaloids, was found. Results indicate that there is no clear relationship between the antimicrobial activity against the five microorganisms screened and the presence or amounts of lectins and glycoalkaloids, traditionally regarded as possible antimicrobial metabolites in theSolanum genus, which indicates the presence of as yet unidentified antimicrobial compounds.  相似文献   

17.
Summary Clones derived from thirty-one different accessions (nineteen of Argentine origin) belonging to eightSolanum species were screened for resistance to infection by potato virus X strain cp (PVX cp) by mechanical inoculation of plantlets that had been micropropagated in vitro. Estimates of PVX multiplication obtained by enzyme linked immunosorbent assay and slot blot nucleic acid hybridization allowed the identification of resistant clones derived from five accessions belonging toS. commersonii S. oplocense, S. sparsipilum andS. tuberosum andigena. Resistant genotypes supported PVX concentrations 5 to 15 times smaller than did the susceptible control cultivar Spunta. Graft inoculation test confirmed the presence of extreme resistance similar to that conferred by the ‘immunity’ gene X1 (also called RXact).  相似文献   

18.
The loss of density and elasticity, the appearance of wrinkles and hyperpigmentation are among the first noticeable signs of skin aging. Beyond UV radiation and oxidative stress, matrix metalloproteinases (MMPs) assume a preponderant role in the process, since their deregulation results in the degradation of most extracellular matrix components. In this survey, four cyanobacteria strains were explored for their capacity to produce secondary metabolites with biotechnological potential for use in anti-aging formulations. Leptolyngbya boryana LEGE 15486 and Cephalothrix lacustris LEGE 15493 from freshwater ecosystems, and Leptolyngbya cf. ectocarpi LEGE 11479 and Nodosilinea nodulosa LEGE 06104 from marine habitats were sequentially extracted with acetone and water, and extracts were analyzed for their toxicity in cell lines with key roles in the skin context (HaCAT, 3T3L1, and hCMEC). The non-toxic extracts were chemically characterized in terms of proteins, carotenoids, phenols, and chlorophyll a, and their anti-aging potential was explored through their ability to scavenge the physiological free radical superoxide anion radical (O2•−), to reduce the activity of the MMPs elastase and hyaluronidase, to inhibit tyrosinase and thus avoid melanin production, and to block UV-B radiation (sun protection factor, SPF). Leptolyngbya species stood out for anti-aging purposes: L. boryana LEGE 15486 presented a remarkable SPF of 19 (at 200 µg/mL), being among the best species regarding O2•− scavenging, (IC50 = 99.50 µg/mL) and also being able to inhibit tyrosinase (IC25 = 784 µg/mL), proving to be promising against UV-induced skin-aging; L. ectocarpi LEGE 11479 was more efficient in inhibiting MMPs (hyaluronidase, IC50 = 863 µg/mL; elastase, IC50 = 391 µg/mL), thus being the choice to retard dermal density loss. Principal component analysis (PCA) of the data allowed the grouping of extracts into three groups, according to their chemical composition; the correlation of carotenoids and chlorophyll a with MMPs activity (p < 0.01), O2•− scavenging with phenolic compounds (p < 0.01), and phycocyanin and allophycocyanin with SPF, pointing to these compounds in particular as responsible for UV-B blockage. This original survey explores, for the first time, the biotechnological potential of these cyanobacteria strains in the field of skin aging, demonstrating the promising, innovative, and multifactorial nature of these microorganisms.  相似文献   

19.
The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.  相似文献   

20.
Chitosan is considered to be one of the most promising and applicable materials in adsorption applications. The existence of amino and hydroxyl groups in its molecules contributes to many possible adsorption interactions between chitosan and pollutants (dyes, metals, ions, phenols, pharmaceuticals/drugs, pesticides, herbicides, etc.). These functional groups can help in establishing positions for modification. Based on the learning from previously published works in literature, researchers have achieved a modification of chitosan with a number of different functional groups. This work summarizes the published works of the last three years (2012–2014) regarding the modification reactions of chitosans (grafting, cross-linking, etc.) and their application to adsorption of different environmental pollutants (in liquid-phase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号