首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Daily matrix flow at 1-m depth in a volcanic ash soil was calculated during a period of one year using Darcy's law. Unsaturated hydraulic conductivity of undisturbed core samples could be expressed as a unique function of the soil water content. Hydraulic gradient obtained from soil water suction by a tensiometer installed at 90- and 110-cm depths, and hydraulic conductivity converted from the soil water content by time domain reflectometry (TDR) were monitored every 30 min throughout a year in a maize (Zea mays L.) Chinese cabbage (Brassica pekinensis Rupr.) field. The matrix flow obtained by this method was substituted for the water balance equation to estimate the bypass flow, and monthly and annual evapotranspiration. Annual rainfall in 1997 was 989 mm and evapotranspiration was estimated to be 730 mm. Net matrix flow at 1-m depth was 164 mm downward even though upward matrix flow occurred during half of the year. Downward flow determined by the water balance method exceeded the downward matrix flow during two heavy rain events in the year and the difference between the two flows was 63 mm, which was considered to correspond to a bypass flow. The bypass flow accounted for only 6.4% of the annual rainfall. Matrix flow was well monitored by the application of unsaturated Darcy's law in a field, and monthly evapotranspiration and bypass flow could be quantified by the introduction of the water balance equation.  相似文献   

2.
大型蒸渗仪和径流小区中红壤的水量平衡   总被引:1,自引:0,他引:1  
The daily soil water budgets in the red soil areas of central Jiangxi Province, southern China, were investigated with a large-scale weighing lysimeter and runoff plots. From 1998 to 2000, peanuts (Arachis hypogaea L.) and rape (Brassica napus L.) were planted in the lysimeter and in 1999, peanuts were planted in the runoff plots. The soil water budget components including rainfall, runoff, percolation and evapotranspiration were measured directly or calculated by Richards' equation and water balance equation. The results showed that most rainfall, including rainstorms, occurred from March to July, and induced the greatest soil water percolation during the year. The evapotranspiration was still large from July to September when rainfall was minimal. Thus, the lack of synchronization in soil water inputs and losses was disadvantageous to crops growing in this region. Among the soil water losses, percolation was the largest, followed by evapotranspiration, and then soil runoff. Runoff was very small on farmland with crops. It was significantly different from the uncultivated uplands where large-scale runoff was usually reported. The soil water storage fluctuated sinusoidally, with a large amplitude in the rainy season and a small amplitude in the dry season.  相似文献   

3.
Long‐term effects of improved pasture establishment (with high proportion of legumes) on soil organic‐C status and N availability in Mediterranean cork oak (Quercus suber L.) woodlands were assessed. Soils were sampled beneath scattered crowns and in open areas, considering two systems: unmanaged and managed woodlands where improved pastures were installed 26 and 32 years ago. Total and labile C and N pools were measured and C and N mineralization were determined over 24 weeks laboratory incubation. Soils under improved pastures showed higher organic‐C, total‐N and net N mineralization than those under unmanaged pasture, mainly when established beneath trees. Potentially mineralizable C, C mineralization rate and microbial C were not statistically different between the unmanaged and improved pasture sites, but were higher closer to the tree than in the open area (1.8, 1.2 and 1.2 times, respectively). The qCO2 was higher in improved pastures (1.7 times). Labile pool of C and N extracted with hot water increased under improved pasture (3.4 and 1.7 times, respectively). Results indicate that soil quality amelioration by improved pastures is stronger in the presence of oak trees. Management systems that favour oak tree maintenance and regeneration should be taken into account to reverse soil degradation.  相似文献   

4.
In the Oxisols of the eastern plains of Colombia, the large native anecic earthworm Martiodrilus sp. is an abundant ecosystem engineer producing long-lasting casts and burrows. Casts deposited in the soil by this species have been estimated at several tonnes per hectare per year. The physical and chemical processes occurring in these casts have never been studied. In this study, we compared the dynamics of water content (WC), total C (Ctot), and available N (Navail) contents, and the distribution in size of aggregates in ageing below-ground casts of this species and in the bulk soil. In a native herbaceous savannah and a sown grass/legume pasture (Brachiaria humidicola, Arachis pintoi, Desmodium ovalifolium and Stylosanthes capitata), fresh surface casts were experimentally injected into artificial burrows of 1 cm Ø and 10 cm depth and sampled at different dates during a total period of 120 days. The injection procedure used resulted in a 34% decrease in WC of the casts from the sown pasture and reduced the mean mass diameter (MMD) of the aggregates of casts from the savannah by 19%. Other properties were not significantly affected by the procedure.For injected casts in both grasslands, MMD and Ctot were stable during cast ageing while WC and Navail were initially at levels several times higher than the bulk soil and decreased to similar bulk soil values with ageing. The Ctot was twice and one third higher in casts compared with the bulk soil in the pasture and the savannah, respectively. Overall means for cast MMD (8.3 and 7.4 mm) were twice as high as those in the bulk soil (3.8 mm) in the savannah and the pasture, respectively. However, MMD was not significantly different between the casts and the bulk soil in two occasions in the pasture. Available nitrogen (Navail) in injected casts was initially greater than bulk soil levels, reaching maximum levels just after injection (116 and 93 mg kg−1) and remained significantly greater during 1-2 weeks, in the savannah and the pasture, respectively. In conclusion, the tonnes of casts deposited in the soil profile by Martiodrilus sp. each year are likely to contribute greatly to plant nutrition and to the regulation of the soil structure. For each anecic earthworm species, the ecological impact of its below-ground casts is likely to be as important as its surface casts.  相似文献   

5.
The brigalow clay soils of central Queensland in eastern Australia contain large quantities of nitrate-N in the subsoil beneath shallow rooting cultivated crops. A laboratory incubation study was conducted to determine whether nitrate accumulation at depth beneath these crops was due to in situ nitrogen mineralization. Intact soil cores, 5 cm long and 5 cm diameter, were obtained at four depths to 120 cm beneath cultivated black gram (Vigna mungo) and green panic (Panicum maximum var trichoglume) permanent pasture and incubated for 12 weeks at 60% water-filled pore space and 25°C. Net mineralization of organic N occurred in all soil cores obtained from under black gram with values ranging from 4.3 to 9 mg N kg?1 soil at 12 weeks. Beneath the pasture, net mineralization had not commenced by the end of 12 weeks. Potentially available nitrogen (Na) ranged from 1.2 to 62.7 kg N ha?1 under black gram, and from 10.2 to 136.9 kg N ha?1 under pasture. A significant relationship was observed between Na and total N beneath both crops, and between Na and total C under the pasture. Leaching of N mineralized in the surface layers of soil appears to be the main avenue of nitrate build-up in the subsoil beneath black gram, with subsoil mineralization making only a partial contribution to the accumulated nitrate pool.  相似文献   

6.
Water repellency (WR) is a phenomenon known from many soils around the world and can occur in arid as well as in humid climates; few studies, however, have examined the effect of soil WR on the soil-plant-atmosphere energy balance. The aim of our study was to estimate the effects of soil WR on the calculated soil-atmosphere energy balance, using a solely model-based approach. We made out evapotranspiration to have the largest influence on the energy balance; therefore the effect of WR on actual evapotranspiration was assessed. To achieve this we used climate data and measured soil hydraulic properties of a potentially water-repellent sandy soil from a site near Berlin, Germany. A numerical 1D soil water balance model in which WR was incorporated in a straightforward way was applied, using the effective cross section concept. Simulations were carried out with vegetated soil and bare soil. The simulation results showed a reduction in evapotranspiration of 30-300 mm year-1 (9%-76%) at different degrees of WR compared to completely wettable soil, depending on the severity degree of soil WR. The energy that is not being transported away by water vapor (i.e., due to reduced evapotranspiration) had to be transformed into other parts of the energy balance and thus would influence the local climate.  相似文献   

7.
Replacement of native deep‐rooted grasses by shallow‐rooted ones has resulted in greater losses of water and nitrogen by drainage. To counter this effect we have tested the hypothesis that liming, and the conversion of annual grass pastures to perennial grass pastures, could improve the sustainability of grazing systems in the high rainfall zone (> 600 mm per annum) in southeastern Australia, through better use of water and nitrogen. A field experiment consisting of sixteen 0.135 ha (30 m × 45 m) grazed paddocks representing four pasture combinations (annual pasture (mainly Lolium rigidum) without lime (AP–); annual pasture with lime (AP+); perennial pasture (mainly Phalaris aquatica) without lime (PP–), and perennial pasture with lime (PP+)) was carried out from 1994 to 1997 on an acid Sodosol (Aquic Hapludalf) in southern New South Wales, Australia. Measurements were made of surface runoff, subsurface flow (on top of the B horizon) and soil water content. The results showed that perennial grass pastures, especially PP+, extracted approximately 40 mm more soil water each year than the annual grass pastures. As a result, surface runoff, subsurface flow and deep drainage were at least 40 mm less from the perennial pastures. These measurements were further supported by a simulation of soil water deficit and deep drainage for AP– and PP+ paddocks, using 10 years' past meteorological records. Overall, the results suggested that well‐grown, phalaris‐based pastures could reduce recharge to groundwater and make pastoral systems more sustainable in the high rainfall zone.  相似文献   

8.
表层有效土壤水分参数化及冠层下土面蒸发模拟   总被引:1,自引:7,他引:1  
通过观测田间微气象数据、土壤表层水分变化状况及荞麦作物冠层下土面蒸发等资料,引进一个表面体积含水率的函数,构建了基于表层有效土壤水分的土壤蒸发模型。该模型包含了土面蒸发的2个过程:水蒸气从土壤孔隙中扩散到地表面及水蒸气由地表面传输到大气中。模型中表层有效土壤水分参数不仅取决于表层土壤含水状况,而且受风速影响。采用波文比能量平衡法及微型蒸发器观测荞麦地实际蒸腾蒸发量及冠层下土面蒸发的变化规律,并验证模型精度。结果表明,所构建模型可以成功预测冠层下土面蒸发,其平均相对误差为13.5%。该研究对于实现土壤蒸发及作物蒸腾的分离估算,减少无效水分消耗具有重要意义。  相似文献   

9.
煤矸石和钙结石对植物生长和土壤含水量的影响   总被引:1,自引:1,他引:0  
确定煤矸石和钙结石对植物生长和土壤水分变化的影响,是准确量化黄土高原地区土壤含水量和科学制定植被恢复策略的基础。通过小区试验实现,将土壤分别与煤矸石和钙结石混合后(碎石含量为 300 g?kg-1)填装至2 m3的地下小区中,以不含碎石土壤为对照,种植柠条(Caragana Korshinskii Kom.)和苜蓿(Medicago sativa.),定期观测植物生长指标和含水量。研究结果表明:(1)煤矸石对植物生长具有抑制作用,钙结石则无显著影响。含煤矸石土壤中柠条和苜蓿累积生物量较无碎石土壤中分别低47%和21%,较含钙结石土壤中分别低45%和24%。苜蓿对含煤矸石土壤的适应性优于柠条。(2)介质类型对土壤含水量变化的影响较植物类型更为显著,含煤矸石土壤含水量显著高于其他两种介质,30~50 cm土层深度差异更显著。(3)柠条小区中,含煤矸石土壤与钙结石土壤中蒸散量的差值分别占土壤平均储水量的12%和23%。苜蓿小区中,含煤矸石、钙结石土壤与无碎石土壤中蒸散量的差值分别占土壤平均储水量的-11%和11%。可见,煤矸石和钙结石对土壤水分损失的抑制作用不同,随植物种类而变化。在预测区域土壤含水量时,煤矸石和钙结石对含水量的影响不可忽略,尤其在植被生长条件下。  相似文献   

10.
The water balance of a certain soil profile in a certain time interval is subjected to changes of soil water content within the respective profile, and fluxes at its upper and lower boundary. Weighing lysimeters are valuable instruments for water‐balance studies. Typically, mass changes—thus, changes of soil profile water content—are detected by a weighing system, while seepage water outflow is measured by a tipping bucket, and precipitation data originate from a rain gauge. Hence, evapotranspiration as unknown component can be determined by solving a simple water‐balance equation. However, using separately measured precipitation data may cause implausible (negative) evapotranspiration. In this study, change of soil profile water content, seepage water, precipitation, and evapotranspiration were determined directly from 10‐min lysimeter data from 2011. Precipitation measured with the lysimeter was in total 20% greater than rain‐gauge values. Even dew formation was measured and considered as water‐balance component; however, its total amount was rather low. Evapotranspiration calculated on daily and hourly base indicated a sound correlation with measured data, but measured values were considerably smaller. Both calculated and measured dew amount were of the same magnitude. Comparison of lysimeter evapotranspiration with daily calculations (neglecting dew) and hourly computation (considering dew) delivered similar results. Generally, the utilized lysimeter facility and the specific data management provided sound water‐balance components with high accuracy and temporal resolution, respectively.  相似文献   

11.
In Brazil, most Eucalyptus stands have been planted on Cerrado (shrubby savanna) or on Cerrado converted into pasture. Case studies are needed to assess the effect of such land use changes on soil fertility and C sequestration. In this study, the influence of Cerrado land development (pasture and Eucalyptus plantations) on soil organic carbon (SOC) and nitrogen (SON) stocks were quantified in southern Brazil. Two contrasted silvicultural practices were also compared: 60 years of short‐rotation silviculture (EUCSR) versus 60 years of continuous growth (EUCHF). C and N soil concentrations and bulk densities were measured and modelled for each vegetation type, and SOC and SON stocks were calculated down to a depth of 1 m by a continuous function. Changes in SOC and SON stocks mainly occurred in the forest floor (no litter in pasture and up to 0.87 kg C m?2 and 0.01 kg N m?2 in EUCSR) and upper soil horizons. C and N stocks and their confidence intervals were greatly influenced by the methodology used to compute these layers. C/N ratio and 13C analysis showed that down to a depth of 30 cm, the Cerrado organic matter was replaced by organic matter from newly introduced vegetation by as much as 75–100% for pasture and about 50% for EUCHF, poorer in N for Eucalyptus stands (C/N larger than 18 for Eucalyptus stands). Under pasture, 0–30 cm SON stocks (0.25 kg N m?2) were between 10 and 20% greater than those of the Cerrado (0.21 kg N m?2), partly due to soil compaction (limit bulk density at soil surface from 1.23 for the Cerrado to 1.34 for pasture). Land development on the Cerrado increased SOC stocks in the 0–30 cm layer by between 15 and 25% (from 2.99 (Cerrado) to 3.86 (EUCSR) kg C m?2). When including litter layers, total 0–30 cm carbon stocks increased by 35% for EUCHF (4.50 kg C m?2) and 53% for EUCSR (5.08 kg C m?2), compared with the Cerrado (3.28 kg C m?2), independently of soil compaction.  相似文献   

12.
Abstract

Tree clearing is a topical issue the world over. In Queensland, the high rates of clearing in the past were mainly to increase pasture production. The present research evaluates the impact of clearing on some soil biological properties, i.e. total soil respiration, root respiration, microbial respiration, and microbial biomass (C and N), and the response of soil respiration to change in temperature.

In-field and laboratory (polyhouse) experiments were undertaken. For in-field studies, paired cleared and uncleared pasture plots were selected to represent three major tree communities of the region, i.e. Eucalyptus populnea, E. melanophloia, and Acacia harpophylla. The cleared sites were chosen to represent three different time-since-clearing durations (5, 11–13, and 33 years; n=18 for cleared and uncleared plots) to determine the temporal impact of clearing on soil biological properties. Experiments were conducted in the polyhouse to study in detail the response of soil respiration to changes in soil temperature and soil moisture, and to complement in-field studies for estimating root respiration.

The average rate of CO2 emission was 964 g CO2/m2/yr, with no significant difference (P<0.05) among cleared and uncleared sites. Microbial respiration and microbial biomass were greater at uncleared compared with those at cleared sites. The Q 10-value of 1.42 (measured for different seasons in a year) for in-field measurements suggested a small response of soil respiration to soil temperature, possibly due to the limited availability of soil moisture and/or organic matter. However, results from the polyhouse experiment suggested greater sensitivity of root respiration to temperature change than for total soil respiration. Since root biomass (herbaceous roots) was greater at the cleared than at uncleared sites, and root respiration increased with an increase in temperature, we speculate that with rising ambient temperature and consequently soil temperature, total soil respiration in cleared pastures will increase at a faster rate than that in uncleared pastures.  相似文献   

13.
Nutrient load and distribution on pasture were investigated with fattening pigs that: (1) spent a proportion of or their entire life on pasture; (2) were fed either restrictively or ad libitum; and (3) were weaned at different times of the year. N and P retention in pigs decreased the longer they were kept on pasture. The contents of soil inorganic N and exchangeable K were significantly raised compared with the soil outside the enclosures but with no differences between treatments. Pig grazing did not affect extractable soil P. Regular moving of huts, feeding and water troughs was effective in ensuring that nutrients were more evenly distributed on the paddocks. Grass cover, as determined by spectral reflectance, was not related to the experimental treatments but only to the time of year. During spring and summer, grass was present in parts of the paddocks, whereas during autumn and winter, the pigs kept grass cover below 10%. Fattening pigs on pasture carry a high risk of nutrient loss and it is concluded that the most environmentally acceptable way of keeping them on pasture involves a combination of reduced dietary N intake, reduced stocking rate and seasonal rather than round the year production.  相似文献   

14.
为精确测定、准确模拟阿克苏地区滴灌枣树腾发过程,基于大型称重式蒸渗仪测定枣树全生育期逐时及逐日腾发强度(ET),利用水量平衡方程、PM公式及经典统计原理,分析不同时间尺度下叶面积指数(LAI)、气象因素[温度(I)、风速(V)、净辐射(Rn)]、表层土壤含水率(W)与枣树腾发强度的相关关系并建立预测模型。结果表明:枣树日内腾发强度呈单峰型变化趋势,夜间变化幅度较小且腾发贡献率低。枣树全生育期逐日腾发强度变化呈先增大后减小的趋势,花期的腾发强度最大,为4.42 mm·d-1;全生育期腾发总量为640.83 mm,其中花期和果实生长发育期耗水量占比较大,分别为38.61%和32.72%。在小时和日时间尺度上,影响腾发强度的主要因素不完全相同,且影响程度有所差异。综合考虑各影响因素,以萌芽期、花期、果实发育期为基础,分别建立以小时、日尺度下估算腾发强度的经验模型ET1(h)=0.153+0.004T+0.012V+0.176Rn+0.002W+0.067LAI、ET2(d)=-3.325+0.081T+0.163Rn+0.069W+2.089LAI,拟合度R2均在0.7以上,以果实发育期与成熟期数据对模型进行检验,纳什效率系数分别达0.63、0.80。经偏相关检验,冠层净辐射(Rn)对两种尺度的腾发强度均影响最显著,因此以枣树全生育期数据量为基础,仅建立冠层净辐射(Rn)与腾发强度的回归模型ET1(h)=-0.063 3Rn2+0.361 2Rn—0.003 7、ET2(d)=-0.018 3Rn2+0.684 7Rn–1.642 1,R2分别为0.704 7与0.743 6,可满足缺少数据支撑情况下的腾发过程估算。这些模型明确了阿克苏地区滴灌枣树腾发机制及影响程度,可为水分管理精准化提供计算基础。  相似文献   

15.
Vegetation cover acts in a complex way in influencing runoff and soil loss and a great deal of information is needed to model these effects. In the Mediterranean, the abandonment of land is important under extensive land‐use. Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. To characterize communities of vegetation such as these, which grow in central Spain, and to evaluate their direct and indirect effects on runoff and soil loss, we carried out experiments with simulated rain. We assessed separately the effects of pasture land and of four species of shrubs (Dorycnium pentaphyllum Scop., Medicago strasseri Greuter et al., Colutea arborescens L. and Retama sphaerocarpa, L.). The infiltration rates under herbaceous vegetation were 7.9 times greater than those obtained on bare land (92.2 mm hour−1 compared with 11.7 mm hour−1), and 88% of these differences could be attributed to direct effects. On the pasture land, as the proportion of covered land increased, the runoff decreased linearly, whereas the soil loss decreased exponentially. On the land covered by shrubs, the average infiltration rate was 82.5 mm hour−1. Under D. pentaphyllum and M. strasseri infiltration rates were greater than 105 mm hour−1, whereas for R. sphaerocarpa the infiltration rate was 57 mm hour−1. For D. pentaphyllum and M. strasseri soil loss was less than 4.5 g m−2, whereas for C. arborescens soil loss was 61.4 g m−2. Unlike the results for the pasture land, for the shrub‐type vegetation the increases in infiltration rates could be attributed to indirect effects: they explained 47% of the increase in infiltration for C. arborescens, 69% for R. sphaerocarpa, 75% for D. pentaphyllum and 100% for M. strasseri.  相似文献   

16.
Deficiencies of metal micronutrients are common in some calcareous soils. Samples of aerial parts of maize and five common weeds and also soil beneath these plants were collected and analyzed to investigate the status and relationships of metal micronutrients in soil, crop, and common weeds of maize field trials at two sites. Results showed that Fe concentration in five studied weeds was higher than that of maize; the highest Fe concentration was found in Convolvolus arvensis and Echinochloa crus-galli (first site) and in Convolvolus arvensis tissues (second site). At both sites, the highest Mn concentration was observed in aboveground parts of Echinochloa crus-galli. The concentration of Mn (both sites) and Fe and Cu (second site) were remarkably higher in Echinochloa crus-galli tissues in comparison with maize. Also the concentrations of Fe (both sites) and Cu (second site) were considerably higher in Convolvolus arvensis tissues in comparison with maize. Available Fe was the highest in the soil beneath Convolvolus arvensis and Portulaca oleracea (first site) and beneath Convolvolus arvensis and Cenopodium album (second site). The high value of available Fe in the soil beneath Convolvolus arvensis may explain why Fe concentration was the highest in aerial parts of this weed species.  相似文献   

17.
采用田间试验的方法,通过对陕北地区矮化(自根砧M9-T337)富士一年生长量及其土壤含水量的测定,收集长时间序列气象资料,根据彭曼公式计算得出山地苹果幼树的潜在腾发量ETc与当年降水量进行对比,进而得出试验区第2年生幼树的需水规律。结果表明:在2017年的降水量条件下,试验区内降水量总和大于幼树需水量之和,但是在7月之前存在阶段性缺水问题;进一步分析得出,不管在湿润年、一般年、一般干旱年和特干旱年降水量条件下,由于陕北地区降水的时间分布不均匀性,虽然年内降水量足够满足果树生长所需水量,但在7月之前存在较为严重的水量亏缺,特干旱年甚至在10月之前都存在着水量亏缺,需要在果树萌芽前(3月)、枝条旺长期(4月)、花芽分化期(5,6月)以及开花期(7月)进行人为补充灌溉4~5次,根据前期降水量以及当前土壤含水量来确定灌水定额,灌水量范围选取果园田间持水量的60%~80%为标准。  相似文献   

18.
ABSTRACT

Using saline irrigation water for crop production continues to gain more importance year by year, especially in regions where freshwater resources are very scarce. Therefore, this study was carried out to investigate the effects of six water salinity levels (0.38 (control), 1.0, 2.0, 4.0, 6.0, and 8.0 dSm?1) on salt tolerance, evapotranspiration, and yield of chives under a rain shelter. The experiment was laid out in pots using a randomized plot design with four replicates of each treatment. Leaf fresh-dry weights, plant height, evapotranspiration, and water use efficiencies of chive plants were significantly affected by increasing levels of salinity. The results revealed that chives can be classified as a salt-sensitive crop with a threshold value of 1.13 dSm?1 and relative yield decreased by 6.19% per unit increase of soil salinity. In conclusion, with appropriate leaching management practices, irrigation water with 0.38 dSm?1 salinity level is recommended for chives production.  相似文献   

19.
The intensive agricultural use of soils in the Brittany region (western France) has increased the need for a better understanding of soil water dynamics. The aim of the present study is to compare quantitatively the differences produced by two agricultural practices on soil hydraulic properties (water retention curve and hydraulic conductivity) as well as the infiltration and drainage fluxes in the soils. This study was carried out on two experimental plots managed in the same way for 22 years. The two practices were continuous maize fertilized with mineral fertilizer, denoted as MX, and pasture within a ray-grass/maize rotation (3/1 year) with organic fertilization (pig slurry), denoted as PR. The study consisted of measuring soil physical properties in the laboratory and in the field, and estimating water infiltration in the soil of the two plots by recording water pressure heads after simulation of 2-h artificial rainfall with an intensity of 17 mm/h. We applied the van Genuchten model to describe the water retention and hydraulic conductivity curves (θ(h) and K(h)) for each soil horizon of the two plots. Hydrus-2D and ID softwares were used to construct a numerical model of water movement in the two soils. This model was used to quantify the infiltration rate, deep drainage and actual evaporation fluxes during the artificial rainfall experiment.The vertical influence of agricultural practices in both plots appears to be limited to the uppermost 35 cm. Deeper in the B horizon, there are only very slight differences in the hydraulic properties between the two plots. In the top soil horizons (H1–H5 and H6), the two soil properties mostly affected by practices are the hydraulic conductivity and the α parameter of the van Genuchten model. At the lowest pressure head studied here (−1.5 kPa), hydraulic conductivity in a given horizon differs by more than one order of magnitude between the two plots. The model reproduces quite satisfactorily the observed pressure heads in plot PR at all depths, in the rainy period as well as in the water redistribution period (efficiency >0.77). Results are less good for the MX plot, with efficiency ranging from 0.49 to 0.84 depending on the horizon. The different sources of simulation errors are identified and discussed. For the MX plot, the soil water movement model succeeds in reproducing the infiltration excess runoff observed in the field, allowing us to calculate that it accounts for 9% of the applied rainfall. No surface runoff or ponding appears in the PR plot during the artificial rainfall experiment. In the PR plot, the simulated deep drainage flux increases more rapidly than in the MX plot. The lower hydraulic conductivity in the top soil horizon of the MX plot compared with the PR plot appears to reduce the infiltration rate as well as the deep drainage flux. It also decreases the upward flow of water to the soil surface when the water content in the top soil layer is depleted by evaporation flux. The model simulation could be improved by a more precise representation of the soil structure, particularly the location, size and frequency of clods as well as the variability of hydraulic properties. However, we need to strike a balance between improving the quality of the simulation even further and the practical constraints and efforts involved in measuring the soil hydraulic properties.  相似文献   

20.
In an open woodland in Portugal, the nature of interactions between Quercus ilex trees and herbaceous plants was assessed during 2 years by studying how manipulation of incident solar radiation, water and nutrient supply affect the herbaceous biomass and N, K, P, Ca, Mg, and Mn concentrations. Measurements were carried out in three environments consisting of (1) open grassland, (2) beneath the tree canopy, and (3) under artificial shade. Each of these environments was subjected to two regimes of fertilization and two water levels in a factorial design. The fertilizer treatment consisted of application of no fertilizer or a combination of 200 kg calcium ammonium nitrate ha–1 (26% N) and 350 kg superphosphate ha–1 (8% P), while the water‐supply treatment consisted of either no irrigation or irrigation fortnightly from February 1 to April 30. Grasses showed significantly lower nutrient concentrations than forbs. However, nutrient concentrations of the whole herbaceous community were within the recommended ranges for cattle nutrition. A negative effect of shade on herbaceous biomass production was observed. The effect of watering on herbaceous biomass was less prominent than the effect of fertilization, irrespective of the environment, suggesting that Q. ilex does not compete for soil‐water resources with herbaceous biomass in this ecosystem. Fertilization increased total biomass by 106%, 49%, and 97% in the open grassland, beneath the tree canopy, and under artificial shade, respectively. During the first and second year, fertilization increased herbaceous P concentrations by 24% and 83%, respectively, if compared with concentrations obtained at the unfertilized plots. Higher K and Mg concentrations were observed in herbaceous plants beneath the tree canopy than in the open areas, indicating a positive effect of trees on pasture quality. The positive and negative effects of trees on understory forage are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号