首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Japanese fir (Abies firma) forests on the urban-facing side ofMt. Oyama, eastern Japan are frequently exposed to acidic depositions. These forests have been declining more severely than those on the mountain-facing side. Chlorophyll, N, Mg, K, Ca, P and Al contents were determined for current, one- and two-year-old needles collected from the crown surfaces of Japanese fir tree forming the forest canopy (ca. 30 m height) on both sides of Mt. Oyama. Needle dry mass per needle area on the urban-facing side was significantly smaller than that on the mountain-facing sides for each needle age class. This result suggests that the development of internal tissues of fir needles on the urban-facing side is defective. N and Chl contents per needle area on the urban-facing side were smaller than those on the mountain-facing sides, indicating that photosynthetic activity per needle area is suppressed in the needles from the urban-facing side. For each needle age class, both area- and mass-based Mg contents were smaller on the urban-facing side than on the mountain-facing side, but mass-based Al contents were greater on the urban-facing side. These results suggest that acidic depositions cause nutritional disorders, which, in turn, leads to decreased needle productivity in the fir trees on the urban-facing side.  相似文献   

2.
Chemical Composition of Precipitation in Beijing Area, Northern China   总被引:1,自引:0,他引:1  
Variations of anions (SO4 2-, NO3 -,NO2 -, Cl- and F-),cations (K+,Na+, Ca2+, Mg2+ and +) and pH values in precipitation, througfall and stemflow samples collected overa four-year period (1995–1998) in Beijing (two sitesZhongguancun and Mangshan) are presented. The annualvolume-weighted range of pH values were 6.57–7.11 inprecipitation, 5.46–6.86 in thoughfall and 5.32–6.41 instemflow. The fominant anion was , while Ca+and NH4 + were the main cations in precipitation,throughfall and stemflow. Most of ion concentrations with precipitation, throughfall and stemflow volume showed negative correlation, except for some ones. Significant correlationvalues were also found between ions (SO4 2-,NO3 -, Cl-, F-, Ca2+,Mg2+ andNa+) in precipitation, throughfall and stemflow indicatedthe common sources of these ions such as coal combustion,automobile emission and fertilizers application. Compared toprecipitation, there was an increased ion concentration inthroughfall or in stemflow. Changes of ion concentrations werein Quercus liatungensis Koiz. and Pinus tabulaefornisCarr. throughfall (or stemflow) because of different crown andbark qualities of tree species.  相似文献   

3.
From 1986–1989, a team of scientists measured atmospheric concentrations and fluxes in precipitation and throughfall, and modeled dry and cloudwater deposition in a spruce-fir forest of the Great Smoky Mountains National Park which is located in the Southern Appalachian Region of the United States. The work was part of the Integrated Forest Study (IFS) conducted at 12 forests in N. America and Europe. The spruce-fir forest at 1740 m consistently received the highest total deposition rates (~2200, 1200, and 700 eq ha?1 yr?1 for SO4 2?, NO3 ?, and NH4 +). During the summers of 1989 and 1990 we used multiple samplers to measure hydrologie, SO4 2?, and NO3 ? fluxes in rain and throughfall events beneath spruce forests above (1940 m) and below (1720 m) cloud base. Throughfall was used to estimate total deposition using relationships determined during the IFS. Although the SO4 2? fluxes increased with elevation by a factor of ~2 due to higher cloudwater interception at 1940 m, the NO3 ? fluxes decreased with elevation by ~30%. To investigate further, we began year round measurements of fluxes of all major ions in throughfall below spruce-fir forests at 1740 m and at 1920 m in 1993–1994. The fluxes of most ions showed a 10–50% increase with elevation due to the ~70 cm yr?1 cloudwater input at 1920 m. However, total inorganic nitrogen exhibited a 40% lower flux in throughfall at 1920 m than at 1740 m suggesting either higher dry deposition to trees at 1740 m or much higher canopy uptake of nitrogen by trees at 1920 m. Differential canopy absorption of N by trees at different elevations would have significant consequences for the use of throughfall N fluxes to estimate deposition. We used artificial trees to understand the foliar interactions of N.  相似文献   

4.
Mexico City experiences some of the most severe air pollution in the world. Ozone injury has been documented in sensitive tree species in urban and forested areas in the Valley of Mexico. However, little is known of the levels of other atmospheric pollutants and their ecological effects on forests in the Valley of Mexico. In this study bulk throughfall deposition of inorganic nitrogen (N) and sulfur (S) was measured for one year at a forested site upwind (east) and downwind (southwest) of Mexico City. Edaphic and plant (Pinus hartwegii Lindl.) indicators of N and S nutrient status were also measured. Streamwater NO3 - and SO4 2- concentrations were also determined as an indicator of watershed-level N and S loss. Annual bulk throughfall deposition of inorganic N and S at the high-pollution forested site 23 km southwest of Mexico City (Desierto de los Leones National Park; DL) was 18.5 and 20.4 kg ha-1. Values for N and S deposition at Zoquiapan (ZOQ), a relatively low-pollution site 53 km east of Mexico City, were 5.5 and 8.8 kg ha-1 yr-1. Foliar concentrations of N, foliar N:P and C:N ratios, extractable soil NO3 -, and streamwater NO3 - concentrations indicate that the forest at DL is N enriched, possibly as a result of chronic N deposition. Sulfur concentrations in current-year foliage were also slightly greater at DL than at ZOQ, but S concentrations in one-year-old foliage were not statistically different between the two sites. Streamwater concentrations of NO3 - ranged from 0.8 to 44.6 μEq L-1 at DL compared to 0.0 to 11.3 μEq L-1 at ZOQ. In summary, these findings support the hypothesis that elevated N deposition at DL has increased the level of available N, increased the N status of P. hartwegii, and resulted in export of excess N as NO3 - in streamwater.  相似文献   

5.
Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia, U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although S deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO4 2- adsorption by iron oxides and hydroxides in watershed soils. The S content in white oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.  相似文献   

6.
Cloud water deposition to canopies of Cryptomeria japonica at Mt.Rokko, Kobe, Japan, was estimated from throughfall measurements and fog water collections carried out during a full year. Annual cloud frequency was 11.5–15.5% and liquid water content (LWC) was 0.059 g/m3. Since cloud water deposition on to forest canopies was significantly correlated with the amount of fog water collected, the former parameter could be quantitatively derived from throughfall measurements. Annual cloud water deposition on to Cryptomeria canopies was 1420–2860 mm (Av. 2140 mm), corresponding to 90–180% (Av. 122%) of annual rainfall. The rate of deposition was higher at the mountain ridge and the forest edge than at the mountain side and the forest interior. Annual deposition of SO4 2?, NO3 ?, H+ and NH4 + from cloud water was estimated as 204, 153, 2.5 and 58 kg/ha, respectively, equivalent to 5.8–11.7 times the corresponding deposition via rain. The values are equal to, or exceed, the maximum deposition reported for Appalachian forests in the eastern United States. Multiple regression analyses indicate that cloud water deposition on to Cryptomeria canopies was significantly correlated with the following three parameters: cloud frequency, LWC, and wind speed. Thus, these three factors apparently control cloud water deposition on to forest canopies.  相似文献   

7.
The chemistry of stemflow for the forests at Fu-shan site has not been studied. The objective of this study was to compare stemflow of three dominant tree species in a subtropical rain forest of northeastern (NE) Taiwan. The three dominant tree species were yellow basket-willow (Engelhardtia roxburghiana), Morris persimmon (Diospyros morrisiana) and Chinese cryptocarya (Cryptocarya chinensis). Stemflow from yellow basket-willow had the highest pH and concentration of cations and anions. In general, mean concentrations of NH4 + and NO3 - in stemflow were lower than those in precipitation, reflecting uptake processes in vegetation. On the other hand, stemflow was greatly enriched with SO4 2-. We believe this is due to dry deposition rather than from leached metabolites. There are no clear temporal patterns for most of the ions observed in stemflow chemistry. Stemflow was greatly enriched in K+ concentrations during growth season from April to May of 1991 and 1992.  相似文献   

8.
Piirainen  S.  Finér  L.  Starr  M. 《Water, air, and soil pollution》1998,105(1-2):165-174
Nitrogen deposition, leaching, and retention were monitored in a mature spruce (Picea abies Karsten) dominated mixed boreal forest in eastern Finland. Bulk precipitation, throughfall, stemflow, and percolation through the podzolic soil profile were monitored from 1993 to 1996. Mean annual bulk deposition of total N was 3.83 kg ha-1, of which 33% was NH4 +, 26% was NO3 - , and 41% was organic N. Throughfall+stemflow flux of total N was 2.93 kg ha-1 yr-1. Sixty-four % of NH4 + and 38% of NO3 - in bulk precipitation was retained by tre three canopy. Organic N was released (0.27 kg ha-1 yr-1) from the tree canopy. Nitrate-N was retained and organic N was leached as the water passed through the ground vegetation and soil O-horizon. Ammonium-N and organic N were retained mainly in the E-horizon. The output of total N from the E-horizon was only 5% of the total N deposition in the forest stand during the study period and it was mainly as organic N. The output of inorganic N forms from under B-horizon was seasonal and occurred mainly at spring snowmelt.  相似文献   

9.
The atmospheric deposition of air pollutants was studied by means of monitoring canopy throughfall at six forest stands. The investigation was carried out in Norway spruce (Picea abies L. Karst.) forests in Southern Bavaria with high ambient ammonia concentrations due to either adjacent intensive agriculture or poultry housing. Five monitoring plots transected the forest edges and forest interior from the edge, at 50, 150, about 400 m and about 800m to the interior. Additionally, nutrient concentration in soil solution was sampled with suction cups at each plot, and C/N ratio of the humus layer was also determined. The variation of ambient ammonia concentration between three of the six investigated sites was estimated using diffusive samplers. In order to compare the effects of atmospheric deposition on European beech (Fagus sylvatica L.) and Norway spruce additional monitoring plotswere installed under each of these species in a mixed beech and spruce stand. Bulk deposition and soil water samples were analysed for major ions (NO3 -, NH4 +, SO4 2-, Cl-, Na+, K+, Mg2+, Ca2+M).The results show a substantial increase of deposition towards the forest edges for all ions. This so called 'edge effect' continued in most cases until a distance from 50 to 150 m from edge. For both ambient ammonia concentrations and nitrogen deposition, it can be concluded that increased dry deposition is the main reason for the edge effect. Over 76% of the nitrogen ratios in throughfall deposition between the edge and 50 m distance into the spruce forest exceed 1.0. Except for potassium, beech generally showed lower ratios than spruce.Due to high nitrogen deposition the forest floor, C/N ratios were lower at stand edges when compared to their interior. In contrast to the increase of nitrogen deposition at the edge, nitrate export below the main rooting zone was lower at the edge. Nitrate export was generally lower under beech than spruce. Nitrogen budgets of some plots were negative, indicating a reduction of total ecosystem nitrogen stock.The results show that forest edges, especially in areas with high air pollution, receive much more atmospheric deposition than the interior parts of closed forest stands. As many deposition studies in forests were conducted at field stations in the central parts of forests the estimated deposition for the whole forest may be underestimated. This may be important to consider in geo-statistical studies and models aiming to estimate spatial critical deposition values, especially with an increasing fragmentation of the forest cover.  相似文献   

10.
Ion concentrations in water collected within a forest of sugar maple and yellow birch at the Turkey Lakes Watershed near Sault Ste. Marie, Ontario were examined from 1982 to 1984 to determine sources of acidity and the extent of cation leaching from forest floor horizons. Volume-weighted concentrations and ion fluxes in throughfall and forest-floor percolate during the growing and dormant seasons were calculated. Hydrogen ion content of the forest-floor percolate decreased in relation to that of throughfall in the dormant season and increased in the growing season. Hydrogen ion deposition in throughfall could account for 100% of the flux of H+ through the forest floor in the dormant period, and 40% of the flux during the growing season. In forest-floor percolate, Ca2+ concentrations were positively correlated with those of SO4 2-, NO3 - and organic anions during both dormant and growing seasons. Sources of NO3 - and organic anions within the ecosystem and major external inputs of NO3 - and SO4 2- were critical factors that influenced cation mobility in the forest floor.  相似文献   

11.
为明确不同物种组成和群落结构的河岸林对降雨再分配及其养分特征的影响,于2014年5—10月对辽东山地典型河岸林群落(落叶松林、蒙古栎林和槭树林)大气降雨、穿透雨和树干茎流过程及其水质特征进行研究。结果表明:落叶松林、蒙古栎林和槭树林穿透雨量分别占大气降雨量的81.9%,77.9%,73.1%,树干茎流量分别占大气降雨量的1.2%,4.4%,4.3%。与大气降雨相比,穿透雨和树干茎流中铵态氮、氯离子、硝态氮和总磷的浓度较高,不同林型铵态氮、氯离子、硝态氮和总磷的浓度和输入量差异显著。不同物种组成和群落结构的河岸林通过树木的形态特征及群落的结构特征对降雨进行再分配,通过林冠表层的物理特征、化学特征和生理特性等改变降雨理化性质,加之雨量、雨强的影响共同作用使铵态氮、氯离子、硝态氮和总磷的浓度和输入量发生改变。  相似文献   

12.
A eulerian grid photochemical transport and dispersion model was used to simulate the dry deposition rates of nitrogen (as HNO3) and sulfur (as SO2) in Hiroshima, west Japan. Seasonal patterns of predicted dry deposition fluxes reveal that HNO3 is most prevalent at more remote locations while SO2 is deposited near to and slightly downwind from the major emission sources. The predicted dry deposition rates of HNO3 and SO2 were compared to the values measured at Mt. Gokurakuji (located in Hatsukaichi) and in Hiroshima City. The simulation results show that the model under-predicted (about 44% and 80%, respectively) both nitrogen and sulfur deposition rates at Mt. Gokurakuji and in Hiroshima City, indicating that the acid deposition in Hiroshima prefecture is possibly affected by long-range transboundary transport of acidic pollutants. Comparison of wet to dry deposition ratios (4.5 and 8.7 for nitrogen and 4.6 and 7.0 for sulfur) from the two observation sites above indicates that wet deposition maybe the most important acid deposition pathway in Hiroshima, Japan.  相似文献   

13.
Generally, dry deposition processes are very important for atmospheric chemistry of pollutants providing up to 30–80 % of the removal for certain compounds from the atmosphere. The model for calculating of dry deposition fluxes for a large territory seems unsophisticated in spite of the dependence on surface characteristics, pollutant properties and atmospheric conditions. The approach of combining monthly average concentrations measured at the Integrated Background Monitoring Network (IBMoN) and EMEP stations and linear dry deposition velocity was used to calculate total sulphur and nitrogen fluxes for the whole of the former Soviet Union (FSU) taking into account large-scale geographical variability in climate and lands. Most values of all SO2 and SO4 2? concentrations were below 2.9 and 3.1 mgS/m3, and NO2 concentration were 1.5 mgN/m3 over European part and 0.6 mgN/m3 in Western Siberia. The long-term trends of oxidised sulphur and nitrogen compounds in the atmosphere were examined for 1982–1998 in certain FSU regions. Annual dry deposition of sulphur was estimated as 3.64 Mt S (in sulphate form) and 2.76 Mt S (in SO2 form) for the whole area of FSU. Annual removal of NO2 by dry deposition was calculated at 1.27 Mt N. These values constituted between 44 and 50% of total oxidised sulphur and nitrogen deposition.  相似文献   

14.
In this study of acid depositions to Netherlands forests, measurements of acidifying components in throughfall were compared to estimates derived using the inferential method. Throughfall measurements were corrected for sea salt and other neutral salt deposition as well as for dry deposition of gases and aerosols to open sampler funnels. Corrected throughfall values for SO4, NH4 and total potential acid agreed better than uncorrected with inference estimates; corrections had almost no effect on NO3 values. Although corrected SO4 throughfall values are well correlated (0.82) with inference estimates, they are almost twice as high. For NO3 and NH4 correlation is poor; NO3 throughfall values are about half as high as inference estimates, NH4 inference estimates were higher or lower than corrected throughfall values. There was reasonable agreement between total potential acid deposition values from the two methods.  相似文献   

15.
Temporal trends in sulfate, base cation (Ca2+ + Mg2+ + K+), and H+ ion concentrations in bulk precipitation and throughfall samples collected over a seven year period (1989-95) in four forested catchments in Finland are presented. The catchments are in remote locations and span the boreal zone (61-69 °N). The stands represent old, undisturbed forests, and are composed of varying proportions of Scots pine, Norway spruce and deciduous species (mainly Betula spp.). Monthly SO4 2- and H+ ion concentrations in bulk precipitation averaged over the study period and catchments were: 18.7 µmol L-1 and 32.3 µmol L-1. The corresponding values for throughfall were: 37.4 µmol L-1 and 32.4 µmol L-1. Sulfate and H+ ion concentrations in bulk precipitation and throughfall both showed negative linear trends, which were significant (p < 0.05) for the three southernmost catchments. Concentrations and trend slope decreased northwards (e.g., bulk precipitation SO4 2- slope estimates: -1.6 to -1.0 µmol L-1 yr-1). The decline was greater for throughfall than for bulk precipitation, indicating a proportionally greater reduction in dry deposition than wet. The sum of base cation concentrations averaged 12.1 µmol(+) L-1 in bulk precipitation and 83.1 µmol(+) L-1 in throughfall. There were no significant trends in the sum of base cations (p > 0.05). It is concluded that the reported reduction in S emissions over the study period has resulted in a significant reduction in the acidity and SO4 2- concentration of bulk precipitation, and this reduction has has been reflected in throughfall concentrations. The greatest reduction has taken place in the southern part of the country.  相似文献   

16.
Dise  N.B.  Matzner  E.  Gundersen  P. 《Water, air, and soil pollution》1998,105(1-2):143-154
To investigate which ecosystem parameters determine the risk and magnitude of nitrate leaching we compiled data from published and unpublished sources on dissolved inorganic nitrogen (DIN: NO3 -) in throughfall, DIN leaching loss in runoff or seepage water, and other ecosystem characteristics from 139 European forests. Not all data were available for all sites: 126 sites had at least one year's data on DIN inputs and DIN leaching loss; 40-50 sites had some data on soil chemistry and/or vegetation pools of N. DIN inputs in throughfall range between <1 and about 70 kg N ha-1 yr-1 and the losses with seepage or runoff range between <1 and 50 kg N ha-1 yr-1. Retention of N within the ecosystem increases with increasing DIN deposition and increasing proportion of NH4 + in deposition. The amount of N in needles and litterfall shows a significant linear relationship with throughfall deposition of DIN, whereas the C:N ratio of the organic (OH) horizon is uncorrelated to the level of throughfall-DIN flux. About 50% of the variability in DIN leaching loss can be explained by the flux of DIN in throughfall. Alternatively, about 60% of the variability in DIN leaching loss can be explained in a two-variable multiple regression combining the C:N ratio of the organic soil and the pH of the mineral soil. The survey data suggest that leaching of DIN from forest ecosystems in Europe is related in part to current DIN deposition and in part to the longer-term internal ecosystem N status as reflected in the chemistry of the humus and acidification status of the soil.  相似文献   

17.
One-year field measurements were conducted in a Japanese cedar (Cryptomeria japonica) forest, located in Gunma Prefecture, Japan. On the basis of the meteorological and atmospheric concentration data, the dry deposition of SO2, HNO3, NO2 and HCl was estimated using the inferential method. The annual dry deposition of H+ was estimated at 721 eq ha?1yr?1, which was 40% larger than the measured annual wet deposition of H+ (514 eq ha?1yr?1). Therefore, dry deposition is an important pathway for the atmospheric input of H+ to the forest in the study site. The contribution of each gas to the dry deposition of H+ was as follows: SO2, 25%; HNO3, 32%; NO2, 10%; and HCl, 33%. The extremely high contribution of HCl appeared to be caused by the high emission intensity of HCl due to waste incineration in the site region. The differences between estimated deposition and throughfall and stemflow measurements indicated that about 80% of the total deposition of H+ was taken up by the canopy.  相似文献   

18.
The study covers 1991–1994 concentrations of SO2 and NO2 in the air, concentrations of sulphur and nitrogen in bulk precipitation, throughfall and stemflow as well as input of S and N to the Ratanica forested catchment (S. Poland), which is exposed to moderate anthropogenic pollution are presented. There was high input of sulphur (26 kg ha?1) and nitrogen (24 kg ha?1) to the catchment, mainly in NH4+ (18 kg ha?1). The significant contribution of NH4 + connected with intensive agriculture in surrounding fields has led to eutrophication of the ecosystem.  相似文献   

19.
The responses of nitrogen transformations and nitrate (NO_3 -) leaching to experimentally increased N deposition were studied in forested sub-catchments (1500 m2) with Gleysols in Central Switzerland. The aim was toinvestigate whether the increase in NO3 - leaching,due to elevated N deposition, was hydrologically driven orresulted from N saturation of the forest ecosystem.Three years of continuous N addition at a rate of 30 kgNH4NO3-N ha-1 yr-1 had no effects on bulksoil N, on microbial biomass N, on K2SO4-extractableN concentrations in the soil, and on net nitrification rates.In contrast, N losses from the ecosystem through denitrification and NO3 - leaching increased significantly. Nitrate leaching was 4 kg N ha-1yr-1at an ambient N deposition of 18 kg N ha-1 yr-1.Leaching of NO3 - at elevated N deposition was 8 kg Nha-1 yr-1. Highest NO3 - leaching occurredduring snowmelt. Ammonium was effectively retained within theuppermost centimetres of the soil as shown by the absence ofNH4 + in the soil solution collected with microsuction cups. Quantifying the N fluxes indicated that 80% ofthe added N were retained in the forest ecosystem.Discharge and NO3 - concentrations of the outflow from the sub-catchments responded to rainfall within 30 min. The water chemistry of the sub-catchment outflow showed thatduring storms, a large part of the runoff from this Gleysol derived from precipitation and from water which had interactedonly with the topsoil. This suggests a dominance of near-surface flow and/or preferential transport through this soil. The contact time of the water with the soil matrix wassufficient to retain NH4 +, but insufficient for a complete retention of NO3 -. At this site with soilsclose to water saturation, the increase in NO3 - leaching by 4 kg N ha-1 yr-1 through elevated N inputsappeared to be due to the bypassing of the soil and the rootsystem rather than to a soil-internal N surplus.  相似文献   

20.
Long-term study on acid precipitation monitoring at suburban forests in Sapporo city showed that bulk precipitation pH were below 4.8 in recent years. Throughfall and stemflow chemistry for two main coniferous species (Abies sachalinensis and Picea jezoensis) showed different regime for pH and element deposition. The mean annual pH values of throughfall and stemflow in Picea stand were 1.0 to 1.3 units higher than that of rain collected outside the forest. In contrast, mean annual pH of throughfall and stemflow in Abies stand were 0.3 to 0.5 units higher than that of rain. Mean annual inorganic nitrogen input via throughfall and stemflow were estimated 0.41±0.11 gN/m2/yr in Abies stand, 0.44±0.13 gN/m2/yr in Picea stand. Cation input via throughfall, especially for K, in Picea stand was 1.4 times as large as that in Abies stand. Mean annual input of S in both stands was the same level. The possible effects on surface soil properties and nutrient cycling in northern evergreen conifers was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号