首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
【目的】针对传统点云配准方法准确率低、速度慢等问题,以油菜Brassica napus L.分枝点云为研究对象,提出基于ISS-LCG组合特征点的配准方法。【方法】以成熟期油菜角果分枝点云为对象,去除背景噪声后,得到清晰完整的油菜分枝点云;然后通过内部形状描述子(Intrinsic shape signature,ISS)提取油菜分枝点云的特征点,再使用线性同余法(Linear congruential generator,LCG)伪随机选取油菜点云的部分点构成关键点,将特征点和关键点进行融合,构成ISS-LCG组合特征点;通过三维形状上下文特征(3D shape context,3DSC)对组合特征点进行特征描述,最后采用RANSAC+ICP两步点云配准法进行点云配准。【结果】基于ISS-LCG组合特征点的点云配准算法以30°为间隔对点云进行两两配准时,配准效果最佳,配准误差约0.066 mm,配准精度比未采用组合特征点的配准方法提升了50%~70%;配准时间均小于48 s,平均配准时间为8.706 s。【结论】该方法在可控环境内可以实现成熟期油菜植株高精度、高效率的自动配准。  相似文献   

2.
为了提高海量林地三维点云数据配准的效率和精度,提出了一种基于快速点特征直方图(fast point feature histograms,FPFH)初始匹配与正态分布变换(normal distributions transform,NDT)精确配准相结合的配准算法。首先计算2个待配准点云的法向量,再使用k-d树结构对点云的FPFH特征进行加速计算。然后,根据2个点云相似的FPFH特征,使用采样一致性初始配准算法(sample consensus initial alignment,SAC-IA)求解初始变换矩阵、完成初始配准。最后,用DNT算法对点云体素化,并使用点云密度概率分布函数进行点云数据的精确配准。结果表明,FPFH-NDT算法的平均配准误差(相应点对的平均距离)为0.032 3 m,运行时间为256.376 s;在0.05~0.1 m的点云采样阈值范围内,FPFH-NDT算法的配准误差基本不受采样阈值变化的影响,其值稳定在0.03 m左右;当采样阈值>0.1 m时,配准误差随采样阈值的增大而增大;算法的配准时间整体上随点云采样阈值增大而减少。传统ICP算法的平均配准误差和时间分别为 0.526 3 m 和14.5 s;FPFH-ICP算法的平均配准误差和时间分别为0.042 5 m和289.346 s。FPFH-NDT算法与传统ICP算法相比在配准精度上有了很大的提高,与FPFH-ICP算法相比,在保证点云的配准精度的基础上,FPFH-NDT算法降低了算法的运行时间,提高了点云配准效率。  相似文献   

3.
提高植物三维点云模型重建时的准确性与完整性,是精准获取植物表型参数的关键所在。目前大多数三维重建方法只能从某一方向对目标物体进行重建,缺乏完整的三维重建过程。为了解决此问题,本研究提出了一种基于多视角图像序列的玉米双面配准的三维重建方法,通过安装在图像采集平台上下侧的RGB相机来获取玉米不同视角的图像序列,基于SfM算法获取玉米的三维点云模型后使用点云颜色滤波算法进行预处理。通过交互式选点测量方法得到玉米点云的空间坐标后基于欧式距离算法计算20组玉米的株高、叶长、叶宽等表型参数,与对应的手动测量结果相比,决定系数r2依次为0.973 6、0.969 1、0.915 0,结果表明两者间显著相关。之后对标记物使用4PCS和PCA算法进行粗配准,结果表明采用4PCS具有更好的粗配准效果。最后采用ICP算法进行标记物的精配准,得到变换矩阵后将其应用于玉米点云,即完成了玉米点云的双面配准。由玉米点云的配准精度均方根值(RMS)可知,当点云重叠度设置为90%时,RMS值较小,玉米点云配准的精度更高,可达到较好的配准效果。总之,本研究所提的配准方法可以拼接和重建出结构更加完整的...  相似文献   

4.
基于改进区域生长法的羊体点云分割及体尺参数测量   总被引:1,自引:0,他引:1  
针对传统羊体尺测量中测量耗时、应激大的问题,采用主成分分析、随机采样一致性算法和改进的区域生长法,基于三维点云对羊体尺参数测量进行研究。结果表明:1)使用主成分分析和随机采样一致性算法能计算羊体点云的法向量和曲率;2)改进的区域生长法能准确地分割出羊体区域,并且避免了外点的干扰;3)在羊体点云数据上选取体尺测点,计算羊体长、体高、臀高、胸深体尺参数,并与实测值比较,4种体尺参数的最大相对误差为2.36%,测量精度较高。试验证明改进的区域生长法能准确地对羊体点云进行分割,依据选取的体尺测点,能够实现羊体尺参数的无接触测量。  相似文献   

5.
为解决传统奶牛体型评定指标测量方法受主观影响大、自动化程度以及体型关键点定位存在误差等问题,提出一种基于两阶段关键点定位算法的奶牛体型评定指标自动测量方法。对采集的奶牛背部深度图像序列,首先基于滤波方法进行边缘平滑与缺失区域修补;之后基于YOLO v5体型关键区域检测算法确定体型关键区域并重建相关区域三维点云;进而计算区域点云曲率与z轴最值定位体型关键点;最后依据关键点间相对位置自动测得体型评定指标。结果表明,该方法可完成俯视视角下奶牛体长、肩宽、胸宽、腹宽和腰宽指标的精准测量。对15头奶牛5个体型评定指标,算法测量值与实测值平均绝对误差为1.55 cm,均方根误差为1.78 cm,决定系数R2最大为0.9394。该方法可在实际养殖环境下实现奶牛体型评定指标的精准测量,对生产实际具有一定现实意义。  相似文献   

6.
针对显微镜观测视野狭小而难以采集到全局图像的问题,提出了一种基于加速鲁棒特征(SURF)的木材显微图像自动配准方法.首先使用SURF检测并描述兴趣点,通过最近邻匹配得到匹配点对后,用双向匹配和RANSAC算法剔除错误匹配.然后利用最小二乘法和匹配结果进行模型参数估计,最后通过插值获得配准图像.对阔叶材显微图像配准实验结果表明,该方法具有较好的鲁棒性,无论图像是否有旋转,都可以实现自动的配准.比起尺度不变特征转换(SWT),由于用SURF得到的兴趣点数量更少,运算速度更快,总的匹配速度提升了5倍左右,缩短了整个配准过程的时间,算法更具有实时性.  相似文献   

7.
为了更好地建立单木三维彩色模型,获得准确表型参数,提出了一种基于Kinect v2相机和激光雷达的单木点云信息融合检测方法。首先由激光雷达采集樱树单木所在区域的完整环境点云,生成点云地图;由Kinect相机采集樱树单木多视角点云得到完整的三维彩色点云;然后以激光雷达点云位置为基准,通过选取对应同名点的方式对2种点云进行初始配准,使点云之间具有良好的初始位置关系,再使用最近点迭代(iterative closest point, ICP)算法对点云进行精配准;最后使用彩色点云对雷达点云进行点云着色融合处理,实现樱树单木的三维重建。结果显示:与只使用Kinect v2相机生成的樱树单木表型参数对比,融合后的樱树单木的株高、冠幅和胸径的平均相对误差分别降低了1.52、6.46和18.17个百分点。研究结果表明,Kinect v2深度彩色相机和激光雷达在单木三维重建上能实现优势互补,提升点云配准精度,同时,既能降低光照气候条件的影响,又能增加测量距离,单木表型参数更准确。  相似文献   

8.
针对传统的三维重建方法既费时又费力、准确性低等,只能获取一些特征点和线性数据。本文在三维激光扫描点云的基础上,提出了一种结合ISS算法和CPD算法用于建筑物LiDAR点云配准。通过ISS算法提取点云数据的特征点,并通过CPD算法对这些特征点进行配准。并通过实验对该算法的有效性进行验证。结果表明,改进算法简单有效,提高了运算效率。该研究为我国三维激光点云数据的三维重建技术发展提供了参考和借鉴。  相似文献   

9.
为实现低成本无损精确测量植株叶片面积,提出了一种基于TOF深度相机的植株叶片三维重建测量面积的方法。首先,采用Kinect v2相机获取植株三维点云数据;其次,通过背景差法去除背景点云、通过基于搜索半径和邻域内点云数相结合法去除离群点,实现点云预处理;然后采用FPFH特征初始配准和ICP算法精确配准16个角度点云,通过欧氏聚类实现植株叶片分割;最后采用滚球算法重建叶片表面网格模型,统计网格数量求得叶片面积。与传统坐标纸法比较,本研究方法测量叶片面积误差平均百分比为2.54%,试验结果表明,本方法成本低精确度高,可以满足植株叶片面积的无损测量需求。  相似文献   

10.
针对具有颜色信息的大豆冠层三维结构形态的重建问题,采用PMD摄像机与彩色摄像机相结合的多源图像采集系统获取大豆冠层多源图像,对大豆冠层多源图像特征点配准方法进行研究。以彩色图像和强度图像为研究对象,利用仿射变换实现彩色图像坐标系到PMD图像坐标系的转换;利用Harris算法检测图像特征点,采用基于归一化互相关系数法(NCC)实现特征点粗匹配。为克服传统RANSAC算法抽样次数较多及和数据检验时间较长的弊端,提出在特征点匹配阶段,按照可信度将特征点对排序,从可信度高的点对开始抽取的方法来优化经典RANSAC算法,进而实现特征点精匹配,最终完成多源图像特征点配准。为验证本研究提出的图像配准算法的有效性,将该算法与传统图像配准算法相对比,结果表明:室外和室内环境下,样本组的平准正确配准率分别为83%和87%,均优于传统图像配准算法,并满足快速配准大豆冠层多源图像特征点的要求。  相似文献   

11.
【目的】准确获取温室番茄作物行中单株冠层数据,为分析作物生长状态和为对靶喷药提供冠层数据支持。【方法】采用三维激光雷达(LiDAR)搭建番茄植株冠层检测平台,使用导轨以0.05 m/s的速度移动三维激光雷达,利用雷达上位机软件Ctrlview保存双侧扫描的A、B 2组共40株番茄植株点云。双侧点云使用ICP(迭代最近点)算法进行配准,利用基于特征值的平面拟合法去除地面,使用均值漂移算法(Meanshift)分割番茄行中的单株点云,获取冠层参数,与人工测量值比较验证精度,将单株点云在MATLAB中使用alpha shape算法进行重建并进行体积的获取,使用凸包算法作物参考值对比。【结果】该检测平台在激光雷达前进方向与垂直前进方向的测量误差分别为-2.65%、-3.95%;获取到的单株番茄植株高度与人工测量值相比,平均绝对误差分别为0.025和0.031 m;重建后求取的体积与凸包算法相比平均误差下降了约15.3%,与人工获取相比相差不大,各指标良好。【结论】番茄行点云分割结果与人工测量相比A、B 2组的均方根误差RMSE分别为0.039和0.043,冠层体积获取与参考值对比VRMSE为0.011 3,激光雷达在获取作物外形轮廓信息中具有一定的准确性和可靠性,该方法用于温室环境下单株作物冠层数据的获取。  相似文献   

12.
对基于标签法和迭代最近点(Iterative closest point,ICP)算法相结合的点云拼接方法进行了研究.通过在物体上贴标志点来获取点云间的初始匹配关系,根据距离约束原理来选取匹配点,运用最小距离和角度位姿约束排除错误匹配点完成粗拼接;然后通过改进的ICP算法实现精确拼接.试验结果表明该方法简单可靠,具有较高的拼接精度.  相似文献   

13.
针对林下环境几何特征的复杂性,以及基于边检测、表面增长和聚类分割方法存在的效率低、分割不足及过度分割等问题,提出了一种基于特征融合的点云分割方法。采用地面激光扫描仪FARO在北京林业大学选择样本区域进行扫描,对扫描得到的数据进行采样点剔除及滤波,得到由1166302个点组成的林下环境点云数据,主要包括林木、地面、石块、人4类目标。综合利用点云法向量信息和激光反射强度信息可实现点云分割。其中,点云激光反射强度可直接从扫描得到的点云数据中获取;法向量可根据点云数据的三维坐标信息,通过对点云数据建立kd-tree数据结构,执行k-邻域搜索,并基于PlanePCA算法计算得到。将点云法向量和激光反射强度2方面的特征优势进行融合,计算中心点与邻域点的综合相异度,并判断其是否在阈值范围内,最终实现点云分割。比较基于特征融合、法向量和激光反射强度3种聚类分割方法得到的分割结果可知,基于特征融合的聚类分割方法能较好地保留数据特征,且分割完整度明显优于其他2种方法。   相似文献   

14.
针对传统森林资源调查方法获取单木结构参数效率低和成本高的问题,提出一种基于SFM算法的单木结构参数快速提取方法。以哈尔滨市城市林业示范基地树木为研究对象,利用SFM算法获得单木照片的三维点云,并利用点云数据处理软件对获得的点云数据进行单木结构参数提取,最后与实测参数进行对比分析。结果表明:1)分别利用SIFT算法、SURF算法以及ORB算法对相机校检后的树木照片进行特征点提取匹配,特征点正确匹配个数分别为23、145以及25,相应的耗时分别为18.56、16.04、1.58 s;2)利用SFM算法能获得树木照片的稀疏点云和稠密点云,平均每棵树木点云量为80万个;3)基于点云数据提取单木结构参数的胸径、树高及冠幅的平均绝对误差分别为1.79 cm、0.77 m及0.79 m;胸径、树高、冠幅的提取值与实测值相关系数均>0.94。  相似文献   

15.
为给果园精细管理中果树修枝整形、果实品质评价以及果实产量估算等提供科学的理论依据和技术指导,以果园自然开心形苹果树为研究对象,基于果树三维点云结构,进行果树冠层空间光照分布建模研究。用三维点云重构技术和点云分割技术获取果树不同高度的点云分层,分别使用像素占比和Graham扫描算法计算各高度点云分层垂直投影的有效投影面积和占地面积及有效叶面积指数。以果树冠层不同高度层的有效叶面积指数为自变量,对不同高度层平均相对光照强度进行线性回归,获得果树冠层光照分布模型,并对模型进行验证。结果表明:所建果树冠层光照分布模型的校正决定系数R2c为0.924,校正均方根误差RMSEC为0.05,验证决定系数R2v为0.955,验证均方根误差RMSEP为0.04,相对分析误差RPD为4.91。该模型具有较高的预测精度和较强的预测能力。  相似文献   

16.
利用无人机高分辨率影像进行树木高度提取   总被引:7,自引:0,他引:7  
无人机遥感技术在树木参数获取中具有重要作用。为探讨利用无人机高分辨率影像提取树高的可行性,本文选择邱集煤矿矿区森林公园为研究区,采用Pix4D软件对无人机采集的高分辨率影像进行处理,生成研究区正射影像和三维点云;利用最大类间方差法将三维点云分割为树木点云及树下地面点云两部分,由此提取树木顶端高度和地面平均高度,并将地面平均高度视为树木根部的高度,得到树木高度。研究表明:最大类间方差法能够准确分割树木点云和地面点云;利用无人机高分辨率影像进行树高提取是可行的,树木高度测量绝对误差小于80cm、相对误差绝对值最大为16.2%、标准误差为36.3cm;同时,树冠的形状会对树高测量造成影响,阔卵形树冠的法国梧桐和圆锥形树冠的圆柏高度标准误差分别为29.2和50.9cm,两者树高测量值与真实值决定系数分别为0.9920和0.8894,阔卵形树冠的法国梧桐测高精度明显高于圆锥形树冠的圆柏测高精度。   相似文献   

17.
目的 针对玉米田间路径边界模糊和形状不规则特点,普通的田间导航线提取算法在农业机器人实际应用中会出现偏差过大的问题,本文针对3~5叶期玉米田提出了基于离散因子的相机与三维激光雷达融合的导航线提取算法。方法 首先利用三维激光雷达获取玉米植株点云数据,同时将相机采集的图像利用超绿化算法和最大类间方差法自动获得绿色特征二值图像,然后将聚类分析后的点云数据投影到图像中的目标边框上,构建多传感器数据融合支持度模型进行特征识别,最后拟合所获取特征中心点即为导航基准线。结果 该算法能够很好地适应复杂环境,具有很强的抗干扰能力,单帧平均处理时间仅为95.62 ms,正确率高达95.33%。结论 该算法解决了传统算法寻找特征质心偏移、识别结果不可靠等问题,为机器人在玉米田间行走提供了可靠的、实时的导航路径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号