首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
温室环境-作物湿热系统CFD模型构建与预测   总被引:8,自引:0,他引:8  
以栽有番茄的Venlo型两连栋玻璃温室为研究对象,对作物蒸腾和土壤蒸发与室内外环境因子之间的关系进行了分析。在充分考虑太阳辐射影响和室内水蒸气传输过程基础上,结合多孔介质模型,构建了求解温室环境〖CD*2〗作物湿热系统的CFD数学模型,并对边界条件的设置进行了探讨。采用Fluent软件对不同天气条件和种植密度温室内温度分布模式进行了3-D数值模拟与预测。结果表明:室内温、湿度模拟值与实测值平均相对误差分别为5.7%和2.1%,CFD模型有效,边界设置合理。晴天室内作物区平均温度较阴天时高1.6℃左右,相对湿度约低3%,太阳辐射对温、湿度分布有影响;双密度栽培作物区温度较单密度高0.8℃,相对湿度高19%。温室背风侧温、湿度略高于迎风侧,作物区温、湿度分布比较均匀,作物和土壤腾发作用对室内温、湿度分布有影响。  相似文献   

2.
基于有限差分法的日光温室地温二维模拟   总被引:4,自引:0,他引:4  
为定量分析日光温室土壤热传导过程,合理设置地温提高措施,采用有限差分法构建了日光温室非稳态二维地温模拟模型,并在西北地区日光温室内对该模型进行了试验验证.结果表明:模型能较好模拟冬季日光温室内多层地温,模拟值和实测值之间平均绝对误差为1.3℃、相对误差为9.5%、均方根误差为1.5℃.  相似文献   

3.
为减少冬季日光温室加温能耗,基于空气流动原理设计了温室后墙保温系统。该系统利用风机将温室白天蓄积的热量储蓄在后墙的夹层中与后墙的保温室内,经过热量传导与交换,保证太阳能的高效利用。试验结果表明,在冬季白昼为晴朗、连阴雾霾天(极端天气)下蓄热温室夜间空气温度分别比对照温室平均高3.12和3.17℃,土壤温度分别比对照温室平均高3.2和2.78℃。日光温室蓄热能力的提高,实现了番茄的安全过冬生产。该研究成果对日光温室结构的改进、温度调控有重要意义。  相似文献   

4.
基于温室内植物冠层能量平衡关系,建立了与温室内、外气象条件和温室结构相关的冠层温度模拟机理模型,并在华北地区文洛型温室内对该模型进行了试验验证.结果表明:模型能较好地模拟冬季温室内植物冠层温度,模拟值和实测值之间的相关系数为0.797 5,均方根误差为1.3℃.建立了冠层温度的BP神经网络模型,模型相关系数为0.783 5,均方根误差为0.6℃.在所建神经网络模型基础上,运用敏感性分析法对影响冠层温度的各因素进行重要性分析和排序,得出影响冠层温度的最重要因子是室内温度,其次为蒸腾速率、室外太阳辐射和室内相对湿度.  相似文献   

5.
以冬季日光温室为研究对象.综合考虑温度和湿度因子对口光温室环境的影响,应用模糊控制与PID控制相结合的方法实现对北方日光温室冬季温度的控制,并利用MATLAB命令方式和Fuzzy Logic Toolbox实现对该控制系统的仿真.仿真实验结果证明:本系统对于日光温室温度的控制效果比较理想,在外界扰动较大的情况下能够快速达到设定的温度值,抗干扰能力强,反映速度快,有较强的鲁棒性.  相似文献   

6.
为了减少温室加温能耗,基于植物生理设计了温室地下蓄热系统,测试了系统冬季白昼蓄热与夜间加温时温室内空气温度、湿度和地坪温度和室外气温、土壤温度、相邻未蓄热温室气温和地温。结果表明:在冬季白昼为晴朗、多云时,系统蓄热可分别使地坪温度平均高于未蓄热温室地温4.8℃,4.4℃,具有良好的蓄热效果;阴天时蓄热时间应适当缩短,但由于长期蓄热,其地温仍高于相邻温室2.6℃。在白昼为晴朗、多云、阴天的情况下,夜间系统加温使温室内气温分别高于相邻未蓄热温室3.1℃,2.0℃,1.5℃,与外界分别保持3.95℃,3.21℃,2.35℃的平均温差,在加温期间具有良好的加温效果,至少可以满足温室加温能耗的35.7%。  相似文献   

7.
为了深入研究大棚通风对大棚内温、湿度影响,基于能量与物质平衡原理建立了大棚内部温、湿度预测模型,对大棚内部温、湿度进行预测模拟,并以试验观测数据对模型进行了检验。结果表明,模拟晴天天窗开度50%(处理1)与100%(处理2)时,大棚温度预测值和实测值决定系数分别为0.98、0.99,相对湿度预测值和实测值决定系数为0.9,模型能较好的预测棚内温、湿度;大通风面积对大棚内温、湿度影响大于小通风面积,通风面积对大棚内温度影响比相对湿度影响明显。研究结果可为通风条件下塑料大棚温、湿度环境控制研究及南方塑料大棚生产管理提供参考依据。  相似文献   

8.
正温度是植物生长的动力。日光温室水循环储热系统、日光温室后墙保温系统、智能通风地温加热系统这3种增温技术均可使温室平均温度提高3℃左右,提高日光温室的冬季利用率,达到"高效、低耗"的目标,保证喜温果菜安全越冬生产,节药、节水、节能,提高蔬菜品质和生产质量效益。1.日光温室水循环储热系统日光温室水循环储热系统由吸热处理和水循环系统组成。吸热处理是将特殊的吸热材料贴附或涂刷在日光温室内的后墙壁上,用塑料薄膜包裹在暖  相似文献   

9.
单栋塑料温室内多因子综合CFD稳态模拟分析   总被引:1,自引:0,他引:1  
为分析单栋塑料温室内的综合环境:气流场、温度场、湿度场、CO2浓度场,建立了包括温室内外空间、室内作物和土壤层等的温室环境几何模型。将温室内的湿空气看作水蒸气、CO2和干空气的混合气体,在分析温室中太阳辐射、作物与环境的质热交换,动量及质能传递过程的基础上,对单栋塑料温室内的环境因子进行了稳态模拟。温室内热辐射传递过程采用蒙特卡罗法模拟方法;将室内作物简化为连续固体换热模型,采用剪应力输运模型(SST)表述温室内的空气紊流。结果显示:温室通风对温度、湿度和CO2分布的影响很大,温室内部上风向温度低,湿度小,同时CO2浓度也不高;温室下风向作物冠层的环境未达到优化状态;模型的预测值低于实测值,但变化规律相似,温度、湿度、CO2含量的预测相对误差分别低于8%、6%和7%。  相似文献   

10.
为研究设计适用于南疆和田地区日光温室冬季夜间增温蓄热设备,设计了日光温室集散热增温系统,改进了系统集散热器,测试了系统冬季夜间增温蓄热效果,分析了系统对日光温室空气温度、相对湿度以及0cm深土壤温度和15cm深土壤温度的影响和系统集放热效率。试验结果表明:系统在典型晴天试验温室较对照温室温度可以增温4.3℃,试验温室较对照温室平均相对湿度降低8.65%;阴天试验温室较对照温室平均温度增温2.4℃,平均相对湿度降低6.8%,且系统综合平均集热效率为52.6%,表明该日光温室增温系统在和田地区富余的光热资源条件下具有显著效果。  相似文献   

11.
为了在改变温室通风口开度的条件下模拟室内气温,根据热量平衡原理,考虑太阳辐射、长波辐射、对流、通风及作物蒸腾等5个主要模块,对温室系统的热量交换进行描述,构建了温室气温动态变化的数学模型,然后通过Simulink仿真平台搭建了以通风为输入以室温为输出的模型仿真框图,并利用典型天气条件下的实测数据对仿真结果进行检验。仿真结果证明了该模型的有效性:在晴天和阴雨天,标准误差分别为0.755 8℃和0.096 3℃,仿真有效性指数分别为92.29%和92.76%。  相似文献   

12.
为了观察中国北方地区多间日光温室每个屋子的温湿度分布和夜间散热过程,利用Penmane-Monteith法土壤水分蒸发理论和计算流体动力学(CFD)方法进行环境温湿度模拟分析。试验时,在温室内布置了温湿度传感器、热通量传感器和土壤温度(水分)传感器,并进行了多点测试。测试分析得出:多间日光温室的室内最高温度为37℃,夜间温度为5℃,凌晨最低温度为2℃左右。利用Penmane-Monteith蒸发公式算出温室土壤的蒸发速率得出白天和夜间的蒸发率分别为6.07×10-5kg/m2·s和2.28×10-6kg/m2·s。通过模拟发现:室外平均风速0.5m/s时,室内最大流速能达0.33m/s(出现在屋子Ⅱ)。最终研究得出:该类型温室需要加强保温措施才能满足中国北方地区温室生产要求。  相似文献   

13.
为提高日光温室土地利用率、增大日光温室操作空间,设计了一种新型南北走向的大跨度温室。该温室在夏天种植作物时,室内温度较高,尤其在晴天,即便通风口全开进行自然通风,中午温室内温度亦可高达40 ℃以上。为降低大跨度温室内温度,该文提出了一种高压喷雾降温方法,高压喷雾装置由过滤器、储水箱、管道、高压泵、控制器解压阀和喷头组成。根据现有的研究理论,计算温室的喷雾量为0.27 g/(m2·s),选择锥心式喷头,喷头孔径为0.3 mm,雾滴直径为0.02~0.03 m,喷头流量为1.3~2.4 g/s,喷头安装密度为0.3个/m2。试验期间设置了60 s开300 s关、90 s开300 s关和120 s开300 s关的3种喷雾运行模式,并在夏季典型晴天开展了喷雾降温试验,选择室外环境差异小的3个典型晴天的3个时段进行比较。试验结果表明,3种喷雾系统运行模式下,试验温室与对照温室相比,气温分别要低3.0、5.1和6.0 ℃,空气相对湿度分别增加10.2%、20.1%和23.8%。同等室外环境条件下,3种喷雾系统运行模式下的喷雾蒸发冷却效率分别为26.3%、39.4%和47.2%,从降温效果、空气相对湿度增加量及喷雾蒸发冷却效率结合来看,系统运行120 s关闭300 s的喷雾模式的降温效果最为理想。综合认为,该研究为北方大跨度温室夏季降温调控奠定了基础。   相似文献   

14.
基于自然通风的日光温室内温湿度仿真模型   总被引:1,自引:0,他引:1  
为了模拟自然通风条件下日光温室内温湿度的变化,将通风口开度进行量化处理,根据热量平衡和水汽质量平衡原理构建了温室内气温和湿度的动态变化数学模型。利用Simulink仿真平台将二者结合,搭建了以通风为输入、以室内温湿度为输出的温室微气候系统仿真框图,利用2类典型天气条件下的实测数据对模型进行了仿真检验。研究结果表明,室内气温的标准误差最大为0.479 2℃,仿真有效性指数最小为73.03%;室内湿度的标准误差最大为1.943 7%,模型有效性指数最小为71.13%;仿真模型是有效的。  相似文献   

15.
针对夏季高温对日光温室叶菜生长的影响,分别对土壤+遮阳网、基质+遮阳网、基质+遮阳网+湿帘3种越夏种植模式进行对比试验,分析其对温室温湿度、叶菜生长及经济效益的影响。研究结果初步表明:一年中最热的一天,室外白天(早8:00~15:30)平均温度为32.5 ℃时,土壤+遮阳网、基质+遮阳网种植模式室内白天平均温度分别比基质+遮阳网+湿帘种植模式温度高7.1 ℃、6.4 ℃。同时,室内白天平均相对湿度,基质+遮阳网比土壤+遮阳网种植模式低,基质+遮阳网+湿帘种植模式平均相对湿度最高。结合产量及效益可知,京研快菜、京水菜在基质+遮阳网+湿帘模式下产量最高,春油1号在基质+遮阳网模式下种植产量最高,3种叶菜在基质+遮阳网+湿帘种植方式下种植效益最好。   相似文献   

16.
叶片湿润时间(LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于2019年3月和9月在北京两个不同类型日光温室内按照棋盘格法设置了9个采样点部署温湿光传感器和目测叶片湿润时间,每隔1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明:BP神经网络模型在两个温室的试验条件下获得了相似的准确度(ACC为0.90和0.92),比相对湿度经验模型估算叶片湿润时间的准确度(ACC为0.82和0.84)更高,平均绝对误差MAE分别为1.81和1.61 h,均方根误差RSME分别为2.10和1.87,决定系数R2分别为0.87和0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间(12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间(4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为17.15和17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。  相似文献   

17.
塑料温室中湿帘风机通风条件下降温效果研究   总被引:1,自引:0,他引:1  
为了能够充分了解湿帘风机降温系统在嘉兴地区高温高湿环境下的降温效果,以及温室中温度分布特征,在一个占地面积约3 072 m2,安装有湿帘风机降温系统的8连栋塑料温室中进行了相关因素的测试。试验结果表明:在环境相对湿度62%的情况下,使用湿帘风机降温时,温室内部平均温度降幅可达到4.8 ℃左右。证明湿帘风机系统在高温高湿的南方夏季也具有一定的降温能力。温室中水平方向上存在明显的温度梯度,风机一侧与湿帘一侧的温度差为2.5 ℃,沿水平方向的温度梯度为0.063 ℃m。温室中垂直方向上也存在明显的温度梯度,正午前后室外高温期间,温室中心部位垂直方向2个相差2 m位置点的温度差为2.6 ℃。   相似文献   

18.
温室方位角对日光温室温度环境的影响   总被引:3,自引:0,他引:3  
温室方位角对室内温度环境有直接影响.通过对具有不同朝向日光温室室内温度环境的对比实验, 探讨了温室方位角对室内温度环境的影响.测试结果表明,晴天时, 南偏西温室室内夜间温度高于正南及南偏东温室;阴天时, 温室朝向对室内温度环境无明显影响.  相似文献   

19.
为了适应作物生长需求,需要对大棚温度进行精确控制.首先,建立包含多种环境因素的大棚温度模型;其次,采用模糊PID控制方法,建立了高精度的温度控制方法.综合考虑温室外环境温度、风速、太阳照射强度和室内湿度等因素,采用ARX方法建立温度模型.采用模糊PID控制方法,以温度变化量及其变化率为输入,PID调节量为系统输出,对温...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号