首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

2.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

3.
Actual measurements of water uptake and use, and the effect of water quality considerations on evapotranspiration (ET), are indispensable for understanding root zone processes and for the development of predictive plant growth models. The driving hypothesis of this research was that root zone stress response mechanisms in perennial fruit tree crops is dynamic and dependent on tree maturity and reproductive capability. This was tested by investigating long-term ET, biomass production and fruit yield in date palms (Phoenix dactylifera L., cv. Medjool) under conditions of salinity. Elevated salinity levels in the soil solution were maintained for 6 years in large weighing-drainage lysimeters by irrigation with water having electrical conductivity (EC) of 1.8, 4, 8 and 12 dS m−1. Salinity acted dynamically with a long-term consequence of increasing relative negative response to water consumption and plant growth that may be explained either as an accumulated effect or increasing sensitivity. Sensitivity to salinity stabilized at the highest measured levels after the trees matured and began producing fruit. Date palms were found to be much less tolerant to salinity than expected based on previous literature. Trees irrigated with low salinity (EC = 1.8 dS m−1) water were almost twice the size (based on ET and growth rates) than trees irrigated with EC = 4 dS m−1 water after 5 years. Fruit production of the larger trees was 35-50% greater than for the smaller, salt affected, trees. Long term irrigation with very high EC of irrigation water (8 and 12 dS m−1) was found to be commercially impractical as growth and yield were severely reduced. The results raise questions regarding the nature of mechanisms for salinity tolerance in date palms, indicate incentives to irrigate dates with higher rather than lower quality water, and present a particular challenge for modelers to correctly choose salinity response functions for dates as well as other perennial crops.  相似文献   

4.
A simple irrigation scheduling approach for pecans   总被引:1,自引:0,他引:1  
Pecans are a major crop in New Mexico's Lower Rio Grande Valley (LRGV). It is estimated that New Mexico is responsible for about 21% of the world's pecan production (Lillywhite et al., 2007). Currently, approximately 12,000 ha of pecan orchards at various stages of growth consume 45% of the area's irrigation water. Pecan evapotranspiration (ET) varies with age, canopy cover, soil type, crop density and method of water management. Intense competition for the LRGV's limited water supply has created a serious need for better water management through improved irrigation scheduling. Annual pecan ET ranges from as low as 500 mm to as high as 1400 mm. Diversity of the pecan crop coefficient (Kc) and ET makes the task of irrigation scheduling for this crop very complicated. Using remote sensing technology and field ET measurements, a simple relationship was developed to relate crop coefficient and ET to canopy cover. This relationship is then used in combination with climate data to calculate daily and weekly water requirements for each orchard. The difference between annual ET values estimated from canopy cover and values measured with an eddy covariance flux tower ranged from 2 to 5%. The average ratio of estimated monthly ET values over measured ET values was 1.03 with the standard error of the estimate ranging from 10 to 20 mm/month. This methodology provides a simple tool that farmers can use to schedule irrigation of pecan orchards. Even though the methodology was developed for irrigation scheduling in the LRGV, it can be used in other locations by transferring the reference crop coefficients using Kc-GDD relationships.  相似文献   

5.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss.  相似文献   

6.
Volumetric water content of a silt loam soil (fluvo-aquic soil) in North China Plain was measured in situ by L-520 neutron probe (made in China) at three depths in the crop rootzone during a lysimeter experiment from 2001 to 2006. The electrical conductivity of the soil water (ECsw) was measured by salinity sensors buried in the soil during the same period at 10, 20, 45 and 70 cm depth below soil surface. These data were used to test two mathematical procedures to predict water content and soil water salinity at depths of interest: all the available data were divided into training and testing datasets, then back propagation neural networks (BPNNs) were optimized by sensitivity analysis to minimizing the performance error, and then were finally used to predict soil water and ECsw. In order to meet with the prerequisite of autoregressive integrated moving average (ARIMA) model, firstly, original soil water content and ECsw time series were likewise transformed to obtain stationary series. Subsequently, the transformed time series were used to conduct analysis in frequency domain to obtain the parameters of the ARIMA models for the purposes of using the ARIMA model to predict soil water content and ECsw. Based on the statistical parameters used to assess model performance, the BPNN model performed better in predicting the average water content than the ARIMA model: coefficient of determination (R2) = 0.8987, sum of squares error (SSE) = 0.000009, and mean absolute error (MAE) = 0.000967 for BPNN as compared to R2 = 0.8867, SSE = 0.000043, MAE = 0.002211 for ARIMA. The BPNN model also performed better than the ARIMA model in predicting average ECsw of soil profile. However, the ARIMA model performed better than the BPNN models in predicting soil water content at the depth of 20 cm and ECsw at the depth of 10 cm below soil surface. Overall, the model developed by BPNN network showed its advantage of less parameter input, nonlinearity, simple model structure and good prediction of soil ECsw and water content, and it gave an alternative method in forecasting soil water and salt dynamics to those based on deterministic models based on Richards’ equation and Darcy's law provided climatic, cropping patterns, salinity of the irrigation water and irrigation management are very similar from one year to the next.  相似文献   

7.
In arid and semi-arid regions, salinity is a serious and chronic problem for agriculture. A 3-year field experiment in the arid environment of Xinjiang, northwest China, was conducted to study the salinity change in soil resulting from deficit irrigation of cotton with non-saline, moderate saline and high saline water. The salinity profile distribution was also evaluated by an integrated water, salinity, and nitrogen model, ENVIRO-GRO. The simulated and observed salinity distributions matched well. Results indicated that after 3 years of cotton production, the average salinity in the 1.0-m soil profile was 336% and 547% of the original soil profile, respectively, for moderate saline and high saline water irrigation. If the practices continued, the average soil salinity (ECe) in the 1.0-m soil profile would approach a steady level of 1.7, 10.8, and 14.7 dS m−1, respectively, for the treatments receiving irrigation waters of 0.33, 3.62, and 6.71 dS m−1. It was concluded that deficit irrigation of saline water in this region was not sustainable. Model simulation showed that a big flood irrigation after harvest can significantly reduce the salt accumulation in the soil profile, and that this practice was much more efficient for salinity control than applying the same extra amount of water during the growing season.  相似文献   

8.
Field water supply (FWS) combines the three sources of water used by a crop for evapotranspiration (ET), and consists of available soil water at planting (ASWP), rainfall, and irrigation. Examining the grain yield and FWS relationship (Yg:FWS) may provide insight into the reported variability in crop water production functions such as water productivity (WP) and irrigation water productivity (IWP). Since water is most productive when entirely consumed in ET, diversion of FWS into non-ET losses such as drainage and excessive soil water evaporation results in declines in WP and IWP. The objective of this experiment was to examine the Yg:FWS and Yg:ET relationships of grain sorghum grown under a range of irrigation treatments (0, 25, 50, and 100% replacement of ET), beginning soil water contents, evaporative demands, in the Amarillo, Pullman, and Ulysses soils of the Great Plains. The purpose was to determine the amount of FWS beyond which declines in WP and IWP began to occur due to non-ET losses as indicated by a change in the slope and intercept of the Yg:FWS and Yg:ET relationships. Large amounts of non-ET irrigation application losses occurred in the finer-textured soils in the T-100 irrigation treatment. In both years, the T-100 irrigation application amounts and ASWP resulted in a FWS ranging from 750 to 870 mm which exceeded the maximum ET requirement of 530-630 mm and which reduced WP and IWP. Piecewise regression analysis of the Yg:FWS and Yg:ET relationships for the crops in the Pullman and Ulysses soils identified the knot point, or change in slope and intercept, in the FWS where both WP and IWP tended to be optimized. This was about 500 mm in both soils, and involved the utilization of about 250 mm in ASWP, irrigation applications averaging about 250 mm, and about 60-130 mm remaining in the soil at harvest. For the coarser-textured Amarillo soil, the yield response to increasing FWS was linear, because non-ET application losses such as drainage gradually increased with the irrigation application amount. The linear Yg response in the sandy Amarillo soil and the piecewise Yg responses in the clay and silt loams of the Pullman and Ulysses soils to FWS also reflected the difference in water-holding capacities of the soils that affected the amount of available water as irrigation increased. Irrigating without considering FWS resulted in non-ET irrigation application losses and declines in WP and IWP.  相似文献   

9.
Degradation of soils irrigated with the ground waters having residual alkalinity constitutes a major threat to irrigated agriculture in semi-arid parts especially the South Asia. Paddy–wheat has come to stay as the major crop rotation in the afflicted areas, which is either irrigated solely with alkali waters (AW) or combined with good quality water supplies through canal networks. Therefore, to develop appropriate conjunctive use strategies for the latter situations, response of paddy and wheat was evaluated to the combined use of a good quality water (GW, ECiw 0.5, RSC nil) and that having residual alkalinity (AW, ECw 2.3 dS m−1, RSC 11.3 mequiv L−1, SARw 15 mmol L0.5) for 6 years (1997–2003) in lysimeters (2.0 m deep, 0.9 m i.d., with drainage outlets at the bottom) filled in with a sandy loam soil (pH 7.8, ESP 5.3). Increase in soil pH (8.71), salinity (3.8 dS m−1) and sodicity (ESP 27.3) as a consequence of irrigation with alkali water markedly affected the yields of both the crops. The sustainability yield index (SYI) was 0.522 and 0.793 for paddy and wheat, respectively, indicating the sensitivity of the former to the use of alkali water. Keeping the AW input to be similar through irrigations, the SYI for paddy with blending of GW and AW in the ratio of 2:1, 1:1 and 1:2 was 0.732, 0.708 and 0.678, respectively, when compared with 0.751, 0.729 and 0.701 under intera-seasonal cyclic uses. Similarly, the SYI of wheat ranged between 0.821–0.907 and 0.853–0.949 with blending and cyclic uses of the two waters, indicating thereby a yield advantage with the latter. When the two waters were rotated inter-seasonally, the dilution effects of monsoon rains helped to induce greater use of AW for paddy. The overall deterioration in soil properties under different modes was related to proportion of AW applied. It was concluded that the alternating good quality and alkali waters could be a better way to alleviate sodicity problems caused with the use of alkali water alone.  相似文献   

10.
In cold, semi-arid areas, the options for crop diversification are limited by climate and by the water supply available. Growing irrigated crops outside the main season is not easy, because of climatic and market constraints. We carried out an experiment in Albacete, Central Spain, to measure the water use (evapotranspiration, ET) of broccoli (Brassica oleracea L. var. italica Plenck) planted in late summer and harvested at the end of fall. A weighing lysimeter was used to measure the seasonal ET under sprinkler irrigation. Consumptive use reached 359 mm for a period of 109 days after transplanting. The crop coefficient (Kc) for broccoli was obtained and compared to the standard recommendations for normal planting dates. Dual crop coefficient computations of the lysimeter ET data indicated that evaporation represented 31% of seasonal ET. An analysis of the variation in daily Kc values at a time of full cover suggested that the use of a grass lysimeter as a reference ET (ETo) was superior to using the ASCE Penman-Monteith (ASCE PM) equation at hourly time steps, which in turn caused less variability in Kc than when using the FAO-56 Penman-Monteith (FAO-56 PM) equation at daily time steps for the ETo calculation. An additional experiment aimed at evaluating the yield response to applied irrigation water by the drip method (seven treatments, from 59 to 108% of ETc) generated a production function that gave maximum yields of near 12 t ha−1 at an irrigation level of 345 mm, and a water use efficiency of 3.37 kg m−3. It is concluded that growing broccoli in the fall season is a viable alternative for crop diversification, as the lower yields obtained here may be more than compensated for by the higher produce prices in autumn, at a time of the year where irrigation water demand for other crops is very low.  相似文献   

11.
Pomegranate (Punica granatum L.) is a deciduous fruit tree native of central Asia included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Fruit consumption interest is due to the organoleptic characteristics and to the beneficial effects on health. Pomegranate tree are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this work was to characterize, for the first time in P. granatum, water relations aspects of applied significance for irrigation scheduling. Trees under different irrigation regimes were used and midday stem water potential (Ψstem) and midday leaf gas exchange were periodically measured over the course of an entire season. During spring and autumn, Ψstem did not show significant differences between irrigation treatments while there were considerable differences in leaf photosynthesis and stomatal conductance, suggesting a near-isohydric behaviour of pomegranate trees. This might explain why the signal intensity of Ψstem was lower than those of gas exchange indicators during the experimental period. Thus, leaf photosynthesis rates and stomatal conductance might have a greater potential for irrigation scheduling of pomegranate trees than Ψstem measured at solar noon.  相似文献   

12.
Spring maize under plastic mulch is the staple food crop in northwest China. Studying its evapotranspiration (ET) and crop coefficient (Kc) is important for managing water-saving irrigation in the region. Eddy covariance (EC) was applied to measure spring maize ET in 2007 in northwest China, focusing on the characteristics of the maize ET and Kc processes under plastic mulch. An interesting result was that a higher Kc in this study relative to the value of FAO 56 was presented in the mid and late season, e.g. average Kc was 1.46, 1.39 and 1.22 during the heading, filling and maturity stage, respectively. This result was mainly due to that (1) the plastic mulch had an effect on anti-senescence of maize and great green leaf still existed before the harvest; (2) the FAO 56 PM model may underestimate the reference crop ET in the mid and late season of maize in the region; (3) the planting density was higher in the study, which was about 374,800 plants ha−1. Though Kc during the mid and late season was high, a high water use efficiency of 25.2 kg ha−1 mm−1 was still obtained in the study. Our study confirmed that plastic mulch has beneficial effect on improving maize water use efficiency in this severe water shortage region of northwest China.  相似文献   

13.
In 2004 and 2005, the feasibility of agricultural use of saline aquaculture wastewater for irrigation of Jerusalem artichoke and sunflower was conducted in the Laizhou region using saline aquaculture wastewater mixed with brackish groundwater at different ratios. Six treatments with different electrical conductivities (EC) were included in the experiment: CK1 (rainfed), CK2 (irrigation with freshwater, EC of 0.02 dS m−1), and saline aquaculture wastewater (EC of 39.2 dS m−1) mixed with brackish groundwater (EC of 4.4 dS m−1) at volumetric ratios of 1:1, 1:2, 1:3, and 1:4 with corresponding EC of 22.0, 16.1, 13.2, and 11.4 dS m−1. Soil electrical conductivity (ECe) in the saline aquaculture wastewater irrigation treatments was significantly higher (P ≤ 0.05) than that in the rainfed or freshwater irrigation treatments, and the maximum value occurred in the 22.0 dS m−1 treatment. The sodium adsorption ratio (SAR) ranged from 4.1 to 11.7 mmol1/2 L−1/2 and increased with decreasing salinity of irrigation water. The biomass of Jerusalem artichoke significantly decreased (P ≤ 0.05) when irrigated with saline aquaculture wastewater compared to the rainfed or freshwater irrigation treatments; however, the effect of salinity on root biomass was much smaller than the aerial parts. Concomitantly, the highest tuber yield of Jerusalem artichoke occurred in the 11.4 dS m−1 treatment, while the highest seed yield of sunflower occurred in the rainfed treatment. Additionally, nitrogen and phosphorus concentrations of Jerusalem artichoke were significantly higher in the 11.4 dS m−1 treatment than the other treatments. This study demonstrated that properly diluted saline aquaculture wastewater can be used successfully to irrigate Jerusalem artichoke with higher economic yield and nutrient removal, but not sunflower due to the difference in salt tolerance.  相似文献   

14.
Soil water supply is the main limiting factor to crop production across the Loess Plateau, China. A 2-year field experiment was conducted at the Changwu agro-ecosystem research station to evaluate various water management practices for achieving favorable grain yield (GY) with high water use efficiency (WUE) of spring maize (Zea mays L.). Four practices were examined: a rain-fed (RF) system as the control; supplementary irrigation (SI); film mulching (FM); and straw mulching (SM) (in 2008 only). The soil profile water storage (W) and the crop evapotranspiration (ET) levels were studied during the maize growing season, and the GY as well as the WUE were also compared. The results showed that mean soil water storage in the top 200 cm of the profile was significantly (P < 0.05) increased in the SI (380 mm in 2007, 411 mm in 2008) and SM (414 mm in 2008) compared to the FM (361 mm in 2007, 381 mm in 2008) and RF (360 mm in 2007, 384 mm in 2008) treatments. The soil water content was lower at the end of growing season than before planting in the 60-140 cm part of the profile in both the RF and FM treatments. Cumulative ET and average crop coefficiency (Kc) throughout the whole maize growing season were significantly (P < 0.05) higher in the SI (ET, 501 mm in 2007, 431 mm in 2008; Kc, 1.0 in 2007, 0.9 in 2008) treatment than in the other treatments. Both FM and SI significantly improved the GY. The WUE were increased significantly (23-25%; P < 0.05) under the FM treatment. It was concluded that both SI and FM are beneficial for improving the yield of spring maize on the Loess Plateau. However, FM is preferable because of the shortage of available water in the area.  相似文献   

15.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

16.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

17.
A ratio of crop evapotranspiration (ETC) to reference evapotranspiration (ETO) determines a crop coefficient (KC) value, which is related to specific crop phenological development to improve transferability of the KC values. Development of KC can assist in predicting crop irrigation needs using meteorological data from weather stations. The objective of the research was conducted to determine growth-stage-specific KC and crop water use for maize (Zea Mays) and sorghum (Sorghum bicolor) at Texas AgriLife Research field in Uvalde, TX, USA from 2002 to 2008. Seven lysimeters, weighing about 14 Mg, consisted of undisturbed 1.5 m × 2.0 m × 2.2 m deep soil monoliths. Six lysimeters were located in the center of a 1-ha field beneath a linear-move sprinkler system equipped with low energy precision application (LEPA). A seventh lysimeter was established to measure reference grass ETO. Crop water requirements, KC determination, and comparison to existing FAO KC values were determined over a 3-year period for both maize and sorghum. Accumulated seasonal crop water use ranged between 441 and 641 mm for maize and between 491 and 533 mm for sorghum. The KC values determined during the growing seasons varied from 0.2 to 1.2 for maize and 0.2 to 1.0 for sorghum. Some of the values corresponded and some did not correspond to those from FAO-56 and from the Texas High Plains and elsewhere in other states. We assume that the development of regionally based and growth-stage-specific KC helps in irrigation management and provides precise water applications for this region.  相似文献   

18.
A combined methodology of basal crop coefficient (Kcb) derived from vegetation indices (VI) obtained from satellite images and a daily soil water balance in the root zone of the crop was proposed to accurately estimate the daily grape crop coefficient and actual evapotranspiration. The modeled values were compared with field measurements of crop evapotranspiration (ET) using an energy balance eddy-covariance flux tower and adjusted for closure using the measured Bowen ratio. A linear relation between Kcb and VI for vineyard was obtained, Kcb = 1.44 × NDVI-0.10 and Kcb = 1.79 × SAVI-0.08. The correlation of the measured crop coefficient (Kc) and modeled (Kcrf) exhibits a linear tendency, Kc = 0.96Kcrf, r2 = 0.67. Other derived parameters such as weekly Kc and daily and weekly ET show good consistency with measurements and higher coefficients of determination. The study of the soil water balance suggests the importance of soil water storage in grapes within the La Mancha region. These results validate the use of remote sensing as a tool for the estimation of evapotranspiration of irrigated wine grapes planted on trellis systems.  相似文献   

19.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

20.
The objective of the study was to determine the effects of different emitter spaces and water stress on crop yield, such that the tomatoes would be suitable for processing and paste output (Lycopersicon esculentum Mill cv. Shasta). Such variables were also analyzed with respect to crop quality characteristics (e.g., mean fruit weight - MFW, fruit diameter - FD, penetration value of fruit - PV, pH, total soluble solids - TSS, and ascorbic acid contents - AA). The experiment was conducted under ecological conditions typical of the Konya Plain, a semi-arid climate, in 2004 and 2005. Drip irrigation laterals were arranged in such a way that every row had one lateral. Emitters were spaced at 25, 50, and 75 cm intervals in the main plots, while four levels of water supply, irrigation at 7-day intervals with enough water to fill the soil depth of 0-60 cm until capacity was reached (I1), and 25, 50, and 75% decreased water supply levels were applied as subplots of the experiment. Results of the field experiments showed that yield suitable for processing (68.7-72.7 t ha−1) and paste output (12.2-12.9 t ha−1) were obtainable under conditions of I1 application (p < 0.01). MFW, FD, PV, and TSS were significantly affected from treatments (p < 0.05). High stress resulted in the highest soluble solids. The total irrigation water amount and water consumptive use of the mentioned application (I1) were determined as 426 and 525 mm in 2004. In 2005, the total irrigation water amount and water consumptive use of the same treatment were 587 and 619 mm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号