首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
合理选取不同光谱指标制定决策树规则,能有效提高决策树分类法提取水稻面积的精度。本研究以江苏省淮安市为例,选取30 m空间分辨率HJ1A和16 m空间分辨率GF1多光谱影像,在对不同地物样点像元光谱特征分析的基础上,选择地物光谱特征明显的GF影像计算NDVI、EVI、DVI和RVI,并提取影像近红外波段反射率,利用上述5种光谱指标确定不同地物分类阈值来对两景影像进行决策树分类,进而获取淮安市水稻面积和分布情况。结果表明,GF影像地物光谱特征较明显,有利于识别不同地物,可用来确定基于多种光谱指标分类的阈值范围。其中,水稻判别条件为NDVI0.70,0.25DVI≤0.45,0.53EVI≤0.80,RVI5.5且0.30ρNIR≤0.46。HJ影像和GF影像提取水稻面积的样本精度分别为87.29%和93.70%,GF影像比HJ影像的水稻面积提取精度提高了6.41个百分点,说明利用多种光谱指标构建决策树分类模型是一种有效提取水稻种植面积的方法。  相似文献   

2.
目的频谱作为物质的能量特征进行地物的识别是可行的。本文针对国内外利用频谱进行地物分类尤其是森林植被分类研究的匮乏,探索频谱的地物识别潜力,将高光谱影像的光谱曲线转化为频谱进行地物识别研究。方法以福建将乐林场为研究区,利用国产环境小卫星高光谱影像(HJ-1A HSI)和同时成像的多光谱影像(CCD),通过能量分离变换的方法对高光谱和多光谱进行融合,获取高空间分辨率的高光谱影像;然后,将融合影像的光谱曲线转化到频率域,进而获取频谱;通过“频谱距离”对研究区进行地物分类,并将分类结果与光谱角填图(SAM)分类结果进行比较。结果在频域中植被类别和非植被类别的低阶幅度谱具有明显的可分性,频谱方法提高了马尾松、杉木和阔叶林的制图精度,对于光谱特征相似的不同森林植被具有更好的区分能力;非植被类别在1阶谐波的频谱容易区分, 植被类别需要用前7次谐波的幅度谱进行区分,随着频率的增大,频谱变化趋于相似,并且非植被类别在频域的能量累计速度高于植被类别;与SAM的分类结果比较发现,基于频谱的分类方法总体分类精度为84.19%,比SAM分类结果总体精度提高0.7%。结论利用频谱信息可以降低光谱曲线上噪声的影响,保留类别的重要区别信息,提高地类的分类精度,因此利用频域中的频谱进行地类识别具有可行性。   相似文献   

3.
面向对象的最优分割尺度下多层次森林植被分类   总被引:3,自引:0,他引:3  
对福建省将乐国有林场地物进行分析,结合QuickBird高分辨率影像及其重采样低分辨率影像进行多层次分割,同时结合ESP分割尺度评价工具获取最优分割尺度参数,以实现影像地物最佳分割效果。对不同分割层次下对象光谱特征、纹理特征等进行提取,应用专家知识及统计特征选取影像对象特征和确定阈值,实现研究区域森林地物及树种的分类。对森林植被等分类总精度达到80.53%。  相似文献   

4.
基于Softmax分类器的小春作物种植空间信息提取   总被引:1,自引:0,他引:1  
[目的]使用浅层机器学习分类方法和多光谱遥感影像快速准确提取研究区小春作物(油菜、小麦)种植空间信息。[方法]选择研究区小春作物识别最佳时期的Sentinel 2A MSI多光谱影像,融合得到10 m分辨率影像,然后降尺度生成15、20、30 m分辨率影像,结合地面调查数据,建立油菜、小麦、林地、居民地、水体等典型地物感兴趣区,训练Softmax分类器,基于不同空间分辨率影像提取油菜、小麦种植空间信息。[结果]①基于Softmax分类器和10 m分辨率融合影像的小春作物分类总体精度为90.02%,Kappa系数为0.8344,其中油菜生产者精度和用户精度分别为93.14%、91.42%,小麦的分别为87.93%,98.09%;②Softmax法的小春作物分类精度随影像空间分辨率下降而降低,15、20、30 m分辨率影像的分类精度较10 m的分别下降9.80%、12.04%和13.04%,Kappa系数依次减少0.1538,0.1873和0.2088;③15、20、30 m分辨率影像的油菜分类精度较小麦的低,影响因素为油菜花期和种植地块破碎分散。[结论]Softmax分类器在10~30 m中高分辨率影像小春作物分类中具备较高的精度,可作为常规方法应用于业务化的作物监测工作。  相似文献   

5.
玉米种植面积的准确获取是进行玉米长势监测和产量估测的前提与基础。在对Landsat-8/OLI影像进行辐射定标、大气校正、几何精校正和裁剪等预处理的基础上,基于典型地物光谱空间差异与物候特征的异同,选取具有代表性的4种植被指数[归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、绿度植被指数(GVI)]和近红外波段反射率,通过构建植被光谱特征指标阈值对不同地物进行识别和分类,最后获取玉米种植面积。结果表明,利用近红外波段反射率可以将农作物与其他地物区分开来,即当其反射率值大于0.37时,地物为农作物。对不同种类农作物识别时,选择NDVI0.86、DVI0.53、RVI13.00、GVI3 713.60作为分类阈值,可以将玉米与水稻和大豆区分,准确提取到玉米的种植面积。利用样本数据和当地农业部门提供的数据进行面积提取精度验证,总体精度为92.75%,说明基于多光谱特征指标建立分类阈值的方法可以准确提取玉米种植面积,该方法可以为江淮玉米种植区县域玉米种植面积的提取提供参考。  相似文献   

6.
湖滨带是湖泊生态系统与陆地生态系统的连接枢纽,对陆地生态环境的稳定有着积极的作用,利用植被高光谱特征识别湖滨带植被生长与分布状况对滨岸生态系统的管理和研究具有十分重要的意义。以太湖湖滨带(宜兴段)为研究区域,利用Field Spec3 Hi-Res便携式地物光谱仪测量5类典型植被冠层光谱;在利用S Golay滤波对异常光谱数据进行剔除的基础上,采用光谱微分法与植被指数法构建光谱特征;应用人工神经网络法结合因子分析法对典型植被进行分类提取。结果表明:(1)利用S Golay滤波方法能够较好地平滑噪声,保留其真实光谱特征;(2)在利用原始反射率、植被指数、一阶光谱微分、二阶光谱微分的4种分类组合中,二阶微分数据的神经网络分类精度最高,原始分辨率分类精度最低;(3)在不同植被类型的分类中,4类分类组合方法对夹竹桃的分类效果最好,对柳杉的分类效果最差。  相似文献   

7.
本文选取珠海一号影像数据,以哨兵二号数据为参考,将平朔矿区按权属划分五个子研究区,采用面向对象结合最邻近特征的分类方法,融合光谱特征、纹理特征、植被指数等特征因子,对珠海一号矿区土地利用分类精度进行评价。研究结果表明:(1)珠海一号分类总体精度为78.87%,Kappa系数为0.7285;哨兵二号分类总体精度为78.38%,Kappa系数为0.7203,珠海一号分类精度略高于哨兵二号;(2)部分耕地、草地、裸地产生误分,可能由于选取影像成像时间过晚地物特征相似导致。总体来说,珠海一号高光谱数据光谱及空间分辨率高,具有应用于矿区生态监测、复垦区植被演替特征等研究的潜力。  相似文献   

8.
植被覆盖度作为反映湿地植物生长状况的重要生态学参数,在评估和检测湿地生态环境方面起着关键的作用.以华北内陆典型的淡水湿地——北京市野鸭湖湿地自然保护区为研究对象,中等分辨率的Landsat TM影像为数据源,基于线性光谱混合模型(LSMM)对研究区的植被覆盖度进行了估算.针对湿地植被类型丰富、土地利用类型多样化的特点,利用归一化植被指数(NDVI)在反映植物生长状况、覆盖程度以及区分地表覆盖类型方面的优势,通过对原始Landsat TM影像增加NDVI数据维对影像进行维度扩展,克服了传统研究中通常从Landsat TM影像上提取3-4种端元的局限,经最小噪声分离变换(MNF变换)、纯像元指数(PPI)计算以及人机交互端元选取等一系列运算,构建以陆生植物、水生植物、高反射率地物、低反射率地物、裸露土壤为组分的五端元模型来反映研究区的地物组成;同时,以原始Landsat TM影像为基础,构建植物、高反射率地物、低反射率地物、裸露土壤为组分的四端元模型.针对两种端元模型,采用全约束下的LSMM算法进行混合像元分解以获取研究区的植被覆盖度,其次辅以研究区的纯水体信息对其进行优化.精度检验采用相同时期的高分辨率WorldView-2多光谱影像来进行.研究表明:虽然四端元模型与五端元模型对植被覆盖度的估算结果在空间上具有基本一致的分布趋势,但是前者的估算结果在数值上要普遍低于后者,在研究区的水体及其附近,四端元模型难以体现水生植物的植被覆盖信息;另外,五端元模型的估算结果与检验数据的相关系数R达到0.9023,均方根误差(RMSE)为0.0939,明显优于四端元模型的R=0.8671和RMSE=0.1711.这反映了通过对影像进行维度扩展的方法来改进端元提取的数量是可行的,而由此构建的五端元模型可以更充分的反映研究区地物之间的光谱差异,从而获得更好的估算精度.  相似文献   

9.
高光谱影像由于其波段众多,传统的多光谱图像的信息提取方法不适合高光谱影像的处理。利用无人机搭载美国Headwall公司的最新纳米级高光谱成像光谱仪,采集广东省广州市增城区某处的高光谱影像,提取光谱数据,分析不同地物间光谱曲线特征和差异,采用决策树进行地物分类。结果表明:根据无人机高光谱数据中不同地物之间光谱特征曲线的差异,建立分类树,不仅可以大大减少分类处理的工作量,且分类效果良好,准确度高。  相似文献   

10.
基于Sentinel-2时序多特征的植被分类   总被引:1,自引:0,他引:1  
植被分类是研究森林资源状况和动态变化规律的基础,利用遥感手段可以更加快速、准确地识别植被类型。以位于内蒙古赤峰市喀喇沁旗西南部的旺业甸实验林场为研究对象进行植被分类。采用分层分类的思想,首先根据植被物候特征选取植被生长旺盛时期的影像,计算归一化植被指数(normalized difference vegetation index,NDVI)并设定合适的阈值将研究区内的植被提取出来,剩余部分归为非植被。然后选取NDVI时间序列、最佳时相的Sentinel-2数据中10个波段的光谱反射率特征和主成分分析前3个分量的纹理特征作为分类特征,利用支持向量机分类器将研究区内的植被类型分为耕地、草地、常绿针叶林、落叶针叶林和落叶阔叶林五大类,并将分类结果与最大似然法、NDVI时序+光谱特征的分类结果进行对比分析。NDVI时序+光谱特征+纹理特征的多特征植被分类总体精度达87.64%,Kappa系数为0.85,分别比最大似然法和结合NDVI时序+光谱特征的分类总体精度提高了15.73%和14.61%,Kappa系数提高了0.20和0.18。其中常绿针叶林和耕地的分类结果与实地调查情况高度一致,分类精度分别达到95.65%和92.31%。从而得出:①基于多特征的分类方法有助于提高分类精度;②NDVI时序特征对于植被的区分具有很大帮助;③采用分层分类的思想,首先将研究区内的植被提取出来,可以排除非植被因素的干扰,有效提高植被类型的分类精度。  相似文献   

11.
[目的]研究大坂山不同海拔高寒植被的物种多样性。[方法]对祁连山山脉东段大坂山高、中、低(3 025、3 405、3 813 m)3个不同海拔的植物群落进行调查,并比较分析了3个不同海拔高度植被的丰富度、多样性指数。[结果]随着海拔的逐渐升高,其植物丰富度逐渐减小;植物群落物种多样性在中海拔相对较低;群落相似性随着海拔的升高而降低,群落的β多样性具有明显的变化。[结论]海拔梯度造成的环境因子的变化以及人类干扰是造成不同海拔高度物种分布格局发生变化的重要原因。  相似文献   

12.
【目的】筛选相关性好的植被指数构建马铃薯叶片叶绿素a、叶绿素b估测模型,为科学、无损地进行马铃薯叶片叶绿素含量估算提供技术支撑。【方法】采用便携式高光谱地物波谱仪,获取不同施氮水平下不同生育时期的马铃薯植株叶片光谱反射率,提取植被指数,测定马铃薯叶片叶绿素a、叶绿素b含量,并研究叶绿素含量与植被指数的相关性。【结果】12个植被指数与叶绿素a、叶绿素b含量相关性较好,其中修正归一化差异指数(mND_(705))、修正简单比值指数(mSR_(705))、地面叶绿素指数(MTCI)、修改叶绿素吸收反射指数(MCARI)与叶绿素a、叶绿素b含量相关性最好。基于这4个植被指数建立的估测模型中,MTCI构建的乘幂模型估测叶绿素a含量的效果最佳,mND_(705)构建的指数模型估测叶绿素b含量的效果最佳。【结论】MTCI构建的乘幂模型能较为精确地估测叶绿素a含量,mND_(705)构建的指数模型能较为精确地估测叶绿素b含量;这2种模型可用于间接监测马铃薯植株的氮营养亏缺状态。  相似文献   

13.
基于机载高光谱端元提取分析棉花生长期光谱变化   总被引:1,自引:0,他引:1  
【目的】棉花在不同生长期的波谱曲线变化具有规律性,研究其时间序列上的反射光谱变化趋势与规律并监测长势,为基于无人机多光谱、高光谱遥感的作物长势监测提供借鉴和参考。【方法】使用多旋翼无人机搭载Rikola高光谱成像仪,获取棉花从花期到后期之间的高光谱影像。使用纯净像元指数算法和最大单形体体积算法进行端元提取,并以SR-3500光谱仪采集的地面光谱曲线为标准,光谱角度为评价指标,依次从端元提取算法效果、不同航高数据对比、光谱相关性、多期光谱曲线变化趋势等分析。【结果】最大单形体体积算法在60、80、100 m航高下波谱角度结果分别为0.065 8、0.065 9、0.067 7,相较于纯净像元指数算法结果更接近地面光谱仪数据,具有较优的相关性(R2均在0.99以上),且能更好地提取小样本端元。航高对端元提取的影响较小,同种算法在不同航高下提取结果差异均在2%以下。不同生长期棉花波谱曲线变化呈规律性,吸收谷与红边值在7月中旬到达峰值。标准植被指数与比值植被指数在7月上中旬达到最大值(0.841 7、11.630 5),增强型植被指数、差值植被指数、优化土壤调节植被指数在7月中下旬达到最大值(0.818 9、0.501 3、0.501 2)。【结论】最大单形体体积算法可较好的从棉花高光谱影像中提取出棉花波谱曲线,且100 m为较优的无人机数据采集航高。棉花在7月光合作用最大,对红光的强吸收、近红外波段强反射现象最为明显。  相似文献   

14.
[目的]为了研究甘蓝型油菜CMS在不同海拔高度下的感温特性变化规律,为CMS的实际生产应用提供理论依据。[方法]以甘蓝型油菜CMS130A为材料,于2005年秋季通过在不同海拔高度条件下分期播种,研究甘蓝型CMS的育性变化、感温时期及感温临界值。[结果]高海拔地区的初花期较低海拔地区的初花期推迟10~20 d,整个花期缩短2~5 d。不同海拔高度,开花前第8天的日平均温度对130A育性影响均最大。同一不育系在海拔高度750 m时,其临界值为11.7℃;在海拔高度368 m时,其临界值为13.1℃。[结论]同一不育系在不同的海拔高度其感温临界值不同,高海拔区其感温临界值为11.7℃,低海拔区其感温临界值为13.1℃。  相似文献   

15.
基于冠层高光谱遥感对加工番茄产量的估算模型   总被引:1,自引:0,他引:1  
[目的]对加工番茄的产量进行遥感估测。[方法]以ASD FieldSpec光谱仪实测大田中不同生育期加工番茄的冠层高光谱及其产量,采用单时相线性逐步回归和复合回归,首次建立了加工番茄高光谱与产量的估算模型。[结果]在坐果期光谱参量与产量相关性最大,而其他时期的光谱参量与产量相关性均达到了显著水平(P<0.05);多时相复合回归模型以4个生育期与产量的复合回归最为理想。[结论]利用高光谱遥感来监测加工番茄的生长状况,可以最终对加工番茄的产量进行遥感估测。  相似文献   

16.
[目的]研究海拔对潮阳烤烟(Nicotianatabacum)烟叶产量及品质的影响,开发优质烟叶,克服高温季节对烤烟生产的影响。[方法]以烤烟品种K326为研究对象,研究了不同海拔(200、400、600、900和1300m)对烤烟农艺性状、经济性状和烟叶质量的影响。『结果]在浏阳烟区,随着海拔的增加,单位面积烟叶的产量明显增加,烟叶质量也有一定程度的改善;在海拔400~900m的地方进行烟叶生产,有利于延长烟株大田生育期和烟株的生长发育,为养好烟株的耐熟性打下良好的基础,并能促进各部位烟叶成熟度的提高;同时可以有效地促进烟株各部位橘黄烟叶比例的上升,对上部烟叶的开片也有着明显的促进作用,烟叶身份特别是上部烟叶的身份得到明显的改善,各部位烟叶组织结构更加疏松,烟叶色泽更加鲜亮;上部烟叶烟碱含量在一定程度上有所降低,各部位烟叶还原糖、钾含量有着不同程度的增加,烟叶香气特征更加明显;香气量有一定程度的增加,吸位更加醇和、余味舒适;同时也有利于减少烟叶的农药残留量,提高烟叶的安全性。l结论l在海拔大于1300m的地方不适宜优质烟叶的生产。  相似文献   

17.
大坂山不同海拔高寒植被物种多样性研究(摘要)   总被引:1,自引:0,他引:1  
[目的]研究大坂山不同海拔地区高寒植被的物种多样性。[方法]对祁连山山脉东段大坂山高、中、低(3025、3405、3813m)3个不同海拔的植物群落进行调查,并比较分析了3个不同海拔高度植被的丰富度、多样性指数。[结果]随着海拔的逐渐升高,其植物丰富度逐渐减小;植物群落物种多样性在中海拔相对较低;群落相似性随着海拔的升高而降低,群落的β多样性具有明显的变化。[结论]海拔梯度造成的环境因子的变化以及人类干扰是造成不同海拔高度物种分布格局发生变化的重要原因。  相似文献   

18.
王政  王崇玉 《安徽农业科学》2012,(31):15171-15173
[目的]对不同海拔高度云烟97(Nicotiana tabacum L.)初烤烟叶的外观质量、化学成分、评吸质量进行分析。[方法]供试品种为巧家主栽品种云烟97,设置6个海拔处理,分别为处理A:海拔1 450 m,处理B:海拔1 540 m,处理C:海拔1 600 m,处理D:海拔1 700 m,处理E:海拔1 830 m,处理F:海拔1 910 m,处理G:海拔2 020 m。[结果]海拔在1 450~2 020 m内,随着海拔高度的增加,烟叶的外观质量和评吸质量总体评分表现先增大后减小趋势,以海拔1 600~1 830 m表现较好;总糖和还原糖含量随着海拔高度的上升逐渐增加;在海拔1 830 m以下,烟叶烟碱、总氮、蛋白质含量随海拔高度的增加而下降。烟叶评吸质量随海拔高度上升先提升后降低,海拔1 700m感官评吸质量最好。[结论]综合来看,海拔1 600~1 830 m内云烟97各项指标表现较好。  相似文献   

19.
[目的]探究滇西南3个不同海拔高山茶园中茶黄蓟马的空间分布格局,为茶黄蓟马的综合防治提供参考依据.[方法]采用检叶数虫法对云南省陇川县3个不同海拔(低海拔、中海拔和高海拔)高山茶园中的茶黄蓟马发生动态进行调查,并应用聚集度指标及Iwao的m*-m回归分析法和Lloyd幂法对3个不同海拔茶园中茶黄蓟马成虫的空间分布格局进行测定和分析.[结果]茶黄蓟马种群的空间分布型均以聚集分布为主,主要分布在茶树的嫩芽部位.茶黄蓟马成虫的聚集原因主要由其喜食茶叶的幼嫩叶片引起.低、中和高3个不同海拔茶园中茶黄蓟马成虫理论抽样模型分别为N=t2/D2(1.006m +0.367)、N=t2/D2(21.509m +1.083)和N=t2/D2(-21.107m +1.223);序贯抽样模型分别为T0(n)=2n±7.1488、T0 (n)=2n±6.8811和T0(n)=2n±1.8655;当茶黄蓟马成虫的密度为100.0头/叶时,3个不同海拔茶园的理论抽样数分别为9、32和36片.累计虫量达2.4头/叶时,在低海拔和中海拔茶园均应继续进行观察,而高海拔茶园需进行防治.[结论]3个不同海拔茶园中茶黄蓟马均主要聚集在嫩芽部位,累计虫量2.4头/叶可作为高海拔茶园防治茶黄蓟马的指标.  相似文献   

20.
高光谱技术在农业领域应用广泛,其快速高效、精准无损的特点为农作物品种分类识别提供了一定的技术支持。采集11个油菜品种苗前期、苗后期冠层反射光谱数据,以高光谱位置、振幅、面积、宽度、反射率和植被指数6个方面共23个特征参数为研究指标,衡量特征参数的贡献率大小和方差分析显著性,据此分析其区分、识别油菜不同品种的效果。结果表明:从贡献率的角度,不同类别的高光谱特征参数区分油菜品种的能力不同,振幅参数区分油菜品种的能力最强,宽度参数区分油菜品种的能力最弱,综合效果由强到弱依次为:振幅参数>面积参数>反射率参数>植被指数参数>位置参数>宽度参数;从方差分析的角度,不同时期区分油菜品种的效果不同,苗后期的识别效果优于苗前期,其中,以植被指数参数识别油菜品种的综合性效果最好。多重比较方差分析中以Dr、SDr/SDb、(SDr-SDy)/(SDr+SDy)3个特征参数识别效果最优,可以明确区分6个品种。苗期利用冠层光谱特征参数能够较好的对油菜品种进行分类识别,研究结果为快速实现农作物的分类识别及合理制定农作物的种植面积和空间分布奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号