首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bread wheat (Triticum aestivum L.) is one of the most important staple crops worldwide. The phytohormone auxin plays critical roles in the regulation of plant growth and development. However, only a few auxin-related genes have been genetically demonstrated to be involved in the control of plant architecture in wheat thus far. In this study, we characterized an auxin-related gene in wheat, TaIAA15, and found that its ectopic expression in rice decreased the plant height and increased the leaf angle. Correlation analysis indicated that TaIAA15-3B was associated with plant height (Ph), spike length (SL) and 1 000-grain weight (TGW) in wheat, and Hap-II of TaIAA15-3B was the most favored allele and selected by modern breeding in China. This study sheds light on the role of auxin signaling on wheat plant architecture as well as yield related traits.  相似文献   

2.
Stress associated proteins(SAPs) are the A20/AN1 zinc-finger proteins which confer to abiotic stresses in plants. In this study, TaSAP7-B, including two AN1 domains, was isolated from B genome of wheat(Triticum aestivum L.). Sequencing analysis on TaSAP7-B illustrated one In Del(insertion-deletion) and one SNP(single nucleotide polymorphism) in the promoter region while no diversity was observed in the coding region. On the basis of SNP in the promoter region(–260 bp), a dCAPS(derived cleaved amplified polymorphic sequences) marker SNP-260 was developed for TaSAP7-B. Using a natural population consisting of 262 wheat accessions, significant associations were detected between the marker SNP-260 and agronomic traits, such as plant height(PH), peduncle length(PL), length of penultimate internode(LPI), number of spike per plant(NSP), and 1 000-grain weight(TGW). Two genotypes were identified using marker SNP-260 in the natural population. Among them, the genotypes possessing C allele exhibited a higher TGW and shorter PH than the T genotypes. Hence, base C was considered as the superior allele. The dCAPS marker of TaSAP7-B can be instrumental for marker-assisted selection for high grain size and short plant height.  相似文献   

3.
Stress-associated protein (SAP) has functions in maintaining plant cell elongation, embryo development and response to abiotic stresses. TaSAP1-A1, one of the Triticum aestivum SAP1 (TaSAP1) members located on wheat chromosome 7A was isolated for polymorphism analysis. HapIII of TaSAP1-A1 was found significantly associated with thousand-grain weight (TGW) in multiple environments. In this study, HapIII also made a positive contribution to TGW in Population 2. The distribution of TaSAP1-A1 HapIII was tracked among varieties released in different years and geographical environments of China. The frequency of HapIII showed an increasing trend during the breeding process in two different populations. The HapIII was gradually selected and applied from 6.36% in landraces to 13.50% in modern varieties. These results exhibited that TaSAP1-A1 HapIII was positively selected during wheat breeding, which is beneficial for grain-yield improvement. The preferred HapIII was initially selected and applied in the higher latitude areas of China in accord with the long day season and longer grain filling stage in these areas. Moreover, the frequency of HapIII in recent modern varieties was still quite low (19.29–26.67%). It indicated a high application potential of TaSAP1-A1 HapIII for improving grain yield in wheat breeding.  相似文献   

4.
ABA receptors (PYR/PYL/RCAR) play a central role in the water loss control of plants. A previous report indicated that TaPYL4 is a critical gene in wheat that improves grain production under drought conditions and increases water use efficiency. In this study, we analyzed the sequence polymorphisms and genetic effects of TaPYL4s. Based on isolated TaPYL4 genes from chromosomes 2A, 2B and 2D, three haplotypes were detected in the promoter region of TaPYL4-2A, and two haplotypes were present in TaPYL4-2B and TaPYL4-2D, respectively. Marker/trait association analysis indicated that TaPYL4-2A was significantly associated with plant height in 262 Chinese wheat core collection accessions, as well as the drought tolerance coefficient (DTC) for plant height in 239 wheat varieties from Shanxi Province in multiple environments. However, the frequencies of favored drought-tolerant haplotype TaPYL4-2A-Hap2 were considerably low, accounting for only 10%, and lines with this certain Hap could be reserved in the breeding program. TaPYL4-2B was significantly associated with grain number, and the favored haplotype TaPYL4-2B-Hap1 was the dominant allele of above 90% in the collection. For TaPYL4-2D, there were no significant differences in these traits between the two haplotypes in either of the two panels. These results indicate that variation might lead to functional differentiation among the homoeologs and the haplotypes had undergone artificial selection during breeding. Two molecular markers developed to distinguish these haplotypes could be used for breeding in water-limited regions.  相似文献   

5.
The stress-associated protein (SAP) multigene family is conserved in both animals and plants. Its function in some animals and plants are known, but it is yet to be deciphered in wheat (Triticum aestivum L.). We identified the wheat gene TaSAP17-D, a member of the SAP gene family with an AN1/AN1 conserved domain. Subcellular localization indicated that TaSAP17-D localized to the nucleus, cytoplasm, and cell membrane. Expression pattern analyses revealed that TaSAP17-D was highly expressed in seedlings and was involved in NaCl response, polyethylene glycol (PEG), cold, and exogenous abscisic acid (ABA). Constitutive expression of TaSAP17-D in transgenic Arabidopsis resulted in enhanced tolerance to salt stress, confirmed by improved multiple physiological indices and significantly upregulated marker genes related to salt stress response. Our results suggest that TaSAP17-D is a candidate gene that can be used to protect crop plants from salt stress.  相似文献   

6.
OVATE family proteins (OFPs) are plant-specific proteins with a conserved OVATE domain that regulate plant growth and development. Although OFPs have been studied in several species, their biological functions remain largely unknown in cucumber (Cucumis sativus L.). This study identified 19 CsOFPs distributed on seven chromosomes in cucumber. Most CsOFP genes were expressed in reproductive organs, but with different expression patterns. Ectopic expression of CsOFP12-16c in Arabidopsis resulted in shorter and blunt siliques. The overall results indicated that CsOFP12-16c regulates silique development in Arabidopsis and may have a similar function in cucumber.  相似文献   

7.
禾谷类作物的比较基因组研究   总被引:3,自引:0,他引:3  
 水稻是基因组最小的禾谷类作物,饱和遗传连锁图谱的构建,以及在此基础上开展的标记辅助选择和抗病基因克隆,表明水稻基因组研究已经领先于其他禾谷类作物。比较基因组研究表明:小麦、玉米、高粱、谷子和甘蔗的基因组均可由水稻染色体区段重新排列而成,这些区段上DNA标记的排列顺序在各个种之间保留。各种作物基因组大小的差异可能由于各个区段内基因间重复顺序扩增的程度不同所致。根据这些区段在各种作物染色体的排列顺序,有人提出根据水稻染色体区段排列单个原始禾谷类染色体的设想,为深入研究禾谷类作物的进化遗传提出了全新的思路。禾谷类作物基因组之间的共线性有利于在小基因组内克隆大基因组作物的同源基因,使生物技术在作物育种中发挥更大的作用。  相似文献   

8.
《农业科学学报》2019,18(11):2483-2491
Genetic diversity is the base of any genetic improvement breeding program aimed at stress breeding. The variability among breeding materials is of primary importance in the achievements of a good crop production. Herein, 105 wheat genotypes were screened against drought stress using factorial completely randomized design at seedling stage to determine the genetic diversity and traits association conferring drought tolerance. Analysis of variances revealed that all the studied parameters differed significantly among all genotypes, indicating the significance genetic variability existed among all genotypes for studied indices. The 10 best performance genotypes G1, G6, G11, G16, G21, G26, G39, G44, G51, and G61 were screened as drought tolerant, while five lowest performance genotypes G3, G77, G91, G98, and G105 were screened as drought susceptible. Root length, chlorophyll a, chlorophyll b, and carotenoid contents were significantly correlated among themselves which exhibited the importance of these indices for rainfed areas in future wheat breeding scheme. Shoot length exhibited non-significant and negative association with other studied traits, and its selection seems not to be a promising criteria for this germplasm for drought stress. Best performance genotypes under drought stress conditions will be useful in future wheat breeding program and early selection will be effective for developing high yielding and drought tolerant wheat varieties.  相似文献   

9.
10.
Stem lignin content(SLC) in common wheat(Triticum aestivum L.) contributes to lodging resistance. Caffeic acid 3-O-methyltransferase(COMT) is a key enzyme involved in lignin biosynthesis. Characterization of TaCOMT genes and development of gene-specific markers could enable marker-assisted selection in wheat breeding. In the present study, the full-length genomic DNA(gDNA) sequences of TaCOMT genes located on chromosomes 3 A, 3 B, and 3 D were cloned by homologous cloning. Two allelic variants, TaCOMT-3 Ba and TaCOMT-3 Bb, were identified and differed by a 222-bp insertion/deletion(InDel) in the 3′-untranslated region(3′-UTR). A co-dominant gene-specific marker based on this InDel was developed and designated as Ta COMT-3 BM. A total of 157 wheat cultivars and advanced lines grown in four environments were used to validate the associations between allelic patterns and SLC. The SLC of cultivars with TaCOMT-3 Ba was significantly(P0.01) higher than that of those with TaCOMT-3 Bb, and the marker TaCOMT-3 BM could be effectively used in wheat breeding.  相似文献   

11.
【Objective】 High-throughput evaluation of winter and spring wheat accessions for heat tolerance via heat susceptibility index (HSI) could provide the potentially superior accessions for heat-tolerant breeding programs. 【Method】 In order to expose plants to high temperatures during grain filling period, winter wheat accessions were sown in normal and late seasons, and spring wheat accessions were sown in different geographical environments with contrasting temperatures. The thousand grain weight (TGW) of winter and spring wheat accessions were measured under normal and heat stress environments, respectively. HSI was calculated from the TGW data of two different conditions. Using heat susceptibility index, 1 325 wheat germplasms from different wheat ecological zones of China, and international areas and organizations, including 688 winter wheat accessions and 637 spring wheat accessions, were evaluated for heat tolerance. Genotypes were classified into four tolerant grades, i.e. highly heat-tolerant (HSI<0.50), medium heat-tolerant (0.5≤HSI<1), medium heat-susceptible (1≤HSI<1.5) and highly heat-susceptible (HSI>1.5). 【Result】 The average maximum temperature at grain filling stage under heat stress condition was higher than that of the controls by 1.91℃ for winter wheat and 7.09℃ for spring wheat, respectively. TGW under heat stress condition was significantly lower than that of the corresponding control. According to the grading evaluation results of HSI, thirty-one and 48 highly heat-tolerant winter and spring wheat accessions accounted for 4.51% and 7.54% of the test materials, 19 and 58 highly heat-susceptible winter and spring wheat accessions accounted for 2.76% and 9.11% of the tested materials, and the rest were medium germplasms (medium heat-tolerant and medium heat-susceptible). According to the geographical distribution of wheat ecological regions, winter wheat from the southern wheat region (Southwestern Winter Wheat Zone, Qinghai Tibetan Plateau Spring and Winter Wheat Zone, and Middle and Lower Yangtze Valley Winter Wheat Zone) were more tolerant than that from northern wheat region (Northern Winter Wheat Zone, and Yellow and Huai River Winter Wheat Zone). For spring wheat, the average HSI of accessions from Xinjiang Spring and Winter Wheat Zone was 0.70, which was the most heat-tolerant, and 88.00% of the accessions belong to heat-tolerant (highly heat-tolerant or medium heat-tolerant) germplasms. In addition, the average HSI of spring wheat from the International Center for Agricultural Research in the Dry Areas (ICARDA) with 0.88 showed heat-tolerant. The synthetic hexaploid wheats from CIMMYT had the weakest heat tolerance, with an average HSI of 1.18, of which 69.58% were heat-susceptible germplasms (medium heat-susceptible and highly heat-susceptible). 【Conclusion】 Delayed sowing or planting in environment with high temperatures can make wheat encounter high temperature stress at grain filling stage. High-throughput method based on the HSI of TGW was performed to evaluate heat tolerance of 1 325 winter and spring wheat germplasms. Overall, one hundred and three heat-tolerant germplasms with high yield potential were identified, which could be used as parents developing heat-tolerant wheat varieties.  相似文献   

12.
【目的】利用热感指数作为耐热性鉴定指标,分别对冬、春小麦种质资源进行高通量耐热性鉴定,筛选耐热种质资源,为小麦耐热性育种提供材料基础。【方法】冬小麦材料采用延期播种、春小麦材料种植在温度有显著差异的地理环境下,人为致使小麦灌浆期遭遇高温胁迫。根据不同环境处理的千粒重值计算冬、春小麦各个材料的热感指数。依据热感指数,对来自中国不同小麦生态区和国外不同地区和组织的1 325份小麦种质资源,包括688份冬小麦和637份春小麦,分别进行耐热性评价。热感指数小于0.5为极耐热材料、大于等于0.5小于1为中等耐热材料、大于等于1小于1.5为中等热敏感材料、大于等于1.5为极敏感材料。【结果】冬小麦和春小麦热胁迫处理组灌浆期平均最高温度分别高于对照组1.91℃和7.09℃,且热胁迫处理组千粒重与对照组相比均有显著降低。根据热感指数分级评价结果,极耐热冬、春小麦材料31和48份,占供试材料的4.51%和7.54%;极敏感冬、春小麦材料19和58份,占供试材料的2.76%和9.11%;其余大多数材料为中间类型(中等耐热材料和中等热敏感材料)。从中国小麦生态区域的地理分布来看,来自南部麦区(西南冬麦区、青藏春冬麦区、长江中下游冬麦区)的冬小麦材料耐热性整体高于来自北部麦区(北部冬麦区、黄淮冬麦区)的冬小麦材料。对于春小麦,来自新疆春冬麦区的材料耐热性最强,平均热感指数为0.70,且其中88.00%的材料属于耐热材料(极耐热材料或中等耐热材料);此外,来自国际干旱地区农业研究中心的春小麦平均热感指数为0.88,也表现出较强的耐热性。来自CIMMYT的人工合成六倍体材料耐热性最弱,平均HSI为1.18,其中69.58%的材料为热敏感材料(中等热敏感材料和极敏感材料)。【结论】采用延期播种或在高温的地理环境下种植能使小麦在灌浆期遭遇高温胁迫。以千粒重热感指数作为评价指标,对1 325份小麦种质资源进行高通量耐热性鉴定,综合考虑正常条件下的产量潜力和高温条件下的耐热性,筛选出优异耐热资源103份,可用于相应生态区小麦的耐热性遗传改良。  相似文献   

13.
14.
Fructans are major nonstructural carbohydrates in wheat(Triticum aestivum L.). Fructan 1-fructosyltransferase(1-FFT)is the key enzyme in fructan biosynthesis. In the present study,96 sequence variants were detected in the 1-FFT-A1 gene among 26 wheat accessions including UR208,and 15 of them result in amino acid substitutions,forming four haplotypes. Two markers M39 and M2164 were developed based on the In Del21-39 and SNP-2164 polymorphisms to distinguish the three haplotypes in the 1-FFT-A1. 1-FFT-A1 was located on chromosome 4A using marker M2164 and was flanked by markers Xcwm27 and 6-SFT-A1. By association analysis using a natural wheat population consisted of 154 accessions,the results showed that the two markers were significantly associated with water-soluble carbohydrate(WSC)content in the lower internode stem and total stem at the early and middle grain filling stages,1000-grain weight(TGW)at different grain filling stages and peduncle length(PLE). Comparison of the effects of three haplotypes on agronomic traits indicated that TGW,PLE and total number of spikelets per spike(TNSS)were significantly influenced by haplotypes. HapIII showed a significant positive effect on TGW,PLE and TNSS.  相似文献   

15.
《农业科学学报》2023,22(7):2248-2270
The accurate and rapid estimation of canopy nitrogen content (CNC) in crops is the key to optimizing in-season nitrogen fertilizer application in precision agriculture. However, the determination of CNC from field sampling data for leaf area index (LAI), canopy photosynthetic pigments (CPP; including chlorophyll a, chlorophyll b and carotenoids) and leaf nitrogen concentration (LNC) can be time-consuming and costly. Here we evaluated the use of high-precision unmanned aerial vehicle (UAV) multispectral imagery for estimating the LAI, CPP and CNC of winter wheat over the whole growth period. A total of 23 spectral features (SFs; five original spectrum bands, 17 vegetation indices and the gray scale of the RGB image) and eight texture features (TFs; contrast, entropy, variance, mean, homogeneity, dissimilarity, second moment, and correlation) were selected as inputs for the models. Six machine learning methods, i.e., multiple stepwise regression (MSR), support vector regression (SVR), gradient boosting decision tree (GBDT), Gaussian process regression (GPR), back propagation neural network (BPNN) and radial basis function neural network (RBFNN), were compared for the retrieval of winter wheat LAI, CPP and CNC values, and a double-layer model was proposed for estimating CNC based on LAI and CPP. The results showed that the inversion of winter wheat LAI, CPP and CNC by the combination of SFs+TFs greatly improved the estimation accuracy compared with that by using only the SFs. The RBFNN and BPNN models outperformed the other machine learning models in estimating winter wheat LAI, CPP and CNC. The proposed double-layer models (R2=0.67–0.89, RMSE=13.63–23.71 mg g–1, MAE=10.75–17.59 mg g–1) performed better than the direct inversion models (R2=0.61–0.80, RMSE=18.01–25.12 mg g–1, MAE=12.96–18.88 mg g–1) in estimating winter wheat CNC. The best winter wheat CNC accuracy was obtained by the double-layer RBFNN model with SFs+TFs as inputs (R2=0.89, RMSE=13.63 mg g–1, MAE=10.75 mg g–1). The results of this study can provide guidance for the accurate and rapid determination of winter wheat canopy nitrogen content in the field.  相似文献   

16.
小麦是世界上第二大粮食作物,对我国粮食供给起到举足轻重的作用。但目前高产、抗病及抗逆性强的小麦品种较少,使小麦的生产受到一定制约。挖掘优异遗传资源,培育高产、优质、抗逆性强的小麦品种是小麦育种的重要任务。粗山羊草是小麦D基因组的供体,蕴含着大量抗病、抗虫、抗逆和改良小麦品质的基因。为挖掘其优异基因用于小麦育种,丰富小麦的遗传资源,对小麦育种工作起到推动或借鉴作用,对粗山羊草在分子水平和抗病、抗虫、抗逆方面的研究进展进行综述,介绍了在储藏蛋白方面的研究情况,以及粗山羊草在小麦育种上的应用。  相似文献   

17.
小麦转录因子基因W16的功能标记作图和关联分析   总被引:1,自引:1,他引:0  
【目的】开发小麦DREB转录因子基因W16的功能标记,进行遗传作图,并结合表型性状关联分析,为利用分子标记进行小麦遗传改良提供依据。【方法】以六倍体普通小麦及其野生近缘种的二倍体和四倍体为材料,克隆W16的DNA序列;根据序列多态性设计分子标记;利用中国春缺四体材料对基因进行染色体定位,用DH群体(旱选10号×鲁麦14)进行精细定位并作图;以154份六倍体普通小麦材料构成的自然群体分析表型性状与基因单倍型的关联特性。【结果】利用中国春缺四体材料先将W16定位在1A染色体上。后利用DH群体将W16定位于染色体1A的CWM517和WMC20标记之间,距左、右标记的遗传距离分别为7.8 cM和19.4 cM。在小麦自然群体中共检测到W16的3种单倍型,分别与单株穗数、穗粒数、每穗小穗数和籽粒饱满度关联。【结论】确定了W16所在的染色体位置,鉴定出HapⅡ为增加单株穗数和籽粒饱满度的优良单倍型,HapⅢ为提高穗粒数的优良单倍型,该基因的功能标记和关联分析结果为小麦分子育种提供了重要信息。  相似文献   

18.
We identified a wheat(Triticum aestivum L.) multi-pistil mutant from an F_2 breeding population in 2012, named 12 TP(three pistils in one floret). Genetic analysis showed that one dominant gene locus controlled the multi-pistil trait. Using homozygous normal and multi-pistil lines(near-isogenic lines; NILs) derived from the original mutant 12 TP, a simple sequence repeat(SSR) marker assay located the 12 TP locus on chromosome arm 2 DL. Four SSR markers were linked to 12 TP and their order was Xcfd233→Xcfd62-12 TP→Xwmc41→Xcfd168 at 15.85, 10.47, 2.89, and 10.37 cM, respectively. The average genetic expressivity of the trait ‘three pistils in one floret' was more than 98% in seven homozygous 12 TP lines; however, the average genetic expressivity in heterozygous F_1 plants was about 49%. Thus, the 12 TP is a semi-dominant gene locus, which differ from all previously reported multi-pistil mutants. Mutant 12 TP is a new useful germplasm for study of wheat floral development and for breeding of high yield wheat.  相似文献   

19.
为明确品种抗性、杀菌剂施药时期和防治次数相结合对小麦赤霉病(Fusarium head blight,FHB)病情指数(Disease index,DI)、脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)毒素含量和千粒重(Thousand-grain weight,TGW)的影响,2016—2018年连续2个年度使用6个不同抗性水平的冬小麦品种(‘郑麦9023’‘鄂麦006’‘鄂麦170’‘襄麦35’‘鄂麦DH16’‘宁麦13’),分别在扬花初期和扬花初期第6天喷施430 g/L戊唑醇防治小麦赤霉病,对病情指数、脱氧雪腐镰刀菌烯醇毒素含量和千粒重进行评价。结果表明:品种抗性和杀菌剂对DI、DON毒素含量和TGW的影响极显著(P<0.000 1);品种×杀菌剂联合作用,对TGW影响不显著(P>0.05);杀菌剂防治1次和2次对中抗品种的DI和DON毒素含量差异不显著;比较品种间DI和DON的防效,中抗品种对DI和DON毒素积累的防治效果要显著高于中感病品种(P<0.05)。因此,品种抗性与药剂相结合是防治小麦赤霉病和DON毒素积累的有效策略。  相似文献   

20.
【目的】探究化学杀雄剂SQ-1对小麦品种间、小麦与近缘植物间、小麦与远缘植物间杂交成胚率的影响,以及阿拉伯葡聚糖蛋白对小麦与玉米杂交成胚率和得苗率的影响。研究结果对于合理选用小麦杂交方式,提高小麦杂交结实率和利用玉米诱导小麦单倍体植株的效率具有重要意义。【方法】通过在小麦拔节期喷施化学杀雄剂SQ-1,开花期分别授以小麦花粉和远缘植物(黑麦、玉米)花粉,并在小麦授玉米花粉后的处理液中加入不同浓度的阿拉伯葡聚糖蛋白(arabinogalactan proteins,AGP),对小麦与玉米杂交后产生的幼胚进行离体拯救培养,统计授粉小花数、接种幼胚数、膨大颖果数、结实粒数、萌发单倍体幼胚数和单倍体植株数,计算结实率、颖果膨大率、成胚率、萌发率和成苗率并对所得数据进行差异显著性分析,结合细胞学观察结果,研究SQ-1对小麦品种间杂交及远缘杂交结实性的影响,以及AGP对小麦单倍体胚诱导率的影响。【结果】在不同小麦品种间杂交中SQ-1处理结实率19.8%—83.3%,人工去雄的结实率为69.4%—93.0%,SQ-1对不同品种的影响不同,Fielder对SQ-1的反应比较敏感;在中国春与兰州黑麦杂交中,SQ-1处理的结实率为65.5%,人工去雄处理的结实率为78.8%,两种处理方式产生的F1杂种的染色体数均为28条;在不同小麦品种与玉米品种郑单58杂交中,SQ-1处理小麦单倍体胚的成胚率为1.11%—1.41%,人工去雄小麦单倍体胚的成胚率为2.38%—14.29%;在小麦与玉米杂交后的处理液中添加0.5—2.0 g·L-1 AGP一定程度地提高了小麦单倍体胚获得率和成苗率。另外,在玉米花粉诱导的单倍体胚离体培养过程中,发现13.07%的胚发育出了2—6株苗;显微镜观察发现,玉米花粉诱导后18 d左右小麦单倍体胚上出现了多个突起,这些突起在离体培养条件下进一步发育为形态健全的小植株,其染色体数目均为21条。【结论】化学杀雄剂SQ-1减低了小麦品种间杂交及小麦与黑麦、玉米间杂交的成胚率,AGP提高了小麦与玉米间杂交单倍体成胚率和成苗率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号