首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The digestive stability, efficiency of micellarization, and cellular accumulation of the chlorophyll pigments of different preparations of pea were investigated, using an in vitro digestion procedure coupled with human intestinal Caco-2 cells. Fresh pea (FP), cooked fresh pea (CFP), frozen pea (FZP), cooked frozen pea (CFZP), and canned pea (CP) were subjected to simulated digestion. Although after digestion the pigment profile was modified for all samples, except CP, allomerization reactions and greater destruction of chlorophylls were observed in only FP, which should be due to enzymes in FP that were denaturalized in the rest of the test foods. A pigment extract of CFZP was also subjected to in vitro digestion, showing a positive effect of the food matrix on the pigment digestive stability. The transfer of the chlorophyll pigments from the digesta to the micellar fraction was significantly more efficient in CFZP (57%, p < 0.0001), not significantly ( p > 0.05) different between CFP, FZP, and CP (28-35%), and lowest in FP (20%). Pheophorbide a stood out as the most-micellarized chlorophyll derivative in all of the samples, reaching levels of up to 98%. Incubation of Caco-2 cells with micellar fractions at the same concentration prepared from each test food showed that pigment absorption was considerably lower ( p < 0.006) in cells incubated with FP, whereas there were no differences among the rest of the preparations. Therefore, factors associated with the food matrix could inhibit or mediate the chlorophyll pigment absorption. These results demonstrated that the industrial preservation processes of peafreezing and canningas well as the cooking have a positive effect on the bioaccessibility and bioavailability of the chlorophyll pigments with respect to the FP sample, emphasizing CFZP with greater bioaccesibilty degree.  相似文献   

2.
The objective of this study was to develop a model for assessing the bioavailability of carotenoids from meals using an in vitro digestion procedure. A meal was prepared using baby food carrots, spinach, and a meat, plus tomato paste. The aqueous fraction was isolated from digesta to determine the quantity of carotenoids transferred from the food to micelles. The micellarization of lutein (25-40%) exceeded (p < 0.01) that of alpha- and beta-carotene (12-18%) and lycopene (<0.5%). Micellarization of carotenoids was not affected by elimination of the gastric phase of the digestive process. The absence of bile extract prevented the transfer of carotenoids from foods to micelles, whereas omission of pancreatin only reduced the micellarization of the carotenes. Differentiated cultures of Caco-2 human intestinal cells accumulated 28-46% of micellarized carotenoids from the medium after 6 h. These results support the usefulness of the in vitro digestion process as a rapid and cost-effective model for screening the bioavailability of carotenoids from meals.  相似文献   

3.
Sodium copper chlorophyllin (SCC), a mixture of water-soluble chlorophyll derivatives, is used as both a food colorant and a common dietary supplement. Although the potential antimutagenic and antioxidant properties of this commercial preparation have been demonstrated, limited information is available on its digestion and absorption by humans. Stability of SCC was examined during simulated gastric and small intestinal digestion. Three preparations were subjected to in vitro digestion: SCC in water, SCC in water + 10% corn oil, and SCC in applesauce. SCC components from raw material preparations and in digested samples were analyzed by C(18) HPLC with photodiode array detection. Cu(II)chlorin e(4), the major chlorin component of SCC, was relatively stable during simulated digestion. In contrast, greater than 90% of Cu(II)chlorin e(6) was degraded to undetermined products during digestion. Recovery of Cu(II)chlorin e(6) after digestion was increased by incorporation of SCC into applesauce, suggesting a protective role of the inclusion matrix for stabilization of labile SCC components. Accumulation of SCC derivatives was investigated by using differentiated cultures of the TC7 clone of the Caco-2 human intestinal cell line. Cellular accumulation from media containing 0.5 to 60 ppm SCC was linear with intracellular content ranging between 0.2 and 29.6 microg of total SCC per mg of cellular protein. Uptake of SCC by Caco-2 cells was significantly (p < 0.01) lower in cultures incubated at 4 degrees C than in those incubated at 37 degrees C. Although intracellular SCC was transported into both apical and basolateral compartments when Caco-2 cells were grown on inserts, apical efflux was significantly greater (p < 0.01) than basolateral efflux. Stability of Cu(II)chlorin e(4) during in vitro digestion and effective uptake by Caco-2 enterocyte-like cells support the likelihood that a portion of this SCC component or its metabolites is absorbed from the human intestine.  相似文献   

4.
Carbohydrate digestion by α-glucosidase and subsequent glucose uptake at the brush border are critical for postprandial blood glucose control. Any specific inhibitors are useful as hyperglycemia modulating agents. In this study, it was postulated that an array of active components in mulberry leaf extract (MLE) may provide higher potency in inhibiting intestinal glucose absorption compared to the single component 1-deoxynojirimycin (DNJ), which is recognized as a promising inhibitor of intestinal glucose absorption. Both MLE and DNJ were active in inhibiting α-glucosidase. However, in Caco-2 cells, only MLE showed significant inhibition of 2-deoxyglucose uptake, whereas DNJ was ineffective. For glucose loading, co-administration of MLE resulted in potent inhibitions of glucose responses compared to those by DNJ in Sprague Dawley (SD) rats, but this was not found for maltose loading. These novel findings add evidence that the unabsorbed phytochemicals in MLE compete with glucose for intestinal glucose transporters, but DNJ itself does not. We also evaluated the timing of MLE consumption. By administering MLE for 30 min before glucose loading, the incremental area under the curve (IAUC) was significantly lowered in the rats, as compared to a simultaneously administered group. Similarly, cellular glucose uptake was significantly reduced in Caco-2 cells following pretreatment.  相似文献   

5.
猕猴桃果浆中叶绿素和颜色的热降解动力学   总被引:1,自引:0,他引:1  
为了研究猕猴桃果浆加工中叶绿素和绿色的热降解规律,测定了不同温度(70、80、90℃)和pH值(pH值3.3、6.0、8.0)对猕猴桃果浆叶绿素含量和色差的影响。结果表明,猕猴桃叶绿素a、b和绿色值(-a*)的热降解属一级动力学反应;在相同pH值条件下,随温度升高,叶绿素a、b和绿色值(-a*)的反应速率常数(k)降低,半衰期(t1/2)缩短;随pH值增加,叶绿素a的活化能(Ea)变化范围为14.69~66.02kJ/mol,叶绿素b为40.88~54.64kJ/mol,绿色值(-a*)为48.55~64.14kJ/mol;pH值3.3时叶绿素a、b的降解和绿色值(-a*)相关性较好。猕猴桃果浆加工中适量提高pH值可减少叶绿素和绿色的损失。  相似文献   

6.
Using 1H nuclear magnetic resonance spectroscopy (1D and 2D), the two types of photosynthetic pigments (chlorophylls, their derivatives, and carotenoids) of "green beans" (immature pods of Phaseolus vulgaris L.) were analyzed. Compared to other analytical methods (light spectroscopy or chromatography), 1H NMR spectroscopy is a fast analytical way that provides more information on chlorophyll derivatives (allomers and epimers) than ultraviolet-visible spectroscopy. Moreover, it gives a large amount of data without prior chromatographic separation.  相似文献   

7.
Evidence suggests that regular consumption of fruits and vegetables may reduce the risk of chronic diseases, and phytochemicals from fruits and vegetables may be responsible for this health benefit. However, there is limited knowledge on the bioavailability of specific phytochemicals from whole fruits and vegetables. This study used Caco-2 cells to examine uptake of quercetin aglycon and quercetin 3-glucoside as purified compounds and from whole onion and apple peel extracts. Pure quercetin aglycon was absorbed by the Caco-2 cells in higher concentrations than quercetin 3-glucoside (p < 0.05). Caco-2 cells treated with quercetin 3-glucoside accumulated both quercetin 3-glucoside and quercetin. Caco-2 cells absorbed more onion quercetin aglycon than onion quercetin 3-glucoside (p < 0.05), and the percentage of onion quercetin absorbed was greater than that of pure quercetin, most likely due to enzymatic hydrolysis of quercetin 3-glucoside and other quercetin glucosides found in the onion by the Caco-2 cells. Caco-2 cells absorbed low levels of quercetin 3-glucoside from apple peel extracts, but quercetin aglycon absorption was not detected. Caco-2 cell homogenates demonstrated both lactase and glucosidase activities when incubated with lactose and quercetin 3-glucoside, respectively. This use of the Caco2 cell model appears to be a simple and useful system for studying bioavailability of whole food phytochemicals and may be used to assess differences in bioavailability between foods.  相似文献   

8.
While isomeric profiles of carotenoids found in food often differ from those in body fluids and tissues, insights about the basis for these differences remain limited. We investigated the digestive stability, relative efficiency of micellarization, and cellular accumulation of trans and cis isomers of beta-carotene (BC) using an in vitro digestion procedure coupled with human intestinal (Caco-2) cells. A meal containing applesauce, corn oil, and either water-soluble beadlets (WSB) or Dunaliella salina (DS) as a BC source was subjected to simulated gastric and small intestinal digestion. BC isomers were stable during digestion, and the efficiency of micellarization of cis-BC isomers exceeded that of all-trans-BC isomers. The cellular profile of carotenoids generally reflected that in micelles generated during digestion, and intracellular isomerization was minimal. These data suggest that cis isomers of BC are preferentially micellarized during digestion and transferred across the brush-border surface of the enterocyte from mixed micelles with similar efficiency as all-trans-BC at the concentrations of the carotenoids utilized in this study.  相似文献   

9.
A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P < 0.05) by addition of TG (2.5% v/w) to the meal and was dependent on fatty acyl chain length in structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of carotenoids.  相似文献   

10.
Chlorella is a nutrient-rich microalga that contains protein, lipid, minerals, vitamins, and high levels of lutein. This study evaluated the bioavailability of lutein from Chlorella vulgaris using a coupled in vitro digestion and human intestinal Caco-2 cell model. Lutein bioaccessibility was low, and approximately 75% of total C. vulgaris lutein was not micellized during the digestion process but remained in the insoluble digestate. Microfluidization improved lutein micellization efficiency during C. vulgaris digestion. C. vulgaris was microfluidized at a pressure exceeding 10000 psi, and the cell surface disruption was visualized by scanning electron microscopy. The mean C. vulgaris particle size was reduced from 3.56 to 0.35 μm with the microfluidization treatment. C. vulgaris microfluidization at 20000 psi was three times more efficient for aqueous lutein micelles production as compared with untreated C. vulgaris, and the final lutein content accumulated by intestinal Caco-2 cells was also higher with microfluidization. C. vulgaris lutein stability was not affected by microfluidization. These results indicate that microfluidization may be useful for improving lutein bioaccessibility from C. vulgaris during food processing.  相似文献   

11.
Baby spinach ( Spinacia oleracea L.) was grown under three types of shade netting (high transmittance, spectrum-altering, and low transmittance) to study the effect on the concentrations of vitamin C (ascorbic acid and dehydroascorbic acid), carotenoids, and chlorophyll and on the visual quality of the leaves. The spinach was sown in April and August and harvested at two growth stages. After harvest, leaves were stored in polypropylene bags at 2 and 10 degrees C. Shading significantly decreased the ascorbic acid concentration of April-sown spinach by 12-33%, but in the August-sown spinach, the response was inconsistent. Concentrations of total carotenoids and total chlorophylls were significantly higher under the nettings in many cases, especially under the spectrum-altering and low-transmittance nettings. Postharvest visual quality and postharvest persistence of the compounds analyzed were not greatly affected by shading. We conclude that these shade nettings are acceptable to use in baby spinach production when it comes to the studied aspects of internal and external quality of the produce.  相似文献   

12.
Taraxacum formosanum, a well-known Chinese herb shown to be protective against hepatic cancer as well as liver and lung damage, may be attributed to the presence of abundant carotenoids and chlorophylls. However, the variety and content of chlorophylls remain uncertain. The objectives of this study were to develop an high-performance liquid chromatography-diode array detection-mass spectrometry method for determination of chlorophylls in T. formosanum and preparation by column chromatography. An HyPURITY C18 column and a gradient mobile phase of water (A), methanol (B), acetonitrile (C), and acetone (D) could resolve 10 chlorophylls and an internal standard Fast Green FCF within 30 min with a flow rate at 1 mL/min and detection at 660 nm. Both chlorophylls a and a' were present in the largest amount (1389.6 μg/g), followed by chlorophylls b and b' (561.2 μg/g), pheophytins a and a' (31.7 μg/g), hydroxychlorophyll b (26.5 μg/g), hydroxychlorophylls a and a' (9.8 μg/g), and chlorophyllides a and a' (0.35 μg/g). A glass column containing 52 g of magnesium oxide-diatomaceous earth (1:3, w/w) could elute chlorophylls with 800 mL of acetone containing 50% ethanol at a flow rate of 10 mL/min. Some new chlorophyll derivatives including chlorophyllide b, pyropheophorbide b, hydroxypheophytin a, and hydroxypheophytin a' were generated during column chromatography but accompanied by a 63% loss in total chlorophylls. Thus, the possibility of chlorophyll fraction prepared from T. formosanum as a raw material for future production of functional food needs further investigation.  相似文献   

13.
Chlorophyll in soybean represents a downgrading factor for the crops. Five Brazilian cultivars were harvested between R(6) and R(8) stage of development (Fehr & Caviness scale) and dried at 25 degrees and 40 degrees C. The effect of maturity stages and two drying conditions after harvest were studied to achieve reduction of moisture and chlorophylls to acceptable levels. When seeds were dried at 25 degrees C, even harvesting at early stages of development such as R(6), the green pigments were almost degraded, and 16 ppm of chlorophyll were found at maximum, accompanied by loss of moisture. Moisture and chlorophyll declines as seed matures, but at intermediary stages (R(6)-R(7)), chlorophyll degrades first, so the rate of moisture loss should not be used to predict chlorophyll contents. At 40 degrees C, complete degradation of chlorophyll pigments is only achieved when seeds are swathed from R(7) stage up, otherwise the seed quality could be compromised. Slow drying allows almost complete removal of green pigments, even when seeds are swathed a few days before the physiological maturity stage.  相似文献   

14.
The separation and identification of pigments, chlorophylls, and carotenoids of seven teas and fresh leaf of tea (Camellia sinensis) by high-performance liquid chromatography (HPLC) are described. HPLC was carried out using a Symmetry C(8) column with a photodiode array detector. Pigments were eluted with a binary gradient of aqueous pyridine solution at a flow rate of 1.0 mL/min at 25 degrees C. HPLC analyses achieved the separation of more than 100 pigment peaks, and 79 pigment species, 41 chlorophylls, and 38 carotenoids were detected. The presence of degraded chlorophylls was a common feature, and the number and the variety of pigments differed with tea species. Generally, the numbers of chlorophyll species tended to increase with processing steps, while carotenoid species were decreased, especially by heating. Particularly in green teas, a change of carotenoid structure, conversion of violaxanthin to auroxanthin, occurred. In hot water extracts of teas, both chlorophylls and carotenoids were also detected, but the concentration of chlorophylls was less than 2% as compared with acetone extracts. The pigment compositions were compared between tea species, and they are discussed in terms of the differences in their manufacturing processes.  相似文献   

15.
Extraction of pigments (chlorophylls and carotenoids) from marjoram (Origanum majorana L.) with supercritical carbon dioxide was investigated. The aim of this study was to map the effects of extraction pressure and temperature on the yield of coloring materials by applying a 3(2) full factorial design with three repeated tests in the center of the design. For comparison, laboratory and pilot plant Soxhlet extractions were carried out using ethanol and n-hexane solvents. The compositions of pigments in marjoram extracts were determined by HPLC. Similar amounts of carotenoids, in addition to 40% of chlorophylls and their derivatives, were recovered from the supercritical fluid extraction, in comparison to the ethanol Soxhlet extraction.  相似文献   

16.
In this study, we measured the effect of ginsenosides on glucose uptake using the Caco-2 cell system. At submicromolar concentrations, these compounds exhibited marked effects on the rate of glucose transport across the differentiated Caco-2 cell monolayer. Compound K (CK), the main intestinal bacterial metabolite of the protopanaxadiol ginsenosides, significantly enhanced the steady-state glucose transport rate to about 50% of the control sample rate (from 1.54 +/- 0.09 to 2.25 +/- 0.15 nmol/min). Conversely, the protopanaxatriol ginsenoside Rg1 inhibited glucose transport to about 70% of the original rate (from 1.54 +/- 0.09 to 1.02 +/- 0.05 nmol/min). Consistent with the effect on glucose uptake rate, CK and Rg1 conferred a significant and paralleled alteration on both the protein and mRNA expression levels of the Na+/glucose cotransporter 1 (SGLT1) gene. Unlike SGLT1, there is no significant alteration on the protein or mRNA levels of GLUTs in CK- or Rg1-treated cells. Taken together, our results demonstrate that ginsenosides CK and Rg1 elicited potent enhancing and suppressing effects, respectively, on glucose uptake across human intestinal Caco-2 monolayer through modulation of SGLT1 expression.  相似文献   

17.
Milk proteins, during digestion, produce a range of biologically active peptides. Among those are peptides that may enhance iron absorption. The objective of this project was to investigate the effect of isolated milk peptides on iron uptake. Cow's milk, 0% fat, was subjected to a modified in vitro digestion process. The milk digest was further fractionated by gel filtration. All eluted fractions as well as beta-casein synthetic peptides (a tripeptide and a hexapeptide) were subsequently tested for effects on iron uptake with Caco-2 cell monolayers. Fractions of milk digests obtained through Sephadex G-25 gel filtration had a significant enhancing effect on iron uptake in Caco-2 cells compared to nonfractionated milk digests. Two fractions (P = 0) and the hexapeptide (P < 0.0001) enhanced iron uptake by up to 3-fold, whereas others and the tripeptide had no effect. These results suggest that selected peptides produced during the in vitro digestion of milk may enhance iron absorption; however, it remains to be demonstrated whether this effect may be nutritionally significant.  相似文献   

18.
Stay-green mutants have been very useful for elucidating the chlorophyll catabolism pathway in higher plants. In the present study the possible relationship between the retention/catabolism of chlorophylls and the carotenogenic process taking place in ripening Capsicum annuum (L.) fruits has been investigated. Phytylated, dephytylated and oxidized chlorophyll derivatives, and total and individual carotenoids were analyzed over the whole ripening period. In general terms, the biosynthesis of carotenoid pigments taking place during the ripening of C. annuum fruits is identical in both red and stay-green lines, so that the carotenogenic process is independent of the retention of chlorophylls. However, it has been found that the carotenogenesis is slowed in the stay-green lines. Therefore, although the catabolism of chlorophylls and biosynthesis of carotenoids seem to be separate processes, the fact that they are taking place in the chloroplast/chromoplast suggests that some kind of interaction between the two processes may occur at different levels. Plastids corresponding to the wild genotype (red color fruit phenotype) show high plastoglobuli density and thylakoids are almost absent, whereas in the case of stay-green phenotype, thylakoids and plastoglobuli coexist in the same plastid (chlorochromoplasts). The role of carotenoid pigments on the physiological mechanism for protecting the preserved thylakoid structures is discussed.  相似文献   

19.
Changes in chlorophyll and carotenoid pigments of five olive (Olea europaea L.) varieties destined for milling were investigated at six consecutive ripening stages. There was a manifest dependence between olive variety, moment of picking, and chloroplast pigment composition of the fruits. Although the content of chlorophylls and carotenoids differed with fruit variety, ripening always involved their gradual loss, which becames more pronounced with increased presence of anthocyanin compounds. The relative rates of disappearance of chlorophylls and carotenoids were markedly different between varieties, implying that the catabolism of these pigments takes place at a relative rate inherent to each variety. The varieties less rich in pigments showed the most extreme behavior. The highest relative rate of disappearance was observed in fruits of the Blanqueta variety, and the lowest was observed in those of Arbequina. The chlorophyll a/chlorophyll b ratio remained practically constant during ripening, with a value very similar for Hojiblanca, Picual, Cornicabra, and Blanqueta, but much higher for Arbequina, implying that the structure of the photosynthetic apparatus is different in the latter variety. In the five varieties studied, lutein was the slowest carotenoid to be degraded, so that its percentage in the fruits increased with ripening, whereas beta-carotene was the fastest to disappear. In ripe fruits covered with anthocyanins, chloroplast pigments were retained in both skin and pulp, with the rate of disappearance being much higher in the latter.  相似文献   

20.
Although yellow maize (Zea mays) fractions and products are a source of dietary carotenoids, only limited information is available on the bioavailability of these pigments from maize-based foods. To better understand the distribution and bioavailability of carotenoid pigments from yellow maize (Z. mays) products, commercial milled maize fractions were screened for carotenoid content as were model foods including extruded puff, bread, and wet cooked porridge. Carotenoid content of maize fractions ranged from a low of 1.77-6.50 mg/kg in yellow maize bran (YCB) to 12.04-17.94 mg/kg in yellow corn meal (YCM). Lutein and zeaxanthin were major carotenoid species in maize milled fractions, accounting for approximately 70% of total carotenoid content. Following screening, carotenoid bioaccessibility was assessed from model foods using a simulated three-stage in vitro digestion process designed to measure transfer of carotenoids from the food matrix to bile salt lipid micelles (micellarization). Micellarization efficiency of xanthophylls was similar from YCM extruded puff and bread (63 and 69%), but lower from YCM porridge (48%). Xanthophyll micellarization from whole yellow corn meal (WYCM) products was highest in bread (85%) and similar in extruded puff and porridge (46 and 47%). For extruded puffs and breads, beta-carotene micellarization was 10-23%, but higher in porridge (40-63%), indicating that wet cooking may positively influence bioaccessibility of apolar carotenes. The results suggest that maize-based food products are good dietary sources of bioaccessible carotenoids and that specific food preparation methods may influence the relative bioaccessibility of individual carotenoid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号