首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irrigation with saline water: benefits and environmental impact   总被引:24,自引:0,他引:24  
The shortage of water resources of good quality is becoming an important issue in the arid and semi-arid zones. For this reason the availability of water resources of marginal quality such as drainage water, saline groundwater and treated wastewater has become an important consideration. Nevertheless, the use of these waters in irrigated lands requires the control of soil salinity by means of leaching and drainage of excess water and salt. However, the leaching of salts, soil microelements and agro-chemicals can lower the quality of the drainage water in the irrigation scheme. The irrigation return flows with water or poor quality are a source of pollution of the surface water bodies situated downstream of the drainage outlet. Deep percolation could also contaminate the groundwater. Therefore, irrigation with saline water requires a comprehensive analysis even beyond the area where water is applied. The problem should be treated beyond the scope of the irrigation scheme, taking into consideration the groundwater and downstream surface water resources of the river basin. Consequently, the sustainable use of saline water in irrigated agriculture requires the control of soil salinity at the field level, a decrease in the amount of drainage water, and the disposal of the irrigation return flows in such a way that minimizes the side effects on the quality of downstream water resources. This paper describes the guidelines for a preliminary evaluation of the suitability of water for irrigation and the key factors for salinity control in lands irrigated with saline water. Options to improve the quality of the drainage water, strategies for the reuse of this water and alternatives for disposal of the outflow are also analysed. The final goal is to obtain sustainable agriculture and maintain the quality of the water resources in the river basin.  相似文献   

2.
In situ use of ground water by plants is one optionbeing considered to reduce discharge of subsurfacedrainage water from irrigated agriculture. Laboratory, lysimeter, and field studies havedemonstrated that crops can use significant quantitiesof water from shallow ground water. However, moststudies lack the data needed to include the crop wateruse into an integrated irrigation and drainage watermanagement system. This paper describes previousstudies which demonstrated the potential use of groundwater to support plant growth and the associatedlimitations. Included are results from three fieldstudies which demonstrated some of the managementtechniques needed to develop an integrated system. The field studies demonstrated that approximately 40to 45% of the water requirement for cotton can bederived from shallow saline ground water. Thatregulation of the outflow will result in increasinguse. Implementation of integrated management ofirrigation and subsurface drainage systems is a viableand sustainable alternative in the management ofsubsurface drainage water from arid and semi-aridareas only if soil salinity can be managed and if thesystem is profitable.  相似文献   

3.
In situ use of groundwater by alfalfa   总被引:1,自引:0,他引:1  
Disposal of saline drainage water is a significant problem for irrigated agriculture. One proposal is to recycle drainage water to irrigate salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept requires in situ crop water reuse from shallow groundwater; and data is needed to quantify the potential use of groundwater by alternative crops. A column lysimeter study was initiated to determine the potential crop water use from shallow groundwater by alfalfa as a function of groundwater quality and depth to groundwater. The results demonstrated that up to 50% of the crop water use could be met from shallow groundwater (<1.2 m) with an electrical conductivity less than 4 dS/m, and that the potential crop water use from deeper groundwater (2 m) increased over the years. The columns with high salinity (>4 dS/m) in the shallow groundwater experienced increased salinity in the soil profile with time, which resulted in reduced crop water use from shallow groundwater. Yields decreased with time as the groundwater salinity increased and periodic leaching will be required for in situ use to be a sustainable practice. Statistical analysis of crop yield demonstrated that there was significant use of groundwater with an EC of 6 dS/m for a few years.  相似文献   

4.
Subsurface drainage has been implemented in irrigation areas of South-eastern Australia to control water logging and land salinisation. Subsurface drainage has been identified as a major salt exporter from irrigated areas. The water table management simulation model DRAINMOD-S was evaluated to simulate daily water table depth, drain outflow, and salt loads by using experimental field data from a two year field trial was carried out in the Murrumbidgee Irrigation Area South-eastern Australia to study different options for subsurface drainage system design and management to reduce salt load export. Three subsurface drainage systems were modeled, deep widely spaced pipe drains, shallow closely spaced drains and deep pipe drains that were managed with weirs to prevent flow when the water table fell below 1.2 m. The reliability of the model has been evaluated by comparing observed and simulated values. Good agreement was found between the observed and simulated values. The model confirmed the field observations that shallow drains had the lowest salt load and that by managing deep drains with weirs salt loads could be significantly reduced. This work shows the value of the DRAINMOD-S model in being able to describe various drainage design and management strategies under the semi-arid conditions of South-eastern Australia. The model can now be used to investigate design and management options in detail for different site conditions. This will assist decision makers in providing appropriate subsurface drainage management policies to meet drainage disposal constraints within integrated water resources management planning.  相似文献   

5.
Artificial subsurface drainage is not an option for addressing the saline, shallow ground water conditions along the west side of the San Joaquin Valley because of the lack of drainage water disposal facilities. Thus, the salinity/drainage problem of the valley must be addressed through improved irrigation practices. One option is to use drip irrigation in the salt affected soil.A study evaluated the response of processing tomato and cotton to drip irrigation under shallow, saline ground water at depths less than 1 m. A randomized block experiment with four irrigation treatments of different water applications was used for both crops. Measurements included crop yield and quality, soil salinity, soil water content, soil water potential, and canopy coverage. Results showed drip irrigation of processing tomato to be highly profitable under these conditions due to the yield obtained for the highest water application. Water applications for drip-irrigated tomato should be about equal to seasonal crop evapotranspiration because yield decreased as applied water decreased. No yield response of cotton to applied water occurred indicating that as applied water decreased, cotton uptake of the shallow ground water increased. While a water balance showed no field-wide leaching, salinity data clearly showed salt leaching around the drip lines.  相似文献   

6.
Saline groundwater is often found at shallow depth in irrigated areas of arid and semi-arid regions and is associated with problems of soil salinisation and land degradation. The conventional solution is to maintain a deeper water-table through provision of engineered drainage disposal systems, but the sustainability of such systems is disputed. This shallow groundwater should, however, be seen as a valuable resource, which can be utilised via capillary rise (i.e. sub-irrigation). In this way, it is possible to meet part of the crop water requirement, even where the groundwater is saline, thus decreasing the need for irrigation water and simultaneously alleviating the problem of disposing of saline drainage effluent. Management of conditions within the root zone can be achieved by means of a controlled drainage system.A series of lysimeter experiments have permitted a detailed investigation of capillary upward flow from a water-table controlled at shallow depth (1.0 m) under conditions of moderately high (5 mm/day) evaporative demand and with different levels of salinity. Experiments were conducted on a wheat crop grown in a sandy loam soil. Groundwater salinity was held at values from 2 to 8 dS/m while supplementary (deficit) irrigation was applied at the surface with salinity in the range 1-4 dS/m.Our experiments show that increased salinity decreased total water uptake by the crop, but in most treatments wheat still extracted 40% of its requirement from the groundwater, similar to the proportion reported for non-saline conditions. Yield depression was limited to 30% of maximum when the irrigation water was of relatively good quality (1 and 2 dS/m) even with saline groundwater (up to 6 dS/m). Crop water productivity (grain yield basis) was around 0.35 kg/m3 over a wide range of salinity conditions when calculated conventionally on the basis of total water use, but was generally above 1.0 kg/m3 if calculated on the basis of irrigation input only.  相似文献   

7.
Salt balance methods are generally applied in the root-zone and at local scales but do not provide relevant information for salinity management at irrigation scheme scales, where there are methodological impediments. A simple salt balance model was developed at irrigation scheme and yearly time scales and applied in Fatnassa oasis (Nefzaoua, Tunisia). It accounts for input by irrigation, export by drainage and groundwater flow, and provides novel computation of the influence of biogeochemical processes and variations in the resident amount of salt for each chemical component in the soil and shallow groundwater. Impediments were overcome by limiting the depth of the system so that the resident amount of salt that remained was of the same order of magnitude as salt inputs and allowed indirect and reliable estimation of groundwater flow. Sensitivity analyses as partial derivatives of groundwater salinity were carried out according to non-reactive salt balance under steady-state assumption. These analyses enabled the magnitude of the salinization process to be foreseen as a function of hydrological changes linked to irrigation, drainage, groundwater flow and extension of the irrigated area. From a salt input of 39 Mg ha−1 year−1 by irrigation, 21 Mg ha−1 year−1 (54%) and 10 Mg ha−1 year−1 (26%) were exported by groundwater flow and drainage, respectively. 7 Mg ha−1 year−1 (18%) were removed from groundwater by geochemical processes, while a non-significant 2 Mg ha−1 year−1 were estimated to have been stored in the soil and shallow groundwater where the residence time was only 2.7 years. The leaching efficiency of drainage was estimated at 0.77. With a water supply of 1360 mm by irrigation and 90 mm by rainfall, drainage, groundwater flow and actual evapotranspiration were 130, 230, and 1090 mm, respectively. The current extension of date palm plantations and salinization of groundwater resources are expected to significantly increase the salinity hazard while the degradation of the drainage system is expected to be of lesser impact. The approach was successfully implemented in Fatnassa oasis and proved to be particularly relevant in small or medium irrigation schemes where groundwater fluxes are significant.  相似文献   

8.
Shallow ground water is a resource that is routinely overlooked when water management alternatives are being considered in irrigated agriculture. Even though it has the potential to provide significant quantities of water for crop use under the proper conditions and management. Crop water use from shallow groundwater is affected by soil water flux, crop rooting characteristics, crop salt tolerance, presence of a drainage system, and irrigation system type and management. This paper reviews these factors in detail and presents data quantifying crop use from shallow ground, and describes the existing state of the art with regard to crop management in the presence of shallow ground water. The existing data are used to determine whether in-situ crop water use from shallow ground water is suitable for a given situation. The suggested methodology uses ratios of ground water electrical conductivity to the Maas–Hoffman yield loss threshold values, the day to plant maturity relative to plant growth period, and the maximum rooting depth relative to the nearly saturated zone. The review demonstrates that for in-situ use to be feasible there has to be good quality ground water relative to crop salt tolerance available for an extended period of time. Shallow ground water availability is one area that can be managed to some extent. Crop selection will be the primary determinant in the other ratios.  相似文献   

9.
Recent community based actions to ensure the sustainability of irrigation and protection of associated ecosystems in the Murrumbidgee Irrigation Area (MIA) of Australia has seen the implementation of a regional Land and Water Management Plan. This aims to improve land and water management within the irrigation area and minimise downstream impacts associated with irrigation. One of the plan objectives is to decrease current salt loads generated from subsurface drainage in perennial horticulture within the area from 20 000 tonnes/year to 17 000 tonnes/year. In order to meet such objectives Controlled Water table Management (CWM) is being investigated as a possible ‘Best Management Practice’, to reduce drainage volumes and salt loads.During 2000–2002 a trial was conducted on a 15 ha subsurface drained vineyard. This compared a traditional unmanaged subsurface drainage system with a controlled drainage system utilizing weirs to maintain water tables and changes in irrigation scheduling to maximize the potential crop use of a shallow water table. Drainage volumes, salt loads and water table elevations throughout the field were monitored to investigate the effects of controlled drainage on drain flows and salt loads.Results from the experiment showed that controlled drainage significantly reduced drainage volumes and salt loads compared to unmanaged systems. However, there were marked increases in soil salinity which will need to be carefully monitored and managed.  相似文献   

10.
In arid and semi-arid regions, effluent from sub-surface drainage systems is often saline and during the dry season its disposal poses an environmental problem. A field experiment was conducted from 1989 to 1992 using saline drainage water (EC=10.5–15.0 dS/m) together with fresh canal water (EC=0.4 dS/m) for irrigation during the dry winter season. The aim was to find if crop production would still be feasible and soil salinity would not be increased unacceptably by this practice. The experimental crops were a winter crop, wheat, and pearl-millet and sorghum, the rainy season crops, grown on a sandy loam soil. All crops were given a pre-plant irrigation with fresh canal water. Subsequently, the wheat crop was irrigated four times with different sequences of saline drainage water and canal water. The rainy season crops received no further irrigation as they were rainfed. Taking the wheat yield obtained with fresh canal water as the potential value (100%), the mean relative yield of wheat irrigated with only saline drainage water was 74%. Substitution of canal water at first post-plant irrigation and applying thereafter only saline drainage water, increased the yield to 84%. Cyclic irrigations with canal and drainage water in different treatments resulted in yields of 88% to 94% of the potential. Pearl-millet and sorghum yields decreased significantly where 3 or 4 post-plant irrigations were applied with saline drainage water to previous wheat crop, but cyclic irrigations did not cause yield reduction. The high salinity and sodicity of the drainage water increased the soil salinity and sodicity in the soil profile during the winter season, but these hazards were eliminated by the sub-surface drainage system during the ensuing monsoon periods. The results obtained provide a promising option for the use of poor quality drainage water in conjunction with fresh canal water without undue yield reduction and soil degradation. This will save the scarce canal water, reduce the drainage water disposal needs and associated environmental problems.  相似文献   

11.
The increasing demand for irrigation water to secure food for growing populations with limited water supply suggests re-thinking the use of non-conventional water resources. The latter includes saline drainage water, brackish groundwater and treated waste water. The effects of using saline drainage water (electrical conductivity of 4.2–4.8 dS m−1) to irrigate field-grown tomato (Lycopersicon esculentum Mill cv Floradade) using drip and furrow irrigation systems were evaluated, together with the distribution of soil moisture and salt. The saline water was either diluted to different salinity levels using fresh water (blended) or used cyclically with fresh water. The results of two seasons of study (2001 and 2002) showed that increasing salinity resulted in decreased leaf area index, plant dry weight, fruit total yield and individual fruit weight. In all cases, the growth parameters and yield as well as the water use efficiency were greater for drip irrigated tomato plants than furrow-irrigated plants. However, furrow irrigation produced higher individual fruit weight. The electrical conductivity of the soil solution (extracted 48 h after irrigation) showed greater fluctuations when cyclic water management was used compared to those plots irrigated with blended water. In both drip and furrow irrigation, measurements of soil moisture one day after irrigation, showed that soil moisture was higher at the top 20 cm layer and at the location of the irrigation water source; soil moisture was at a minimum in the root zone (20–40 cm layer), but showed a gradual increase at 40–60 and 60–90 cm and was stable at 90–120 cm depth. Soil water content decreased gradually as the distance from the irrigation water source increased. In addition, a few days after irrigation, the soil moisture content decreased, but the deficit was most pronounced in the surface layer. Soil salinity at the irrigation source was lower at a depth of 15 cm (surface layer) than that at 30 and 60 cm, and was minimal in deeper layers (i.e. 90 cm). Salinity increased as the distance from the irrigation source increased particularly in the surface layer. The results indicated that the salinity followed the water front. We concluded that the careful and efficient management of irrigation with saline water can leave the groundwater salinity levels unaffected and recommended the use of drip irrigation as the fruit yield per unit of water used was on average one-third higher than when using furrow irrigation.  相似文献   

12.
The long term sustainability of conjunctive water use for controlling irrigation salinity is affected by increase in groundwater salinity over time. This paper uses mass conservation of salt and water to assess groundwater degradation over long time scales. Management options which affect this rate of degradation are also examined. The groundwater model developed is illustrated using data from the Shepparton Irrigation Region in the Murray Basin, Australia. The model predicts rapid groundwater deterioration when conjunctive use is conducted over only a fraction of the area of influence of a groundwater pump. Where the pumped aquifer is underlain by deeper groundwaters, the rate of groundwater degradation is also affected by leakage into or out of the conjunctive use system. Surface redistribution of groundwater from pumps installed in zones of regional groundwater discharge to areas recharging the regional groundwaters, reduces excessive degradation in the zones of discharge. With optimal surface distribution of groundwater, the rate of degradation is low. The rate of groundwater degradation also depends on salt inputs from irrigation water and rainfall, and the average depth from the soil surface to the base of the aquifer. The rate of degradation resulting from applied salts in surface water and rainfall is typically about 0.01 dSm-1 per year for shallow aquifers in the Shepparton region, but the rate is lower where deeper aquifers are pumped. Partial irrigation also reduces the rate of degradation because of the reduced rate of salt inputs. Where poorer quality groundwater lies within the area of influence of the groundwater pump, a greater rate of deterioration in the quality of pumped groundwater can be expected from groundwater mixing. In some irrigation regions limited export of groundwater through surface water conveyance structures to a river is possible, so that a regional surface salt balance could be maintained. However, salt exports made equal to the rate of surface imports into the irrigated area will only significantly impact groundwater salinity in the very long term, or where only shallow aquifers can be pumped. In addition, this export can be costly for downstream water users, or if construction of additional conveyance infrastructure is extensive; export can have a detrimental impact on riverine ecosystems. Other management options such as the depth of pump installation and the spatial distribution of irrigation water and pumped groundwater, which affect the redistribution of salts within the groundwater system, have the potential to have a much greater impact on local groundwater salinity.  相似文献   

13.
Soil salinity has often become a long-term problem associated with irrigated agriculture in the arid and semi-arid regions. But the problem can be controlled by good management of surface and groundwater resources. Management of groundwater is achieved through drainage, although drainage may not be necessary for some time after the initial construction of a scheme. This paper introduces a regional model for predicting expected soil salinity conditions and groundwater depths over an irrigation scheme. The model considers all the main hydrological systems which influence soil salinity and makes optimal use of sparse point field data from grid surveys. The model can be used to identify priority areas for reclamation measures, ie areas where conditions combine to produce high salinity levels. Thus drainage development can be phased over a period of time and targeted where it will be most effective.  相似文献   

14.
为探讨覆砂条件下灌溉水盐度及钠吸附比对土壤水分入渗过程及水盐分布的影响规律,通过室内土柱模拟试验,研究了灌溉水盐度(EC为0,1.0,2.5,5.0,7.5 dS/m,SAR为5.8(mmol/L)0.5)和钠吸附比(SAR为 3.9,7.0,12.7,22.7(mmol/L)0.5,EC为2.5 dS/m)对土壤累积湿润锋和入渗量以及水盐分布的影响.结果表明,随灌溉水盐度的增加,累积湿润锋呈增加趋势,而累积入渗量呈减少趋势.与去离子水相比,7.5 dS/m处理的累积湿润锋较蒸馏水增加了7.0%,而土壤平均含水率降低了36.0%.累积湿润锋和入渗量随灌溉水钠吸附比增加先增大后减小,土壤含水率受灌溉水钠吸附比的影响较小.土壤含盐量随灌溉水盐度增加而呈幂函数增加,但与钠吸附比无明显关系.灌溉水的钠吸附比提高了土壤pH值.  相似文献   

15.
Years of ill-managed irrigation have triggered secondary soil salinization in the Khorezm region of Uzbekistan located in the Aral Sea basin. To assess the magnitude and dynamics of secondary soil salinization, to quantify improved management strategies and to derive updated irrigation standards, the soil water model Hydrus-1D was used. Water and soil salinity dynamics in three cotton fields with different soil textures were monitored and simulated for the years 2003 and 2005. Until now in Khorezm, overall soil salinity could only be controlled by pre-season salt leaching using high amounts of water. This water, however, may not be available anymore in the near future because of global climate change and shrinking fresh water resources. Simulations confirmed that the present leaching practice is barely effective. At two out of the three locations within a sandy loam field, leaching did not remove salts from the 2 m profile. Instead, salts were only shifted from the upper (0–0.8 m) to the lower (0.8–2 m) soil layer. Strong groundwater contribution to evapotranspiration triggered secondary (re)-salinization of the topsoil during the cropping season. As a consequence, salt amounts in the top 0.8 m of soil increased from 9 to 22 Mg ha−1 in the field with loamy texture, and from 4 to 12 Mg ha−1 in the field with sandy texture. Management strategy analyses revealed that reducing soil evaporation by a surface residue layer would notably decrease secondary soil salinization. Here, owing to the reduced capillary rise of groundwater, post-season salt contents of the three fields were reduced by between 12 and 19% when compared with residue-free conditions. Even more effective would be improving the efficiency of the drainage system so as to lower the groundwater table. This would require a revision of the current irrigation management schemes, but could, as simulations revealed, reduce the post-season salt content in the 2 m soil profile of the three fields by between 36 and 59% when compared with unaltered conditions. For the revised irrigation management in total not more water than already foreseen by national irrigation recommendations would be needed. Increasing leaching and irrigation efficiency would help sustaining the present cotton production levels while reducing future leaching demands.  相似文献   

16.
Waterlogging and salinization are major impediment to the sustainability of irrigated lands and livelihoods of the farmers, especially the smallholders, in the affected areas of the Indus Basin. These problems are the result of a multitude of factors, including seepage from unlined earthen canals system, inadequate provision of surface and subsurface drainage, poor water management practices, insufficient water supplies and use of poor quality groundwater for irrigation. About 6.3 million ha are affected by different levels and types of salinity, out of which nearly half are under irrigated agriculture. Since the early 1960s, several efforts have been made to improve the management of salt-affected and waterlogged soils. These include lowering groundwater levels through deep tubewells, leaching of salts by excess irrigation, application of chemical amendments (e.g. gypsum, acids, organic matter), and the use of biological and physical methods. However, in spite of huge investments, the results have in general been disappointing and the problems of waterlogging and salinity persist.This paper reviews sources, causes and extent of salinity and waterlogging problems in the Indus Basin. Measures taken to overcome these problems over the last four decades are also discussed. The results reveal that the installed drainage systems were initially successful in lowering groundwater table and reducing salinity in affected areas. However, poor operation and maintenance of these systems and provision of inadequate facilities for the disposal of saline drainage effluent resulted in limited overall success. The paper suggests that to ensure the sustainability of irrigated agriculture in the Indus Basin, technical and financial support is needed and enhanced institutional arrangements including coordination among different federal and provincial government agencies to resolve inter-provincial water allocation and water related issues is required.  相似文献   

17.
The primary objective of an agriculture water management system is to provide crop needs to sustain high yields. Another objective of equal or greater importance in some regions is to reduce agriculture impacts on surface and groundwater quality. Kandil et al. (1992) modified the water management model DRAINMOD to predict soil salinity as affected by irrigation water quality and drainage system design. The objectives of this study are to incorporate an algorithm to quantify the effects of stresses due to soil salinity on crop yields and to demonstrate the applications of the model. DRAINMOD-S, is capable of predicting the long-term effects of different irrigation and drainage practices on crop yields. The overall crop function in the model includes the effects of stresses caused by excessive soil water conditions (waterlogging), soil water-deficits, salinity, and planting delays. Three irrigation strategies and six drain spacings were considered for all crops. In the first irrigation strategy, the irrigation amounts were equal to evapotranspiration requirements by the crops, with the addition of a 10 cm depth of water for leaching applied during each growing season. In the second strategy, the leaching depth (10 cm) was applied before the growing season. In the third strategy, a leaching depth of 15 cm was applied before the growing season for each crop. Another strategy (4th) with more leaching was considered for bean which is the crop most sensitive to salinity. In the fourth strategy, 14 days intervals were used instead of 7 and leaching irrigations were applied: 15 cm before the growing season and 10 cm at the middle of the growing season for bean. The objective function for these simulations was crop yield. Soil water conditions and soil salinity were continuously simulated for a crop rotation of bean, cotton, maize, soybean, and wheat over a 19 years period. Yields of individual crops were predicted for each growing season. Results showed that the third irrigation strategy resulted in the highest yields for cotton, maize, soybean and wheat. Highest yields for bean were obtained by the fourth irrigation strategy. Results are also presented on the effects of drain depth and spacing on yields. DRAINMOD-S is written in Fortran and requires a PC with math-coprocessor. It was concluded that DRAINMOD-S is a useful tool for design and evaluation of irrigation and drainage systems in irrigated arid lands.  相似文献   

18.
The achievement of sustainable irrigation in arid regions requires greater attention to waterlogging, salinization, and degradation of ground and surface waters, which are among the problems that continue to threaten productivity and degrade environmental quality. We consider sustainability to be achieved when irrigation and drainage are conducted on-farm, and within irrigation districts, in a manner that does not degrade the quality of land, water, and other natural resources, either on-farm or throughout an irrigated region. Sustainability may also be described as maintaining the productive resources required for irrigation, so that future generations may have the same opportunity to use those resources as we do. Given the increasing importance of irrigated land for food production, the time has come when it is vital to intercept, reuse, and isolate drainage waters within the regions in which they are generated. Adoption of this strategy can be enhanced by policies that require farmers, and irrigation districts, to consider the off-farm impacts of irrigation and drainage. Such policies include linking water rights with salt rights to require the monitoring and management of both irrigation water and the salt loads in drainage waters. We review the knowledge gained since the early 1970s regarding the economic and agronomic aspects of irrigation and drainage, with a focus on drainage water reduction and sequential reuse of drainage water on salt-tolerant crops. Economic incentives that motivate farm-level and district-level improvements in water management are also reviewed. We conclude that adequate knowledge exists for implementing strategies that focus on water use and salt disposal within irrigated regions, and we recommend policies that will motivate improvements in productivity and enhance the likelihood of achieving sustainability.  相似文献   

19.
Coal bed natural gas (CBNG) extraction in the Powder River (PR) Basin of Wyoming and Montana produces modestly saline-sodic wastewater, which may have electrical conductivity (EC) and sodium adsorption ratios (SAR) exceeding accepted thresholds for irrigation (EC = 3 dS m−1, SAR = 12 (mmolc l−1)1/2. As an approach to managing large volumes of CBNG-produced water, treatment processes have been developed to adjust produced water salinity and sodicity to published irrigation guidelines and legislated in-stream standards. The objective of this laboratory study was to assess acute and chronic soil solution EC and SAR responses to various wetting regimes simulating repeated flood irrigation with treated CBNG product water, followed by single rainfall events. Fifty-four soil samples from irrigated fields in southeast Montana were subjected to simulated PR water or CBNG water treated to EC and SAR values accepted as thresholds for designation of saline × sodic water, in a single wetting event, five wetting–drying events, or five wetting–drying events, followed by leaching with distilled water. Resultant saturated paste extract EC (ECe) and SAR of soils having <33% clay did not differ from one another, but resulting ECe and SAR were all less than those for soil having >33% clay. Repeated wetting with PR water having EC of 1.56 dS m−1 and SAR of 4.54 led to SAR <12, but brought ECe near 3 dS m−1. Repeated wetting with water having salinity = 3.12 dS m−1 and SAR = 13.09 led to ECe >3 dS m−1 and SAR near 12. Subsequent inundation and drainage with distilled water, simulating rainfall-quality leaching, reduced ECe and SAR more often in coarse-textured, high salt content soils than in finer-textured, lower salt content soils. Decreases in ECe upon leaching with distilled water were of greater magnitude than corresponding decreases in SAR, reinforcing supposition of sodium-induced dispersion of fine-textured soils as a consequence of rainfall following irrigation with water having salinity and sodicity levels equal to previously published thresholds.  相似文献   

20.
The agro-hydrological model SWAP was used in a distributed manner to quantify irrigation water management effects on the water and salt balances of the Voshmgir Network of North Iran during the agricultural year 2006-2007. Field experiments, satellite images and geographical data were processed into input data for 10 uniform simulation areas. As simulated mean annual drainage water (312 mm) of the entire area was only 14% smaller than measured (356 mm), its distribution over the drainage units was well reproduced, and simulated and measured groundwater levels agreed well. Currently, water management leads to excessive irrigation (621-1436 mm year−1), and leaching as well as high salinity of shallow groundwater are responsible for large amounts of drainage water (25-59%) and salts (44-752 mg cm−2). Focused water management can decrease mean drainage water (22-48%) and salts (30-49%), compared with current water management without adverse effects on relative transpiration and root zone salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号