首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
详细阐述了灌区耗水量的研究进展,指出了灌区耗水量在定性定量方面存在的问题。灌区社会经济的发展、用水结构和灌溉用水水平的变化等因素都对灌区的耗水量产生明显影响。随着灌区耗水量的增加,灌区水资源供需矛盾日益突出,参与灌区水循环的水量减少,使区域水平衡要素关系发生深刻变化,从而导致灌区水环境破坏,并引发严重的生态环境问题。  相似文献   

2.
灌区耗水量变化对地下水均衡影响研究   总被引:1,自引:0,他引:1  
从宝鸡峡灌区水资源形成及转化的角度出发界定了灌区耗水量的概念。通过对灌区水量平衡关系分析,建立了灌区地下水量平衡模型,通过模型计算与分析,结果表明渠系及田间入渗补给量、地下水开采量是主要的地下水平衡要素;宝鸡峡灌区1991~2003年渠系蒸发及浸润损失量和渠系渗漏补给量总体呈递减的趋势,当渠首引水量和渠系利用系数一定时,渠系蒸发及浸润损失量和渠系渗漏补给量呈反比关系。灌区田间灌溉耗水量与田间灌溉入渗补给量也呈递减趋势;灌区地下水耗水量和地下水开采量总体呈上升趋势。  相似文献   

3.
为确定限制引水背景下河套灌区土壤水-地下水动态及其转化关系,为优化农田水管理策略提供理论依据,选取河套灌区典型斗渠区域,基于2年土壤水、地下水的监测数据,分析在不同作物种植区、不同灌溉期的农田土壤水、地下水的动态变化规律。运用水量平衡法对地下水浅埋区农田土壤水与地下水的转化关系进行定量研究,结果表明:生育期内农田土壤水分变化属于“灌溉降水入渗补充-腾发消耗型”;受灌溉影响,不同时期地下水埋深动态具有显著的灌溉型特征,土壤水渗漏补给地下水明显抬升地下水位,地下水排水和潜水蒸发又降低地下水位;在作物生育期内,土壤水与地下水进行双向补给,且不同时期具有不同的转化特征;研究区2年生育期内灌溉降水补给土壤水分别为544.56mm和541.85mm,平均腾发量为465.5mm和434.8mm,土壤储水量减少61.96mm和63.1mm,土壤水补给地下水为207.73mm和236.94mm。研究可为当地及相近地区农业节水灌溉提供科学依据。  相似文献   

4.
河套灌区陆面水循环模式研究   总被引:4,自引:0,他引:4  
根据灌区水循环的一般特征及河套灌区独特特征,建立了包括地表水、土壤水和地下水模型的河套灌区水循环数学模型,并在模型求解过程中实现三者的简单耦合。分别计算了灌区生育期和秋浇期的净灌溉水量、土壤含水量变化及渗漏情况,地下水变化情况等。模拟结果显示,河套灌区水循环过程为一种"负水平衡"的垂向水循环。  相似文献   

5.
基于溴离子示踪的干旱地区潜水蒸发规律研究   总被引:1,自引:0,他引:1  
【目的】定量研究干旱地区潜水蒸发规律。【方法】以河套灌区义长灌域为研究区,采用人工示踪剂溴离子示踪法研究了盐荒地潜水蒸发规律,通过获取试验期间研究区内6个试验点不同土层深度土壤溴离子质量浓度、含水率、含盐量数据,分别利用化学示踪法、水均衡法及经验公式法计算了潜水蒸发量,对比了3种方法的结果及适用性并分析了潜水蒸发量与不同土质、不同土壤含盐量的关系。【结果】利用溴示踪方法得到研究区7月6日—8月18日潜水蒸发总量为35.20 mm,平均潜水蒸发系数为0.28;水均衡法所得结果为32.29 mm,与示踪法所得结果的相关系数达到0.96;由于研究区域土壤异质性强,且干旱区水文地质资料较为匮乏,经验公式法参数获取难,水均衡法所需实测资料多,在研究区适用性不高。而溴示踪法操作简单、经济实用,适用性强,较其他2种方法更为可靠。研究区潜水蒸发量随黏粒质量分数的增加而不断减小,二者之间的相关系数达到了0.80,尤其当土壤中存在黏土夹层时,将降低潜水蒸发速率。【结论】研究区土壤含盐量的变化量随潜水蒸发量增加而不断增加,表明盐荒地强烈的蒸发作用是造成耕地与荒地水盐交换的驱动力,直接影响灌区的水循环过程。  相似文献   

6.
青铜峡灌区地下水埋深演变及驱动要素贡献率解析   总被引:1,自引:0,他引:1  
【目的】定量分析青铜峡灌区地下水埋深演变规律及影响因素,科学指导灌区合理调控地下水位,维持水系统健康平衡。【方法】采用水量平衡法分析了青铜峡灌区1998—2017年地下水时空演变特征及地下水补排平衡贡献率。【结果】1998—2017年青铜峡灌区地下水埋深增大了0.69 m,增加速率为0.038 m/a,年内地下水埋深呈双峰双谷特征,空间上银川灌区地下水埋深增大明显,银川市区和银北灌区的大武口区形成大漏斗区。年际地下水变化的主要影响要素依次为渠系渗漏补给(39.71%)侧向排泄(28.24%)潜水蒸发(14.16%)田间入渗补给(7.46%);4—8月和11月渠系渗漏补给对地下水变化贡献最大(45.33%),9—10月和12月地下水侧向排泄是地下水变化第一驱动因素(45.6%);空间上,水位变化的第一驱动要素均为渠系渗漏补给,第二驱动要素各有不同,银川、银南和河东灌区为侧向排泄,银北灌区为潜水蒸发。【结论】引黄水量持续减少是青铜峡灌区地下水埋深增大的最主要原因,而合理的地下水埋深对于维持灌区的生态平衡具有重要意义。  相似文献   

7.
根据内蒙古自治区河套灌区解放闸灌域多年遥感蒸散发数据(2000-2014年),分析了农田实际蒸散发年际变化、空间分布特征以及其与地下水埋深的相关性。结合水量平衡模型对灌域灌溉用水效率进行了评价,同时对大型灌区续建配套及节水改造以来灌域水循环要素年际变化进行了统计分析。结果表明:解放闸灌域农田蒸散发量年际变化呈增加趋势,多年平均蒸散发量为8.56亿m~3(597.30mm);2000、2003、2006、2009、2012和2014年农田蒸散在空间上表现为西部和东北部区域高于其他区域,其空间差异性并未随时间发生明显变化,与地下水埋深空间分布特征相似,蒸散发高值区域发生在地下水埋深较浅区域,潜水蒸发对农田蒸散发量影响不可忽视。节水改造实施以来,灌域净灌溉引水量有所减少,灌溉水利用系数得到提高,地下水位由1.76m降到2.16m,由此表明了节水改造对该地区生态环境改变的积极影响。  相似文献   

8.
玛纳斯河下游灌区地下水埋深变化特征及成因分析   总被引:1,自引:1,他引:0  
根据新疆玛纳斯河下游莫索湾灌区具有代表性的14个长期观测井多年(1998—2010年)地下水位数据,运用水量均衡法和Mann-Kendall突变检验法分析了灌区地下水埋深动态特征及成因。结果表明,研究区除147团地下水埋深略有减小外,其他各区地下水埋深均呈增大趋势,其中150团地下水埋深增大最为明显。灌区地下水埋深变化存在时空差异,并且在2004年之后的不同年份出现了变化趋势转折,其根本原因是受到了灌溉入渗和地下水开采的影响。灌区地下水埋深年际、年内变化基本都呈现出人工-自然双重影响下的变化特征,年内变化最为明显,且不同区域影响地下水位变化的主次因素有所不同。总体而言,人类活动已经成为玛纳斯河下游灌区地下水埋深变化的主要驱动力,其次是自然因素,其中灌溉入渗、地下水开采和潜水蒸发是影响研究区地下水埋深变化的主要因素。  相似文献   

9.
藉助于遥感图片与GIS技术以及灌区内的潜水蒸发试验场试验结果,直接估算叶尔羌河灌区区域性潜水蒸发量。用遥感图所示确定土地利用类型,用GIS技术对不同土地类型与不同地下水等埋深区面积进行统计,用试验场内不同土质不同潜水埋深的潜水蒸发观测资料(概括成经验公式)按不同土地类型计算潜水蒸发量,其中有植被的土地的潜水蒸发用降低蒸发面法处理。用本方法计算得潜水蒸发量结果与用水均衡法估算结果相近  相似文献   

10.
小麦/玉米套作及其相应单作群体棵间土壤蒸发规律   总被引:1,自引:1,他引:0  
通过大田实验,对比分析河套灌区小麦/玉米套作与单作小麦、单作玉米棵间土壤蒸发的差异及其规律。结果表明,单作小麦、小麦/玉米套作和单作玉米的棵间土壤蒸发量占总耗水量的比例分别为28.8%、38.6%和29.9%;套作群体全生育期的棵间土壤蒸发量显著高于单作,且日均棵间土壤蒸发量为1.06 mm/d,高于单作小麦0.85 mm/d和单作玉米0.90 mm/d。不同生育期棵间土壤蒸发的日变化规律基本一致,峰值出现在中午12:00~14:00之间,不同种植模式下棵间蒸发占蒸散发的比例与叶面积指数均呈良好的指数关系,同时棵间土壤蒸发与表层土壤含水率均呈脉冲波动变化,且灌溉后波动幅度增大。  相似文献   

11.
基于水足迹的河套灌区多目标种植结构优化调整与评价   总被引:1,自引:0,他引:1  
针对黄河水量逐年减少和农业面源污染日趋严重等因素导致内蒙古河套灌区农业用水短缺、生态环境不断恶化的问题,本文将水足迹概念(蓝水足迹、绿水足迹、灰水足迹)引入多目标优化模型和多目标决策评价模型,对灌区有限的水资源进行合理配置。以河套灌区为例,本文选取小麦、玉米、葵花、瓜类、番茄5种典型作物,从经济、社会、资源以及生态4个角度对作物的种植结构进行优化,并耦合模糊层次分析和TOPSIS法对多种优化方案(多目标优化方案、单目标优化方案、现状情景方案)进行评估优选。结果表明,在保障粮食作物产量的基本需求下,减少粮食作物小麦、玉米的种植面积,增加经济作物葵花、番茄和瓜类的种植面积,可以达到增加经济收入、保证社会公平性、提高水资源利用效率及减少粮食生产过程中给环境带来负面效应的目的。并且,评价结果表明多目标优化方案兼顾经济、社会、资源和生态多方面,优化结果优于单目标优化结果和现状情景。研究可为河套灌区及类似地区作物种植结构调整提供相应的理论依据和决策支持,助力灌区可持续发展。  相似文献   

12.
以拉萨河下游河谷地区为研究对象,依据1989-2010年拉萨、墨竹工卡气象站气象资料和Landsat卫星遥感影像提取的主要作物(青稞、冬小麦及油菜)种植面积,计算不同典型年份研究区总灌溉需水量;结合拉萨水文站1989-2010年径流序列资料,分析区域灌溉用水的供需平衡.结果表明:拉萨河谷地区的种植模式以粮食作物为主,河谷区种植面积在1990-2010年间增长约8%,作物种植结构没有发生显著性的变化.农作物种植面积的增加引致灌溉需水量大幅度增加,2010年的灌溉需水量达到16亿m3,比1990年增长约35%,青稞为灌溉需求最大的作物.河流径流量及灌溉用水需求的季节性变化存在差异,每年4-6月灌溉供需关系较为紧张,灌溉量占径流量近10%~20%,每年12月至次年4月正值河流枯水季,尽管该期间灌溉需水量较低,但对水资源造成的压力也是不容忽视的.拉萨河谷地区水资源供需关系较为紧张.  相似文献   

13.
河套灌区蒸散发分析及耗水机制研究   总被引:2,自引:1,他引:1  
以河套灌区义长灌域永联试验区为研究对象,建立水均衡方程。首先,分析了水均衡法估算出的蒸散发量的合理性、蒸散发量与水均衡要素的关系以及根系层不同取土观测深度对水均衡法估算蒸散发量的影响。然后,分析了永联全区的水均衡要素构成以及土壤水和地下水的水分消耗过程。最后,分析水均衡法估算蒸散发量需注意的问题。  相似文献   

14.
根据宝鸡峡灌区11个气象站近30 a的气象及近20 a种植面积资料,分析了气候及作物种植结构的变化特征,计算了作物需水量和农业需水量,研究了灌区农业需水量的演变趋势,并利用主成分回归分析法揭示了影响农业需水量变化的驱动因素.结果表明:灌区气温呈显著上升趋势,相对湿度和风速呈显著下降趋势,蒸发量和日照时数略有增多,降水量有所减少.灌区农业种植结构变化较大,粮食作物与经济作物种植面积比例显著降低,由1991年的4.08减小为2010年的1.83;粮食作物与农作物总播种面积比例也呈下降趋势,由1991年的0.46减小为2010年的0.40.灌区小麦、玉米、油菜、棉花等4种主要作物需水量呈递增趋势,其中油菜需水量递增速率最快,约为3.558 mm/a;灌区农业需水量呈递减趋势,其递减速率为3.35×107m3/a.影响农业需水量变化的主要驱动因素为种植面积、降水量和蒸发量.降水量的减少和蒸发量的增多使得作物需水量明显增多,而农作物种植面积的减少,引起农业需水量的显著减少.  相似文献   

15.
本文以辽宁海滨灌区为例,以现状灌溉制度为基础,将《辽宁省行业用水定额》与《辽宁省各种作物灌溉制度分析》有机结合,确定灌溉定额.水量平衡分析过程中,将灌溉面积和可供水量分别分区,充分利用区间径流来减少水库供水,实现优化水资源配置,为灌区水资源科学合理利用提供决策性依据,也可供类似工程设计参考.  相似文献   

16.
河西绿洲灌区主要作物需水量及作物系数试验研究   总被引:2,自引:0,他引:2  
利用Penman-Monteith公式计算了甘肃张掖绿洲主要作物各生育期参考作物蒸散量,利用农田水量平衡方程及土壤水分胁迫系数计算了作物实际蒸发蒸腾量,并计算比较了充分灌溉和非充分灌溉条件下不同生育期作物需水特征,确定了非充分灌溉条件下主要作物的作物系数。结果表明,非充分灌溉条件下,主要作物各生育期需水规律和充分灌溉具有一致变化趋势。非充分灌溉条件下,小麦、玉米、马铃薯全生育期作物系数平均值分别为0.81、0.7和0.73。在全生育期当中,随生育期的延续,主要作物叶面蒸腾比例逐渐增大,棵间蒸发逐渐减少。  相似文献   

17.
内蒙古河套灌区冻融土壤水分迁移简化模型   总被引:1,自引:0,他引:1  
根据内蒙古河套灌区义长灌域1990—1999年和2002—2007年14个冻融循环的实测资料,由水量平衡原理,估算了冻结过程中地下水向冻层的迁移量,以及消融过程中冻层水分对地下水的补给量和包气带含水率的变化。提出了通过冻结初期地下水埋深、最大地下水埋深和融通时地下水埋深3个实测实验数据,估算冻融循环中水分迁移量的方法,并提出了用经验公式拟合正冻期地下水降深、最大冻深和消融期地下水位上升高度的方法。  相似文献   

18.
小麦间作向日葵是一种典型的河套灌区种植模式,研究运用WIN ISAREG模型确定了参考作物蒸发蒸腾量,结合立体种植特征,采用综合作物系数法确定小麦间作向日葵全生育期作物耗水量。同时通过实际处理结果对模型参数进行率定与验证,最终对小麦间作向日葵实际灌溉制度进行准确的评价并进行不同方案的优化,得到试验区如配有井灌等条件,优选灌溉方案为土壤含水率下降至适宜含水率70%时实施灌溉,灌水量为补充根系层水量至田间持水量85%所需水量;若灌水水源仅为黄河水,则优选灌溉方案为整个生育期灌5水,灌水量为达到根系层中总有效水量的80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号