首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salivary gland proteins of Culicoides spp. have been suggested to be among the main allergens inducing IgE-mediated insect bite hypersensitivity (IBH), an allergic dermatitis of the horse. The aim of our study was to identify, produce and characterize IgE-binding salivary gland proteins of Culicoides nubeculosus relevant for IBH by phage surface display technology. A cDNA library constructed with mRNA derived from C. nubeculosus salivary glands was displayed on the surface of filamentous phage M13 and enriched for clones binding serum IgE of IBH-affected horses. Ten cDNA inserts encoding putative salivary gland allergens were isolated and termed Cul n 2 to Cul n 11. However, nine cDNA sequences coded for truncated proteins as determined by database searches. The cDNA sequences were amplified by PCR, subcloned into high level expression vectors and expressed as hexahistidine-tagged fusion proteins in Escherichia coli. Preliminary ELISA results obtained with these fusions confirmed the specific binding to serum IgE of affected horses. Therefore, the putative complete open reading frames derived from BLAST analyses were isolated by RACE-PCR and subcloned into expression vectors. The full length proteins expressed in Escherichia coli showed molecular masses in the range of 15.5-68.7 kDa in SDS-PAGE in good agreement with the masses calculated from the predicted protein sequences. Western blot analyses of all recombinant allergens with a serum pool of IBH-affected horses showed their ability to specifically bind serum IgE of sensitized horses, and ELISA determinations yielded individual horse recognition patterns with a frequency of sensitization ranging from 13 to 57%, depending on the allergen tested. The in vivo relevance of eight of the recombinant allergens was demonstrated in intradermal skin testing. For the two characterized allergens Cul n 6 and Cul n 11, sensitized horses were not available for intradermal tests. Control horses without clinical signs of IBH did not develop any relevant immediate hypersensitivity reactions to the recombinant allergens. The major contribution of this study was to provide a repertoire of recombinant salivary gland allergens repertoire from C. nubeculosus potentially involved in the pathogenesis of IBH as a starting basis for the development of a component-resolved serologic diagnosis of IBH and, perhaps, for the development of single horse tailored specific immunotherapy depending on their component-resolved sensitization patterns.  相似文献   

2.
REASONS FOR PERFORMING STUDY: Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis caused by bites of Culicoides and Simulium species, and improved means of diagnosis are required. OBJECTIVES: The cellular antigen simulation test (CAST) with C. nubeculosus and S. vittatum extracts was assessed in a population of IBH-affected and healthy horses. Variations in test results over a one year period and possible cross-reactivity between different insect extracts was studied. METHODS: A total of 314 mature horses were studied using the CAST. Influence of severity of clinical signs, gender and age were evaluated, and 32 horses were tested repeatedly over one year. The kappa reliability test was used to assess agreement of the test results with different insect extracts. RESULTS: Horses with IBH had significantly higher sLT release than controls with C. nubeculosus and S. vittatum. The highest diagnostic sensitivity and specificity levels were attained when using adult C. nubeculosus extracts with the CAST (78% and 97%, respectively), suggesting that most horses with IBH are sensitised against Culicoides allergens. A proportion of IBH-affected horses was found to be sensitised to allergens of Simulium spp. in addition to those of C. nubeculosus. The CAST with C. nubeculosus had positive and negative predictive values > or = 80% for a true prevalence of IBH of 12-52%. In the follow-up study, the proportion of IBH-affected horses with a positive test result ranged from 90% in November to 68% in March. Severity of clinical signs or age did not influence test results significantly. However, IBH-affected males achieved significantly more positive test results than IBH-affected females. CONCLUSIONS: The CAST with adult C. nubeculosus has high specificity and good sensitivity for diagnosis of IBH. Horses with IBH are mainly sensitised to Culicoides allergens, and some horses are additionally also sensitised to allergens in Simulium spp. POTENTIAL RELEVANCE: The CAST is likely to be a useful test for diagnosis of IBH, even allowing the identification of IBH-affected but asymptomatic horses. This test may also help in further characterisation of allergens involved in this condition.  相似文献   

3.
IgE-mediated type 1 hypersensitivity reactions to the bites of insects are a common cause of skin disease in horses. Insect bite hypersensitivity (IBH) is most frequently associated with bites of Culicoides spp. and occurs in all parts of the world where horses and Culicoides coexist. The main allergens that cause IBH are probably some of the abundant proteins in the saliva of Culicoides associated with blood feeding. Western blots of Culicoides proteins separated by 1D gel-electrophoresis detected strong IgE responses in all horses with IBH to antigens in protein extracts from wild caught Culicoides, but only weak responses to salivary antigens from captive bred C. nubeculosus which may reflect important differences among allergens from different species of Culicoides or differences between thorax and salivary gland antigens. 2D electrophoresis and mass spectrometry were used to identify several of the abundant proteins in the saliva of C. nubeculosus. These included maltase, members of the D7 family, and several small, basic proteins associated with blood feeding. The most frequently detected IgE-binding proteins were in a group of proteins with pI>8.5 and mass 40-50kDa. Mass spectrometry identified two of these allergenic proteins as similar to hyaluronidase and a heavily glycosylated protein of unknown function that have previously been identified in salivary glands of C. sonorensis.  相似文献   

4.
Insect bite dermal hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides spp. and sometimes Simulium spp. The aim of the investigation presented here was to identify allergens causing IBH. A cDNA library expressing recombinant Culicoides nubeculosus proteins was screened using affinity-purified serum from an IBH-affected horse. Screening of the library resulted in identification of one immunoreactive clone. The sequence of the cDNA insert was determined and revealed a 600 bp insert with an open reading frame coding for a 78 amino acid long protein, called rCul n 1. Analysis of the deduced amino acid sequence revealed an identity of 67-78% to the C-terminal part of the 318 amino acid long ribosomal P0 protein from other Diptera. Furthermore, the 38 C-terminal amino acids displayed an identity of 57% with the C-terminal part of the acidic ribosomal protein P2 from Aspergillus fumigatus. The cDNA insert was subcloned and expressed as a [His]6-tagged protein in Escherichia coli and purified using Ni2(+)-chelate affinity chromatography. The 10kDa recombinant Cul n 1 protein bound the affinity-purified antibody fraction used for screening the expression library. Determination of IgE and IgG levels against rCul n 1 by ELISA in sera from 19 IBH-affected and 18 Swiss control horses and in sera from eight control horses living in Iceland showed no significant differences between the three groups of horses (median IgE levels = 60, 49 and 44 relative ELISA units, respectively). rCul n 1 did not induce sulfidoleukotriene (sLT) release from peripheral blood leukocytes of IBH-affected horses (N = 5), although sLT release was induced with the Culicoides whole body extract.  相似文献   

5.
6.
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of insects of the genus Culicoides. IBH does not occur in Iceland due to the absence of Culicoides. However, Icelandic horses exported to mainland Europe as adults (1st generation) have a > or =50% incidence of developing IBH. In contrast, their progeny (2nd generation) has a <10% incidence of IBH. Here we show that peripheral blood mononuclear cells (PBMC) from Icelandic horses born in mainland Europe and belonging either to the IBH or healthy subgroup produce less interleukin (IL)-4 after polyclonal or allergen-specific stimulation when compared with counterparts from horses born in Iceland. We examined a role of IL-10 and transforming growth factor (TGF)-beta1 in down-regulation of IL-4 in healthy 2nd generation Icelandic horses. Supernatants of PBMC from 2nd generation healthy horses down-regulated the proportion of IL-4-producing cells and IL-4 production in stimulated cultures of PBMC from 1st generation IBH. This inhibition was mimicked by a combination of IL-10 and TGF-beta1 but not by the single cytokines. Cultures of stimulated PBMC of healthy 2nd generation horses produced a low level of IL-4, but IL-4 production was increased by anti-equine IL-10 and anti-human TGF-beta1. This shows for the first time that in horses, IL-10 and TGF-beta1 combined regulate IL-4 production in vitro. It is suggested that in this naturally occurring IgE-mediated allergy, IL-10 and TGF-beta1 have a role in the down-regulation of IL-4-induced allergen-specific Th2 cells, thereby reducing the incidence of IBH.  相似文献   

7.
Insect bite hypersensitivity (IBH) is an allergic dermatitis of the horse caused by bites of insects of the genus Culicoides and is currently the best characterized allergic disease of horses. This article reviews knowledge of the immunopathogenesis of IBH, with a particular focus on the causative allergens. Whereas so far hardly any research has been done on the role of antigen presenting cells in the pathogenesis of IBH, recent studies suggest that IBH is characterized by an imbalance between a T helper 2 (Th2) and regulatory T cell (T(reg)) immune response, as shown both locally in the skin and with stimulated peripheral blood mononuclear cells. Various studies have shown IBH to be associated with IgE-mediated reactions against salivary antigens from Culicoides spp. However, until recently, the causative allergens had not been characterized at the molecular level. A major advance has now been made, as 11 Culicoides salivary gland proteins have been identified as relevant allergens for IBH. Currently, there is no satisfactory treatment of IBH. Characterization of the main allergens for IBH and understanding what mechanisms induce a healthy or allergic immune response towards these allergens may help to develop new treatment strategies, such as immunotherapy.  相似文献   

8.
Allergic diseases occur in most mammals, although some species such as humans, dogs and horses seem to be more prone to develop allergies than others. In horses, insect bite hypersensitivity (IBH), an allergic dermatitis caused by bites of midges, and recurrent airway obstruction (RAO), a hyperreactivity to stable born dust and allergens, are the two most prevalent allergic diseases. Allergic diseases involve the interaction of three major factors: (i) genetic constitution, (ii) exposure to allergens, and (iii) a dysregulation of the immune response determined by (i) and (ii). However, other environmental factors such as infectious diseases, contact with endotoxin and degree of infestation with endoparasites have been shown to influence the prevalence of allergic diseases in humans. How these factors may impact upon allergic disease in the horse is unknown at this time. The 3rd workshop on Allergic Diseases of the Horse, with major sponsorship from the Havemeyer Foundation, was held in Hólar, Iceland, in June 2007 and focussed on immunological and genetic aspects of IBH and RAO. This particular venue was chosen because of the prevalence of IBH in exported Icelandic horses. The incidence of IBH is significantly different between Icelandic horses born in Europe or North America and those born in Iceland and exported as adults. Although the genetic factors and allergens are the same, exported adult horses show a greater incidence of IBH. This suggests that environmental or epigenetic factors may contribute to this response. This report summarizes the present state of knowledge and summarizes important issues discussed at the workshop.  相似文献   

9.
Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.  相似文献   

10.
Insect bite hypersensitivity (IBH) and atopy can both be causes of pruritus in horses and are associated with allergen-specific IgE to biting insects and environmental allergens respectively. Information with respect to differences in IgE levels in diseased and healthy animals is crucial in enabling an understanding of the clinical relevance of results of allergen-specific IgE tests. The aim of this study was (i) to evaluate and compare levels of allergen-specific IgE, using an ELISA method, in Icelandic horses, with and without IBH, from Iceland and Sweden respectively; (ii) to investigate patterns of allergen-specific IgE to insects, pollens, moulds and mites in those groups of horses; and (iii) to investigate the clinical significance of employing two different cut-off levels for the ELISA. The study compromised a total number of 99 horses from Iceland and Sweden, with and without IBH, divided in 5 groups. Sera from the horses were analysed blindly with the use of Allercept , a non-competitive, solid-phase ELISA-test, designed to detect the presence of allergen-specific IgE in sera using the recombinant alpha chain of the high-affinity IgE receptor (FcepsilonR1alpha). The distribution of the ELISA values was shown for each insect, mould, mite and pollen allergen, in the different groups using 10th, 50th and 90th percentiles. The use of two cut-off levels, 150 EA and 300 EA, did not eliminate the false positives. Horses with IBH had a higher number of positive reactions, counting all the 29 allergens, than healthy controls and this was borderline significant (P=0.053). In this study it was shown that serological testing with an ELISA that uses the high-affinity IgE receptor (FcepsilonR1alpha) is presently not suitable as a tool for establishing a diagnosis of IBH or equine atopy. The importance of establishing a correct cut-off level for the ELISA for the different allergens is emphasised.  相似文献   

11.
We postulated that all horses exposed to the bites of Culcoides (midges) would have an antibody response to the antigen secreted in Culcoides saliva, but that IgE antibody would be restricted to allergic individuals. Using immunohistology on sections of fixed Culicoides, we have demonstrated the presence of antibodies in horse serum which recognise Culicoides salivary glands. Antibodies were detected in the serum of horses with insect dermal hypersensitivity and in the serum of normal horses exposed to Culicoides bites. In contrast, no antibodies were detected in serum from native Icelandic ponies which had not been exposed to Culicoides. Anti-salivary gland IgG antibodies were detected in serum from both allergic and healthy horses exposed to Culicoides. IgE antibodies were only detected in horses with signs of insect dermal hypersensitivity, they were not found in serum of healthy controls nor in the serum of horses with a history of hypersensitivity but in remission at the time of sampling. Using western blotting we confirmed the presence of antibodies to Culicoides antigens and demonstrated that individual horses react to different numbers of antigens. This paper demonstrates the ability of serum from allergic horses to detect Culcoides antigens and will enable further studies to isolate and characterise the allergens.  相似文献   

12.
Insect bite hypersensitivity (IBH), an allergic reaction to the saliva of Culicoides, occurs in all horse breeds and is a severe problem. In this study, we aimed at exploring whether exterior conditions, such as duration of allergenic exposure during the first summer and age of the horses at the time of import, influence the development of IBH. Additionally, data were analyzed regarding the period IBH started after birth and after import. Datasets for 582 horses were collected. The horses were locally born Icelandic horses and horses of other breeds with IBH, as well as imported Icelandic horses, both affected and nonaffected. For locally born horses, time of birth and duration of allergen exposure during the first summer had no influence on the prevalence of IBH. The disease started mostly in their third year of life. The majority of the imported horses affected caught IBH during their first year in Central Europe. Older imported horses seemed to develop IBH quicker than younger animals. Animals imported in their first winter are exposed to the allergen when they are at least 7 months old. They experienced approximately the same low risk of developing IBH as locally bred horses. The risk of IBH increased with the horses’ age at import. From our data, we conclude that the period to develop successful immune tolerance goes beyond the perinatal phase and is longer than formerly supposed.  相似文献   

13.
Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis caused by bites of midges from the genus Culicoides. We have shown previously that peripheral blood mononuclear cells (PBMC) from IBH-affected horses produce higher levels of IL-4 and lower levels of IL-10 and TGF-β1 than those from healthy horses, suggesting that IBH is associated with a reduced regulatory immune response. FoxP3 is a crucial marker of regulatory T cells (Tregs). Here we have determined the proportion of CD4(+)CD25(+)FoxP3(+) T cells by flow cytometry in PBMC directly after isolation or after stimulation with Culicoides extract or a control antigen (Tetanus Toxoid). There were no differences between healthy and IBH horses either in the proportion of FoxP3(+)CD4(+)CD25(+) cells in freshly isolated PBMC or in the following stimulation with Tetanus Toxoid. However, upon stimulation of PBMC with the allergen, expression of FoxP3 by CD4(+)CD25(+high) and CD4(+)CD25(+dim) cells was significantly higher in healthy than in IBH horses. Addition of recombinant IL-4 to PBMC from healthy horses stimulated with the allergen significantly decreased the proportion of FoxP3 expressing cells within CD4(+)CD25(+high). These results suggest that IBH is associated with a decreased number of allergen-induced Tregs. This could be a consequence of the increased IL-4 production by PBMC of IBH-affected horses.  相似文献   

14.
15.
In this study, IgG subclass responses against equine herpesvirus type 4 (EHV-4) were examined by enzyme-linked immunosorbent assay (ELISA) using a type-specific region of EHV-4 glycoprotein G (gG). ELISA using sera collected from horses experimentally infected with EHV-4 revealed that IgGa and IgGb antibodies were detected at high level, but IgGc and IgG(T) antibody responses were detected at low level or were undetectable. The IgGa antibody response reached its peak on day 10 post-infection, and then dropped. The IgGb antibody response reached its maximum level on day 12 post-infection, and then the level was sustained during at least 28 days after infection. Forty healthy racehorses that had already been infected with EHV-4 possessed antibody against EHV-4. Although IgGa antibodies specific for EHV-4 were not detected in any horses, IgGb antibodies were detected and the levels correlated with total IgG antibodies against EHV-4 gG. The results suggest that EHV-4-specific IgGa and IgGb antibodies are induced in EHV-4-infected horses, and that IgGb antibody, but not IgGa, is long lasting.  相似文献   

16.
Rhodococcus equi is the most common infectious cause of mortality in foals between 1 and 6 months of age. Because of an increase in the number of antibiotic-resistant strains, the optimization of a prophylactic strategy is a key factor in the comprehensive management of R. equi pneumonia.The objectives of this study were to assess the safety and immunogenicity of R. equi-secreted proteins (ReSP) co-administered with either the nanoparticular adjuvant Montanide? IMS 3012 VG, or a new polymeric adjuvant Montanide? PET GEL A, and to further investigate the most immunogenic proteins for subsequent immunization/challenge experiments in the development of a vaccine against rhodoccocal pneumonia. The approach involved two phases. The first phase aimed to investigate the safety of vaccination in six adult horses. The second phase aimed to determine the safety and immunogenicity of vaccination in twelve 3-week-old foals.We set out to develop a method based on ultrasound measurements for safety assessment in adult horses in order to evaluate any in situ changes at the injection site, in the skin or the underlying muscle, with quantitative and qualitative data revealing that administration of ReSP combined with the Pet Gel A adjuvant led to an increase in local inflammation, associated with 4- to 7-fold higher levels of anti-R. equi IgGa, IgGb and IgGT, compared to administration of ReSP associated with IMS 3012 adjuvant, but without any impact on animal demeanor. Investigations were then performed in foals with serological and clinical follow-up until 6 months of age. Interestingly, we observed in foals a much lower incidence of adverse local tissue reactions at the injection site than in adult horses, with transient and moderate swelling for the group that received ReSP combined with Pet Gel A. Immunized foals with Pet Gel A adjuvant exhibited a similar response in both IgGa and IgGT levels, but a lower response in IgGb levels, compared to adult horses, with a subisotype profile that may however reflect a bias favorable to R. equi resistance. From the crude extract of secreted proteins, dot-blot screening enabled identification of cholesterol oxidase, mycolyl transferase 3, and PSP (probable secreted protein) as the most immunogenic candidates. Taken together, these results are encouraging in developing a vaccine for foals.  相似文献   

17.
In this study we describe the generation of monoclonal antibodies (mAbs), which recognize different epitopes of the equine IgE constant heavy chain. Equi-murine recombinant IgE (rIgE), composed of the murine V(H)186.2 heavy chain variable region, linked to the equine IgE constant heavy chain and expressed together with the murine lambda(1) chain in J558L cells was used to immunize BALB/C mice. A total of 17 different mAbs were obtained, which recognized the rIgE heavy chain constant region. None of the mAbs reacted with monoclonal equine isotypes IgM, IgG1 (IgGa), IgG3 (IgG(T)), IgG4 (IgGb) or isolated equine light chains, IgGc and IgA from horse serum, or the native mAb B1-8delta, expressing the same heavy chain variable regions and light chains. One of the mAbs (alphaIgE-132) recognized the recombinant equine IgE, but did not recognize any protein in equine serum, i.e. native IgE. A total of 16 mAbs detected a serum protein of approximately 210,000Da on Western blots, corresponding to the expected MW of native IgE. In addition, one of the mAbs (alphaIgE-176) detected a protein of 76,000Da under reducing conditions, most likely the equine IgE heavy chain. According to binding inhibition studies, the equine IgE specific mAbs recognize at least two different epitopes of the equine IgE. In an ELISA using two anti-IgE mAbs which recognized different epitopes, no significant differences in the concentration of total serum IgE could be detected between adult Icelandic horses with IgE-mediated type I allergy (summer eczema) and healthy control animals. In Icelandic horse foals, no serum IgE could be measured 6 months post partum. All anti-IgE mAbs recognized a small population (1.3+/-0.5%) of leukocytes from adult Icelandic horses by surface immunofluorescence, but no cells could be detected in foal blood. The stained leukocytes from adult horses could be enriched by magnetic cell sorting and contained 32% basophils, 53% monocytes and/or large lymphocytes, 13% small lymphocytes and 2% eosinophils.  相似文献   

18.
A survey of allergic dermatitis (sweet itch) in Sweden contained information on 441 Icelandic horses. Results of a questionnaire indicated that approximately 15 per cent of the country's Icelandic horses suffered from the disease. The prevalence of allergic dermatitis was significantly higher among horses imported from Iceland (26.2 per cent) compared to that of Swedish-born animals (6.7 per cent). In addition, horses born in Iceland were significantly more severely affected than horses born in Sweden. The risk of allergic dermatitis in Sweden appeared to be more than six times higher for horses exported from Iceland to Sweden relative to that of horses originally born in Sweden. The prevalence of disease for horses of seven years or older was 30 per cent for Icelandic-born individuals as compared to 7.3 per cent for horses born in Sweden. Similarly, the risk of allergic dermatitis in Sweden for horses of seven years or older appeared to be nearly 10 times higher for horses imported from Iceland relative to that of horses born in Sweden. Allergic dermatitis usually appeared during the third grazing season for imported horses and during the fourth season for horses born in Sweden. Furthermore, the course of the disease tended to become worse with time. Analysis of the prevalence of allergic dermatitis relative to gender revealed no significant differences. Certain geographical variations in the prevalence of the disease was also found.  相似文献   

19.
OBJECTIVE: To determine concentrations of IgA and IgG subclasses in serum, colostrum, milk, and nasal wash samples of adult horses and foals. ANIMALS: Seven 2-year-old Welsh ponies, 27 adult mixed-breed horses, and 5 Quarter Horse mares and their foals. PROCEDURE: Serum was obtained from ponies and adult horses. Colostrum and milk were obtained from mares and serum and nasal wash samples from their foals immediately after parturition and on days 1, 7, 14, 28, 42, and 63. Nasal wash samples were also obtained from 23 adult horses. Concentrations of immunoglobulins were determined by use of inhibition ELISA. To determine transfer of maternal isotypes to foals, concentrations in colostrum and milk were compared with those in foal serum. Serum half-lives of isotypes in foals were also determined. RESULTS: IgGb was the most abundant isotype in serum and colostrum from adult horses, whereas IgA was the predominant isotype in milk. The major isotype in nasal secretions of adult horses and foals > or = 28 days old was IgA, but IgGa and IgGb were the major isotypes in nasal secretions of foals < or = 14 days old. Serum half lives of IgGa, IgGb, IgG(T), and IgA in foals were 176, 32, 21, and 3.4 days, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: The early immunoglobulin repertoire of neonatal foals comprised IgGa, IgG(T), and IgA; endogenous synthesis of IgGb could not be detected until 63 days after birth. The restricted repertoire of immunoglobulins in foals may influence humoral immune responses to vaccination.  相似文献   

20.
Skin hypersensitivity is an allergic disease induced in horses by allergens of Culicoides midges. The condition is typically diagnosed by clinical signs and in some horses in combination with allergy testing such as intradermal skin testing or serological allergen-specific IgE determination. Here, we describe an alternative method for allergy testing: a histamine release assay (HRA) that combines the functional aspects of skin testing with the convenience of submitting a blood sample. The assay is based on the principle that crosslinking of allergen-specific IgE bound via high-affinity IgE receptors to the surfaces of mast cells and basophils induces the release of inflammatory mediators. One of these mediators is histamine. The histamine was then detected by a colorimetric enzyme-linked immunosorbent assay. The histamine assay was used to test 33 horses with skin hypersensitivity and 20 clinically healthy control animals for histamine release from their peripheral blood basophils after stimulation with Culicoides allergen extract or monoclonal anti-IgE antibody. An increased histamine release was observed in the horses with skin hypersensitivity compared to the control group after allergen-specific stimulation with Culicoides extract (p=0.023). In contrast, stimulation with anti-IgE induced similar amounts of released histamine in both groups (p=0.46). For further evaluation of the HRA, we prepared a receiver operating-characteristic (ROC) curve and performed a likelihood-ratio analysis for assay interpretation. Our results suggested that the assay is a valuable diagnostic tool to identify sensitization to Culicoides allergens in horses. Because some of the clinically healthy horses also showed sensitization to Culicoides extract, the assay cannot be used to distinguish allergic from non-allergic animals. The observation that sensitization is sometimes detectable in non-affected animals suggested that clinically healthy horses use immune mechanisms to control the reaction to Culicoides allergens that are different or absent in allergic horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号