首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
森林生态系统碳储量是陆地森林生态系统碳库的重要组成部分,在全球碳循环和碳平衡中发挥着重要作用。本文采用样地测定方法对广西天峨县林朵林场12年生光皮桦人工林的碳素含量、储量及其空间分布格局开展了研究。结果表明,(1)光皮桦不同器官碳素含量为411.3~477.6g/kg,各器官碳素含量排序从大到小依次为干材、干皮、树根、树枝、树叶。灌木层碳素含量为455.4g/kg,草本层为427.2g/kg,凋落物层为427.1g/kg。0~80cm土层碳素含量为15.8g/kg,其中表土层(0~20cm)的碳素含量(31.0g/kg)明显高于其他土层。(2)光皮桦人工林生态系统碳储量为201.45t/hm~2,其中乔木层为51.86t/hm~2,占25.74%;灌木层为1.02t/hm2,占0.51%;草本层为0.51t/hm~2,占0.25%;凋落物层为1.81t/hm~2,占0.90%;土壤层为146.26t/hm~2,占72.60%。(3)光皮桦12年生人工林年净生产力为11.22t/(hm~2·a),年净固碳量为5.06t/(hm~2·a),折合成CO2的量为18.56t/(hm~2·a)。  相似文献   

2.
灰木莲人工林碳贮量及其分配特征   总被引:1,自引:0,他引:1  
对广西南宁市高峰林场46年生灰木莲人工林生态系统碳素贮量及其分配格局进行系统研究。结果表明,灰木莲各组分碳素含量变化范围为476.8~532.5 g/kg,各器官碳素含量为树干>树根>树枝>树皮>树叶,土壤层(0~80 cm)碳素含量为10.36 g/kg,不同土层碳素含量随土壤深度增加而降低。灰木莲人工林生态系统总碳贮量为236.70 t/hm2,其中乔木层碳贮量(118.03 t/hm2)最大,占生态系统总碳贮量的49.86%;灌木层碳贮量为2.00 t/hm2,占0.84%;草本层碳贮量为1.18 t/hm2,占0.50%;现存凋落物碳贮量为3.48 t/hm2,占1.47%;土壤层有机碳贮量为111.71 t/hm2,占47.19%。灰木莲人工林生态系统乔木层碳素年净固定量为3.72 t/(hm2·a),各组分碳素年净固定量大小依次为:树干>树叶>树根>树枝>树皮。  相似文献   

3.
对11 a 生香梓楠(Michelia hedyosperma)人工林生态系统的碳素含量、碳储量及其空间分配特征进行了研究。结果表明:(1)香梓楠各植物器官碳素平均含量的变化范围在450.98~514.45 g/kg 之间,各器官碳含量的排列次序为:干材>根蔸>粗根>枝>中根>细根>叶>皮。(2)香梓楠人工林生态系统总碳储量为182.32 t/hm2,其中土壤层所占比例最高,达77.62%,灌草层所占比例最少,仅占0.30%,各生物层次碳储量总体表现为:土壤层>乔木层>凋落物层>灌草层。(3)香梓楠人工林生态系统总生物量为81.68 t/hm2,乔木层、灌草层和凋落物层分别占95.68%、1.45%和2.87%,表现为乔木层>凋落物层>灌草层。(4)香梓楠人工林分乔木层年净生产力和净固碳量分别为7.10和3.56 t/(hm2· a),具有较高的碳汇潜力。  相似文献   

4.
【目的】基于陇东黄土高原沟壑区刺槐人工林和油松人工林样地调查数据,分析其生物量、碳含量、碳密度及其分配规律,为该地区人工林碳效益估算提供基础数据。【方法】以陇东黄土高原沟壑区12年生刺槐人工林和12年生油松人工林为研究对象,采用样地调查与生物量实测的方法,研究刺槐人工林和油松人工林乔木不同器官、灌草层和枯落物层生物量,以及刺槐人工林和油松人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征。【结果】刺槐人工林乔木层平均碳含量(468.44 g·kg -1)低于油松人工林乔木层平均碳含量(512.77 g· kg -1);刺槐林乔木各器官碳含量为458.00~496.96 g·kg -1,不同器官碳含量表现为干>枝>叶>根>皮,油松人工林乔木各器官碳含量为503.83~536.27 g·kg -1,不同器官碳含量依表现干>叶>枝>皮>根;刺槐林草本层、灌木层及枯落物层平均碳含量分别为390.52,398.72和402.82 g·kg -1,油松林草本层、灌木层及枯落物层平均碳含量分别为413.17,436.85和414.03 g·kg -1;随着土壤深度增加,刺槐林和油松林土壤碳含量依次降低,0~10 cm土层土壤含量显著高于10~20,20~30和30~50 cm土层;刺槐林0~50 cm 土层土壤平均碳含量(4.96 g·kg -1)高于油松林(4.45 g·kg -1);刺槐林植被层生物量为54.80 t·hm -2,乔木层、草本层和灌木层分别占95.88%,2.65%和1.46%;油松林植被层生物量为24.37 t·hm -2,乔木层、草本层和灌木层分别占93.43%,5.17%和1.40%;刺槐林枯落物层生物量和碳密度分别为1.36和0.55 t·hm -2,分别是植被层的2.48%和2.12%,油松林枯落物层生物量和碳密度分别为0.92和0.39 t·hm -2,分别是植被层的3.78%和3.09%;刺槐林和油松林土壤层碳密度分别为31.15和24.35 t·hm -2,0~10 cm土壤层碳密度较高,分别占0~50 cm土层土壤碳密度的40.19%和38.73%;刺槐林植被层生物量(54.80 t·hm -2)高于油松林植被层生物量(24.37 t·hm -2);刺槐林和油松林生态系统总碳密度分别为57.60和37.38 t·hm -2,且均表现为土壤层>植被层>枯落物层。【结论】刺槐林和油松林植被层生物量表现为乔木层>草本层>灌木层,乔木层生物量均以树干占比最大,分别为40.02%和37.29%;2种人工林生态系统碳密度主要分布在土壤和植被中,且刺槐人工林生态系统具有较高的固碳能力。  相似文献   

5.
川西退耕还林地苦竹林碳密度、碳贮量及其空间分布   总被引:1,自引:0,他引:1  
利用标准样方法研究了退耕还林地苦竹林碳素密度和碳贮量及其空间分布。结果表明:苦竹不同器官碳素密度波动在0.348 498~0.518 63gC0/g,按碳素密度高低排列依次为竹秆>竹蔸>竹鞭>竹枝>竹根>竹叶;枯落物碳素含量为0.341 655 gC0/g,土壤碳素密度由上至下呈下降趋势。碳贮量在苦竹不同器官中的分配以竹秆所占比例最大,为53.06%,其次为竹叶,占13.83%,占比例最小的是竹根,仅占3.14%;苦竹林生态系统中碳总贮量为135.808 110 t/hm2,其中乔木层为46.032 420 t/hm2,占33.9%,林下及其枯落物层为2.60 068 t/hm2,占1.91%。土壤层0~60 cm总计为87.175 0 t/hm2,占64.19%;退耕还林地苦竹林乔木层年固碳量约为8.142 t/(hm2.a)。  相似文献   

6.
分析了南亚热带中山区的铁坚油杉天然林乔木层、灌木层、草本层和凋落物层的生物量和碳储量以及分配格局,为提高该地区碳储量提供参考依据。在天然铁坚油杉林内设定标准样地,采用标准样方收获法和标准木法测定生态系统的生物量和碳储量。(1)铁坚油杉天然林生态系统总生物量为239.61 t/hm~2,乔木层为237.65 t/hm~2,灌草层为0.18 t/hm~2,凋落物层为1.78 t/hm~2,生物量主要集中在乔木层。(2)植被层各组分有机碳含量相差不大,为介于465.22~512.17 g/kg之间;各组份间的碳含量无显著性差异,0~20 cm层土壤层碳含量高达12.55 g/kg,土壤层碳含量随着土壤深度增加而逐渐降低,随着深度增加碳含量降低程度变小。(3)生态系统总碳为134.55 t/hm~2,其中植被层为68.45 t/hm~2,乔木层为67.54t/hm~2,碳储量相对高,植被层的碳储量主要集中在乔木层,所占比例高达98.70%;土壤层碳储量为66.10 t/hm~2,该生态系统碳储量集中在土壤层和乔木层,且两者所占比例接近,分别为50.20%、49.13%。铁坚油杉天然林生态系统生物量和碳储量相对较高,土壤固碳能力较强,应进行合理保护利用。  相似文献   

7.
利用标准样方法研究毛竹林碳含量和碳储量以及空间分布.研究表明,毛竹地上部分各器官的含碳率波动范围为428.373 0 ~ 480.079 0 g/kg,平均为459.546 1 g/kg,其中竹叶的含碳率最低,竹秆的含碳率最高.毛竹地上部分碳储量为28.98 t/hm2,地下部分碳储量为14.27 t/hm2.从各组分分布来看,竹秆占总碳储量的51.84%,竹枝占10.27%,竹叶占4.90%,地下部分占总碳储量的33.00%.毛竹林生态系统总碳储量为173.93 t/hm2,其中土壤层碳储量为91.95 t/hm2,占总碳储量的67.44%.毛竹林地上部分年固定碳量为8.28 t/(hm2 ·a),相当于同化二氧化碳的量30.36t/(hm2·a).  相似文献   

8.
【目的】以甘肃黄土丘陵区宁县人工林地为研究区,探讨侧柏人工林碳密度及其分配特征,为黄土丘陵区人工林生态效益评估提供理论依据。【方法】以不同林龄侧柏人工林(7,10,12和14年生)为研究对象,每个林龄分别设置3块样地,分乔木层、灌木层、草本层和枯落物层进行调查取样,然后在每块样地采集0~100 cm土层的土样,用元素分析仪 LiquiTOCⅡ测定植物和土壤碳含量,研究甘肃黄土丘陵区侧柏人工幼林的碳含量、碳密度及其分配特征。【结果】侧柏不同器官碳含量为447.51~513.93 g·kg -1,表现为果实>树叶>树干>粗枝>细枝>细根>根桩>树皮>粗根>大根>中根>小根;灌木层和草本层均以根的碳含量最低,枯落物层未分解层碳含量高于半分解层,且各组分碳含量差异显著;土壤层(0~100 cm )碳含量为23.31~96.08 g·kg -1,且随林龄增加而增大,随土壤深度增加而下降;侧柏人工林生态系统中,乔木层碳密度占植被层碳密度比例最大,高于灌木层、草本层和枯落物层;0~100 cm土层土壤碳密度占整个生态系统碳密度比例最大,且随着林龄增加而增大,且差异显著;7,10,12和14年生侧柏人工幼林生态系统碳密度分别为37.56,44.67,50.87和56.34 t·hm -2,乔木层、林下植被层、枯落物层和土壤层的碳密度均随林龄增加而增大。【结论】黄土丘陵区7,10,12和14年生侧柏人工幼林的乔木层不同器官碳含量差异显著(P<0.05),相同器官碳含量差异不显著(P>0.05);侧柏人工林生态系统碳库表现为土壤层>乔木层>草本层>枯落物层>灌木层;侧柏人工林各层的碳密度都随林龄增加而增大;乔木层、灌木层、草本层和枯落物层碳密度分配比例随林龄增加而增大,而土壤层碳密度比例随林龄增加而减少。  相似文献   

9.
在2011—2012年江苏省样地野外调查的基础上,结合江苏省2010年森林资源二类调查的结果,计算出江苏省森林生态系统的碳储量和碳密度。结果表明:截止到2012年,江苏省森林生态系统总碳储量为179.16Tg C。其中乔木层、灌草层、凋落物层和土壤层的碳储量分别为57.95,6.90,14.44,99.87Tg C,占总碳量的32.44%,3.85%,8.05%,55.66%。江苏省森林生态系统的平均碳密度为143.00T/hm2。各层的碳密度大小为:土壤层(83.65 T/hm2)乔木层(51.43T/hm2)凋落物层(5.24T/hm2)灌草层(2.66T/hm2)。林分类型不同,其碳储量和碳密度存在很大差异,其中落叶阔叶林碳储量最大为102.03Tg C,竹林碳储量最小为3.90Tg C;常绿阔叶林碳密度最大为170.97 T/hm2,落叶阔叶林碳密度最小:109.99 T/hm2。从龄组看,全省森林碳储量主要集中10a以下林、10~20a林,分别为11.36,27.92Tg C,两者占全省总碳储量25.07%,61.63%。植被地上生物量与土壤特性相关分析表明:土壤碳含量、氮含量与植被地上生物量均呈正相关,其中氮含量与地上生物量有较显著的正相关关系(p=0.03),各土层含水量与地上生物量的相关性不明显。  相似文献   

10.
根据2017年湖南省森林资源清查资料和野外实地调查实测数据,对湖南省阔叶林生态系统碳储量、碳密度的动态特征进行了研究。结果表明:湖南省阔叶林森林生态系统总碳贮量为505.17 TgC,其中乔木层、灌草层、枯落物和土壤层层分别为113.75 TgC、9.92 TgC、9.64 TgC和377.86 TgC,分别占阔叶林生态系统碳贮量的22.52%、1.96%、1.91%和73.61%;湖南省阔叶林森林生态系统碳密度为154.51 t·hm^2,各层碳密度的大小顺序为土壤层(113.74 t·hm-2)>乔木层(34.79 t·hm-2)>灌草层(3.03 t·hm-2)>枯落物层(2.95 t·hm-2)。在3种类型阔叶林中,乡土阔叶林生态系统碳贮量为485.56 TgC,所占全省阔叶林生态系统碳贮量的96.12%;乡土阔叶林生态系统碳密度最大,为154.72 t·hm-2,杨树林生态系统碳密度最小,为149.59 t·hm-2。在阔叶林各龄组中,中、幼龄林约占湖南省阔叶林生态系统碳贮量的67.13%,是阔叶林的主要碳库且固碳潜力巨大;湖南省阔叶林碳密度幼龄林、中龄林、近熟林和成过熟林的碳密度分别介于24.60~55.51 t·hm-2之间,具体表现为成过熟林(55.51 t·hm-2)>近熟林(47.51 t·hm-2)>中龄林(44.68 t·hm-2)>幼龄林(24.60 t·hm-2)。全省阔叶林生态系统空间分布表现为碳贮量呈现明显的湘西、湘南,湘中较低特征,而碳密度整体表现出洞庭湖流域地区大于其他地区的趋势。  相似文献   

11.
西南桦是我国热带、南亚热带地区的速生、珍贵用材树种,具有重要的生态和经济价值,本研究对广西天峨县林朵林场速生阶段(12年生)西南桦人工林的碳素含量、贮量及其空间分布格局进行了研究。结果表明:(1)西南桦不同器官碳素含量为443.5~475.3 g/kg,各器官碳素含量排序从大到小依次为干材、树枝、树根、树叶、干皮。灌木层、草本层和凋落物层碳素含量分别为442.6、427.8和450.3 g/kg。土壤(0~80 cm)中碳素含量为15.04 g/kg,其中表土层(0~20 cm)的碳素含量明显高于其他土层;(2)西南桦人工林碳素总贮存量为202.41 t/hm~2,其中乔木层为57.13 t/hm~2,占28.22%;灌木层为1.04 t/hm~2,占0.51%;草本层为0.80 t/hm~2,占0.40%;凋落物层为1.92 t/hm~2,占0.95%;土壤层为143.44 t/hm~2,占70.87%;(3)12年生西南桦人工林年净生产力为10.20 t/(hm~2·a),碳素年净固定量为4.77 t/(hm~2·a),折合成CO2的量为17.49 t/(hm~2·a)。  相似文献   

12.
对云南玉溪磨盘山华山松人工林(16年中龄林、26年近成熟林、43年成熟林)生物量及N、 P、 K、 Ca和Mg等5种营养元素的分配格局和积累规律进行了研究。结果显示,3种林龄华山松人工林的生物量分别为181.515 t/hm2、284.679 t/hm2、295.311 t/hm2,乔木层生物量分别占林分的91.594%、94.760%、93.838%,乔木层的净生产力分别为10.391 t/( hm2· a)、10.375 t/( hm2· a)和6.444 t/( hm2· a);3种林龄群落各层生物量均为乔木层>枯落物层>灌木层>草本层;乔木各营养器官营养元素含量大小是树叶>树枝>树根>树皮(或树皮>树根)>树干;3种林龄华山松各器官营养元素含量均以N含量最高,其他元素含量依次为K>Mg>Ca>P,其中树叶中的N含量最高,达到16.733 g/kg~21.368 g/kg;3种林龄群落营养物质总积累量分别为1497.993 kg/hm2、2257.161 kg/hm2和2810.246 kg/hm2,乔木层营养物质年积累量分别为77.532 kg/( hm2· a )、76.679 kg/( hm2· a)、58.759 kg/( hm2· a)。  相似文献   

13.
将鄂西北山区典型森林生态系统划分为13种森林类型,在系统调查样地乔木层、灌木层、枯落物层及土壤层碳含量的基础上,对不同森林类型碳密度进行了估算。结果表明:鄂西北森林生态系统平均碳密度为175.812t·C·hm-2,各层碳密度的大小顺序为土壤层(110.130t·C·hm-2)乔木层(48.278t·C·hm-2)灌木层(15.187t·C·hm-2)枯落物层(2.217t·C·hm-2),各层分别占整个生态系统碳储量的62.64%,27.46%,8.64%和1.26%。天然林不同林龄碳密度排序为近成过熟林中龄林幼龄林,人工林不同森林类型碳密度排序为针阔混交林针叶林阔叶林。  相似文献   

14.
河南省西平县杨树人工林碳贮量及其分配特征研究   总被引:6,自引:2,他引:4  
基于对西平县杨树人工林植被生物量,土壤容重和碳含量的调查,估算杨树林生态系统碳贮量。研究表明:杨树林的乔木层碳密度波动在0.489~0.512g/g,杨树各器官的碳密度大小依次是树叶>树干>树枝>树根,整个植被层碳贮量大小依次是乔木层>林下植被层>凋落物层,与其各自生物量所占比例相当;土壤层的碳密度以0~20 cm的最高,往下逐渐降低;整个杨树林的碳贮量为164.29 t/hm2,乔木层碳贮量在整个植被层碳贮量中处于主导地位,占整个植被层碳贮量的97.36%。  相似文献   

15.
对亚热带日本落叶松人工林生态系统的有机碳密度进行了估算,结果表明:(1)乔木层平均含碳率为56.15%~64.51%,表现出树干树枝树皮树根树叶,灌木层、草本层以及凋落物层平均含碳率分别为53.79%、41.61%、54.98%,0~80 cm土壤层的平均含碳率为2.42%,且随着土层厚度的增加而减少;(2)日本落叶松人工林总碳密度为268.92 t/hm2,其中,植被层、凋落物层、土壤层分别占总碳密度的35.23%(94.74t/hm2)、0.72%(1.93 t/hm2)、64.05%(172.25 t/hm2)。土壤碳密度约为植被碳密度的1.81倍;(3)混交林生态系统碳密度略高于纯林;(4)中龄林(317.53 t/hm2)约为幼龄林(235.56 t/hm2)的1.35倍。乔木层、凋落物层碳密度在日本落叶松林生态系统的比重随着林龄的增长而升高,而土壤层所表现的趋势与之相反。(5)日本落叶松人工林生态系统各组分的有机碳密度均明显高于20年生的杉木人工林,从侧面也反映了同样作为亚热带地区的造林树种,日本落叶松林要优于杉木人工林。  相似文献   

16.
以贵州南部4年生桉树人工林为研究对象,通过样地实测生物量和采用重铬酸钾法测定植物和土壤碳素含量,建立了桉树林各器官生物量回归方程,并测定了碳储量及其空间分布特征。结果表明:桉树林分平均生物量为160.86 t/hm2,其中乔木层为157.1 t/hm2,占林分生物量的97.66%;桉树林分生态系统各组分碳含量为:树叶0.460 2 g/g,树枝0.451 5 g/g,树干0.478 5 g/g,树皮0.375 0 g/g,树根0.420 9 g/g,灌木层0.427 5 g/g,草本层0.407 1 g/g,枯落物层0.345 1 g/g;土壤碳含量随土层深度的增加而减少;桉树林分生态系统碳总贮量为172.29 t/hm2,其中乔木层68.68 t/hm2,占桉树林分生态系统总碳贮量的39.86%,灌木层0.22 t/hm2,占0.13%,草本层0.70t/hm2,占0.41%,枯落物层0.53 t/hm2,占0.31%,林地土壤碳贮量为102.16 t/hm2,占59.29%。  相似文献   

17.
基于2009年湖北省林业资源连续调查第六次复查数据和标准地实测数据,采用政府间气候变化委员会(IPCC)推荐的森林碳储量估算方法,研究湖北省森林生态系统的碳储量、碳密度和组分特征。结果表明:湖北省森林生态系统总碳储量710.01 Tg·C,其中乔木层、灌木层、枯落物层、土壤层分别占其总碳储量的15.74%、2.89%、2.11%和80.56%,天然林和人工林碳储量分别为420.43 Tg·C和151.59 Tg·C。湖北省森林生态系统平均碳密度为111.51 t·hm-2,表现为土壤层乔木层灌木层枯落物层,不同森林生态系统碳密度差异较大,介于88.32~177.79 t·hm-2之间。森林不同林层中,乔木层碳密度介于7.63~55.7 t·hm-2,灌木层碳密度介于0.25~12.49 t·hm-2,枯落物层碳密度1.14~3.53 t·hm-2之间,土壤层碳密度介于73.25~136.87 t·hm-2之间,主要集中在30 cm的土层厚度,呈现明显的表聚特征,土壤碳储量平均为植被层的3.88倍。森林生态系统碳密度表现为针阔混交林阔叶林针叶林,近成过熟林中龄林幼龄林。湖北省森林主要以中幼林为主,林业碳汇潜力巨大,合理的经营方式,可以提高森林结构质量水平,有效增加森林的碳汇功能。  相似文献   

18.
为了解2种更新方式(植苗更新和萌芽更新)尾巨桉(Eucalyptus urophylla×E. grandis)人工林的碳汇功能,对广西宁明县4年生(中龄林)尾巨桉植苗林和萌芽林碳储量及其分布格局进行研究。结果表明,尾巨桉植苗林和萌芽林各器官中碳含量为456.5~485.3 g/kg,以树叶碳含量最高,其次为树干、树枝、树根,最低为树皮。植苗林和萌芽林生态系统碳储量分别为130.35和138.81 t/hm~2,其中乔木层分别占37.46%和42.30%,灌草层分别占0.93%和0.83%,现存凋落物层分别占2.05%和2.23%,土壤层分别占59.56%和54.64%。植苗林和萌芽林乔木层地上部分年净生产力分别为22.21和25.16 t·hm~(-2)·a~(-1),年净固碳量分别为10.58和11.91 t·hm~(-2)·a~(-1),年净吸收CO_2量分别为38.79和43.67 t·hm~(-2)·a~(-1)。  相似文献   

19.
利用标准样方法研究了孝顺竹林生态系统碳含量、碳储量及其空其间分配格局。结果表明:孝顺竹林乔木层各器官碳含量介于0.4893 g.g-1~0.5222 g.g-1之间,从高到低排序依次为竹秆(0.5222 g.g-1)竹根(0.5177 g.g-1)竹蔸(0.5041 g.g-1)竹叶(0.4967 g.g-1)竹枝(0.4893 g.g-1);土壤层碳含量随深度增加而降低,0~20 cm为0.0104 g.g-1,20 cm~40 cm为0.0046 g.g-1;生态系统各组分碳含量表现为乔木层(0.5148 g.g-1)枯落物层(0.4837 g.g-1)土壤层(0.0076 g.g-1);孝顺竹林生态系统碳储量为44.8599 t.hm-2,空间分布序列为土壤层(41.2518 t.hm-2)乔木层(3.5965 t.hm-2)枯落物层(0.0116 t.hm-2),分别占91.95%,8.02%和0.03%。  相似文献   

20.
基于35块样地调查数据,对亚热带日本落叶松人工林生态系统的碳素含量进行了分析。结果表明:(1)日本落叶松人工林生态系统碳素含量包括植被、凋落物与土壤三部分,其中乔木层601.896 1±29.562 4g/kg,灌木层537.958 0±34.783 9 g/kg,草本层416.107 5 g/kg,凋落物层550.927 8±30.566 4 g/kg,土壤层30.477 1±1.848 0 g/kg,表现规律为:乔木层凋落层灌木层草本层,地上部分地下部分,且乔木层、凋落物层和土壤层的碳素含量随着林分年龄和坡向的不同而变化。(2)日本落叶松植被层的碳素含量平均值为0.518 7 g/g,略高于国际上通用的转换率0.50 g/g,如果采用0.50 g/g来估算日本落叶松植被层的碳贮量与碳密度,会使得估算结果偏小。(3)日本落叶松乔木层不同器官碳素含量变化范围为561.499 3~645.106 8 g/kg,其高低顺序大致排列为:树干树枝树皮树根树叶,且随着林分年龄和坡向的不同而变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号