首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An attempt was made to estimate the degree of maturity of city refuse composts by measuring their cation-exchange capacity (CEC).

The CEC of the city refuse compost increased for the first 7 days after commencement of the fermentation process, decreased for the next 2 days, and then increased again gradually up to the end of the piling period.

A highly significant negative correlation was noted between the CEC and C/N ratio of the city refuse composts (r=-0.903***). Regression analysis yielded the relationship: In CEC=7.02-1.02 In C/N

The CEC values of the city refuse composts, which were considered to have been sufficiently matured for application, were greater than about 60 me/ 100 g of ash-free material.  相似文献   

2.
This study investigated the cocomposting of pine bark with goat manure or sewage sludge, with or without inoculated effective microorganisms (EM). Composting was done for 90 days and parameters monitored over this period included temperature, pH, electrical conductivity (EC), C/N ratio, inorganic N, as well as tannin content. Changes in temperature, pH and EC during composting were consistent with those generally observed with other composting systems. The parameters were influenced by the feedstock materials used but were not affected by inoculation with effective microorganisms. The highest temperature measured from pine bark-goat manure composts was 60°C but much lower maximum temperatures of 40°C and 30°C were observed for pine bark sewage sludge and pine bark alone composts, respectively. The C/N ratios of the composts decreased with composting time. Ammonium levels decreased while nitrate levels increased with composting time. Tannin levels generally decreased with composting time but the extent of decrease depended on the contents of the composting mixtures. The trends observed showed that temperature, pH, EC, C/N ratio, tannin levels, and inorganic NH4-N and NO3-N were reliable parameters for monitoring the co-composting of pine bark with goat manure or sewage sludge. The pine bark-goat manure compost had more desirable nutritional properties than the pine bark and pine bark-sewage sludge composts. It had high CEC, near neutral pH, low C/N ratio, and high amounts of inorganic N and bases (K, Ca, and Mg) while pine bark compost had the least amounts of nutrients, was acidic, and had high C/N ratio and low CEC. The final tannin content of the pine bark-goat manure compost was below the 20 g/kg upper threshold level for horticultural potting media, implying that its use as a growing medium would not cause toxicity to plants.  相似文献   

3.
Assessment of compost maturity is important for successful use of composts in agricultural and horticultural production. We assessed the “maturity” of four different sawdust-based composts. We composted sawdust with either cannery waste (CW), duck manure (DM), dairy (heifer) manure (HM) or potato culls (PC) for approximately one year. Windrows were turned weekly for the first 60 days of composting, covered for four winter months and then turned monthly for six more months. We measured compost microbial respiration (CO2 loss), total C and N, C:N ratio, water soluble NO3-N and NH4-N, dissolved organic carbon (DOC), pH and electrical conductivity at selected dates over 370 days. Compost effects on ryegrass biomass and N uptake were evaluated in a greenhouse study. We related compost variables to ryegrass growth and N uptake using regression analysis. All composts maintained high respiration rates during the first 60 days of composting. Ammonium-N concentrations declined within the first 60 days of composting, while NO3-N concentrations did not increase until 200+ days. After 250+ days, DM and PC composts produced significantly more ryegrass biomass than either CW or HM composts. Total C, microbial respiration and water-extractable NO3-N were good predictors of compost stability/maturity, or compost resistance to change, while dissolved organic carbon, C:N ratio and EC were not. The compost NO3-N/CO2-C ratio was calculated as a parameter reflecting the increase in net N mineralization and the decrease in respiration rate. At ratio values >8 mg NO3-N/mg CO2-C/day, ryegrass growth and N uptake were at their maximum for three of the four composts, suggesting the ratio has potential as a useful index of compost maturity.  相似文献   

4.
Selected maturity indicators were monitored over a period of 335 days during the degradation of organic wastes subjected to four simple composting procedures, which varied in raw material (garden refuse with and without market refuse) and turning frequency (0×, 6×). All procedures produced mature composts. The inclusion of market refuse and frequent turning generally increased the cation exchange capacity of compost on an ash-free basis. Until day 118 of the composting process, compost samples which contained market refuse in their raw material mixture had the lowest redox potentials after anaerobic incubation. Cress grown on these composts also produced the lowest fresh mass. At a later stage of the composting process, the same composts displayed increased cellulolytic activity. Frequent turning of the compost heaps resulted in greater fluorescein diacetate hydrolysis, a greater occurrence of low-molecular-weight humic compounds and, occasionally, an inhibition of cellulolytic activity. The arginine ammonification assay gave information on the N-status of the composts, rather than on the compost maturity, and suggested that all the composts could be safely applied to soil with no risk of microbial immobilisation of soil N.  相似文献   

5.
This study highlights the effects of composts of olive mill wastes and organic household refuse with a pH range of 7 to 7.98 and a C/N ratio between 14.9 and 22, to improve the growth and the mineral nutrition of the date palm (Phoenix dactylifera L.). After 7 months of cultivation, plants amended with composts showed higher biomass production than the controls. Compost C1, i.e., the basic compost with no additives phosphate, at 100% and 45% doubled the production of dry matter in comparison with control plants. The rise of root biomass was considerably greater for plants grown with compost C1 without phosphate. In contrast, the shoot biomass was highly significant for composts C2 and C3 enriched with phosphate. The control plants, grown without amendment, showed significantly higher specific root length (SRL) and specific leaf length (SLL). The efficiency of compost application was reflected by the biomass rise, the number of emerged leaves (2.6–4), and the rise in leaf area (3.3 to 6.7 cm2) by improving the mineral nutrition of the date palm. The composts of olive mill waste and organic household refuse supplemented with natural rock phosphate, or not, generated a notable agronomic added value.  相似文献   

6.
Characteristics in composts were determined during composting of chitinous source-amended compost (Cscom) and no chitinous source-amended compost (Ncom). At the end of the composting, moisture content, organic matter (OM), total nitrogen (T-N), and carbon to nitrogen ratio (C/N ratio) decreased in both the composts, whereas the phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) content increased. pH of the compost was adversely changed with electrical conductivity (EC). Enzyme activities declined until the end of composting except phosphatase. In the final-stage, Cscom has higher number of chitinolytic bacteria than in Ncom. One bacterium predominant was isolated and identified as Bacillus licheniformis. Growth of the plant pathogens were suppressed by Cscom and Ncom water extracts, with the suppression being higher in Cscom. Paenibacillus ehmensis, known for high antifungal potential, was isolated from Cscom. From our study, it can be concluded that amendment of chitin material improves the chemical, biological properties, and disease suppression ability of compost.  相似文献   

7.
Seafood processing generates a substantial volume of wastes. This study examined the feasibility of converting the fish waste into useful fertilizer by composting. Groundfish waste and chitin sludge generated from the production of chitin were composted with red alder or a mixture of western hemlock and Douglas-fir sawdust to produce four composts: alder with groundfish waste (AGF); hemlock/fir with groundfish waste (HGF); alder with chitin sludge (ACS); and hemlock/fir with chitin sludge (HCS). The resulting AGF had a higher total N and a lower C:N ratio than the other three composts. A large portion of the total N in the AGF, HGF, and HCS composts was in inorganic forms (NH4+-N and NO3?-N), as opposed to only two percent in the ACS compost. Alder sawdust is more quickly decomposed, which favored N retention and limited nitrification during the composting period. It was less favorable than the hemlock/Douglas fir sawdust for composting with chitin sludge. Corn growth on soil amended with compost was dependent upon both compost type and rate. Nitrogen and P availabilities in all composts except the ACS were high and compost addition enhanced corn yields, tissue N and P concentrations, and N and P up-take. Neither the total N concentration nor the C:N ratio of the composts was an effective measure of compost N availability in the soil. Because soil inorganic N test levels correlated well with the corn biomass, tissue N and N uptake, they should be an effective measure of the overall compost effects on soil N availability and corn growth response. Phosphorus concentration, which increased linearly with increasing compost rates, was related to soil P availability from compost additions and correlated well with corn biomass, tissue P concentration and P uptake under uniform treatments of N and K fertilizers. Composting groundfish waste with alder or hemlock/Douglas-fir sawdust can produce composts with sufficient amounts of available N and P to promote plant growth and is considered to be a viable approach for recycling and utilizing groundfish waste.  相似文献   

8.
Composting broiler litter (a mixture of manure, bedding material, and wasted feed) with commonly available high-C substrates may be a viable alternative to reduce current land disposal practices for litter. Broiler litter with wood shavings as a bedding material and broiler litter with peanut hulls as a bedding material were composted with wheat straw, peanut hulls, pine bark and paper mill sludge in 0.33 m3 batch reactors. Litters and C substrates were mixed to achieve C:N ratios of approximately 30:1. Dry weight, total N, total C, temperature, electrical conductivity and pH were determined at regular intervals. Maximum temperatures peaked near 70°C within 2.25 d after mixing peanut hulls with litter and within 2.58 d for pine bark and litter. Composts made from paper mill sludge approached 50°C within 3.71 d. Wheat straw composts never exceeded 40°C which could present potential health problems associated with pathogenic microorganisms. Mass loss and C:N ratio gradually declined and stabilized approximately 84 d after mixing. Mass loss averaged 73 percent for wheat straw compost, 33 percent for peanut hull composts, and 16 percent for the other mixes. Wheat straw compost C:N ratios stabilized near 14:1 and other mixes remained above 20:1, indicating N limited conditions for complete composting. Compost pH was 5.8 after 84 d from pine bark composted with wood shaving litter and was significantly lower than pH from paper mill sludge compost with an average pH of 6.9 but similar to all other compost mixes (pH 6.7). Electrical conductivity ranged from 0.35 S m?1 for paper mill sludge composted with wood shaving litter to 0.91 S m?1 from wheat straw composted with peanut hull litter. Composting temperature varied considerably among C sources and all required at least 72 d of curing to stabilize the C:N ratio. Composts made from wheat straw were most effective for waste reduction but temperatures were below the 50°C level generally considered necessary to kill pathogens.  相似文献   

9.
Two types of compost, consisting of sweet sorghum bagasse with either sewage sludge or a mixture of pig slurry and poultry manure, were studied in a pilot plant using the Rutgers system. The total degradation of the piles as determined by the weight loss of organic matter during the bio-oxidative and maturation phases accounted for 64% of the organic matter applied and followed a first-order kinetic function. Concentrations of total and organic N increased during the composting process as the degradation of organic C compounds reduced the compost weight. Losses of N through NH3 volatilization were low, particularly in the compost with sewage sludge due to pH values of <7.0 and the low temperatures reached in the compost during the first 2 weeks. The C:N ratio in the two composts decreased from 24.0 and 15.4 to values between 12 and 10. Increases in cation exchange capacity and in fulvic and humic acid-like C revealed that the organic matter had been humified during composting. The humification index, the C:N ratio, fulvic:humic acid-like C, and cation exchange capacity proved to be the most suitable parameters for assessing the maturity of these composts.  相似文献   

10.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

11.
The rising cost of peat and pine bark has boosted the demand for alternative organic materials for container growing media. Here, composts of invasive acacia (Acacia longifolia and Acacia melanoxylon) residues were evaluated as alternative organic materials for horticultural substrates. Compost bulk density was less than 0.4 g cm?3 and total pore space was more than 85 percent of the total volume, as established for an ideal substrate. The matured acacia compost air capacity, easily available water, buffering capacity, and total water-holding capacity were also within acceptable recommended values. With increased composting time the physical characteristics of the composts were improved, but the same was not true for chemical characteristics such as pH and electrical conductivity. The replacement of pine bark compost by acacia compost in a commercial substrate did not negatively affect either lettuce emergence or lettuce growth, suggesting that acacia compost can be successfully used as an alternative component for horticultural substrates.  相似文献   

12.
Improved predictive relationships between compost maturity and nitrogen (N) availability are needed. A total of 13 compost samples were collected from a single windrow over a 91 d period. Compost stability and maturity were assessed using both standard chemical analyses (total C and N, mineral N, total volatile solids) and other methods (CO2 evolution, commercial maturity kits, and neutral detergent fiber, and lignin). Compost N and carbon (C) were evaluated during a 130 d aerobic incubation in a sandy loam soil after each compost was applied at 200 mg total kg?1 soil. The effect of compost maturity on plant growth was evaluated by growing two ryegrass (Lolium perenne L.) crops and one barley (Hordeum vulgare L.) crop in succession in compost-amended soil under greenhouse conditions. Potential phytotoxicity from compost was assessed by growing tomato (Lypersicum esculentum L.) seedlings in compost-amended soil. Regression and correlation analyses were used to evaluate the relationship between compost maturity parameters, the rate and extent of net N and C mineralization, plant yield and N uptake, and phytotoxicity. Commonly used maturity parameters like total C, total N, and C:N ratio were poorly correlated with the rate and extent of mineralization, and with plant growth parameters. The N mineralization rate during the first 48 d of aerobic incubation was strongly correlated (r= ?0.82 to ?0.86) to compost fiber and lignin concentration, and to the Maturity Index (r=0.85). Trends in C mineralization were similar. There were few differences in C mineralization between composts after 48 d of aerobic incubation in soil. Ryegrass harvested 35 and 70 d after compost application was not strongly affected by compost maturity, and relatively immature composts were phytotoxic to tomato seedlings. Methods of characterizing compost maturity and stability that more realistically reflect the composting process are better predictors of N release and potential plant inhibition after incorporation into soil.  相似文献   

13.
The aim of this study was to investigate effects of pulp and paper industry wastewater treatment sludge composts on soil and cereal crops. Five forest industry wastewater sludge composts were tested in a field study which was conducted in a silty clay soil in southern Finland with barley in 1998, with oats in 1999 and with barley in 2000. Two composts contained only pulp mill biosludge and bark in a ratio of 1:4 and 1:2, respectively. Two other composts were mixtures of biosludge and primary sludge with the addition of bark in a ratio of 1:2 and 3:4, respectively. These two wastewater sludges originated from a pulp mill and from a recycled paper mill. The fifth compost consisted of biosludge and primary sludge from a board mill. Two application rates of each compost were studied: the low rate was based on an annual P fertilization rate recommended for barley, 50-200 m3/ha; and the high rate was a double or triple the low rate depending on the mineral N concentration of the compost, 150-600 m3/ha. Based on the Finnish fertilizer recommendations, nutrient demands of the test plants were annually fulfilled by mineral fertilizers depending on the treatment. Total contents of N, P, K and Ca in composts were 8.8-17.5, 0.7-3.9, 1.5-6.5, and 4-25 g/kg dry matter, respectively. Especially at high doses, composts had beneficial effects on soil bulk density, porosity, C and N contents and C:N ratio. Despite the high total N rates applied with the composts, the mineralization following crop harvest did not significantly increase soil nitrate late autumn or following spring as compared to the soils that received mineral fertilization. There was no significant difference in the grain yields between plots that received mineral fertilization and compost treatments supplemented with mineral fertilizers. However, there was a decreased fertilization effect of some composts on straw yields during the first experimental year, indicating immobilization of mineral N. Heavy metals added in soil with the composts did not significantly increase their concentrations in the grain crops. All the composts had relatively low nutrient contents and low fertilizing value, but beneficial effects on soil properties and were regarded as soil conditioners. Soil improving and fertilizing effects of the composts varied annually depending on the weather conditions during the growing season. Heavy metal concentrations of the composts studied were far below the limit values set for the soil conditioners in the Finnish government regulations.  相似文献   

14.
Abstract

The humus composition was analyzed and the humic acid characterized by UV and visible absorption spectroscopy in order to investigate the rotting and maturing process of city refuse compost according to the method of Kumada et al. During the composting process, the following findings were obtained: (1) the HT value was almost constant, but the HE/HT ratio varied somewhat, (2) HA increased with decrease in FA, and the PQ value so increased clearly, (3) the shoulder-like absorption at a wavelength near 270 nm weakened, and (4) the RF value of humic acid increased, whereas the Δ log K value seldom varied.

The IR spectrum of humic acid gradually changed as follows: (1) the absorption band in the 1700-1600 cm-1 region and in the 1550-1500 cm-1 region increased slightly, (2) the band in the 1100-1000 cm-1 region decreased, and (3) the bands at 835 and 710 cm-1 com pletely disappeared. On the whole, the shape of the IR spectrum of the city refuse compost became featureless. These changes were probably due to the oxidation which occurred in the composting process.  相似文献   

15.
Abstract

Changes in different chemical parameters of the mixtures of several organic residues during composting were studied in order to establish simple parameters that can be useful as indices of compost maturity. Circular chromatography test and the study of the colour in solid samples of compost cannot be considered sufficiently reliable for determining the degree of maturity in composts. Similarly, parameters such as ash, C/N ratio, CEC, total organic carbon (TOC), and total nitrogen (TN) must be ruled out. Other parameters such as water soluble carbon (WSC), water soluble carbohydrates, the C/N ratio of the water soluble extract, and the ratios WSC/TN and CEC/TOC, can be used as indices of compost maturity.  相似文献   

16.
The fate of organic matter during composting is poorly understood. Therefore, we analysed composts of sewage sludges and green wastes (44 samples representative of 11 stages of biodegradation) by conventional chemical methods: pH, humic (HA) and fulvic acid (FA) content, C, N and organic matter (OM) content, and by 13C CPMAS NMR to assess the decomposition process of the organic matter. Chemical changes clearly occurred in two phases: first, decomposition of OM during the first 2 months was characterized by decreased C/N ratios, OM content and increased pH; and second, a humification process with increased HA/FA ratios. NMR spectrum changes confirmed this pattern, with an increase in aromaticity and a decrease in alkyl C. A decrease of syringyl to guaiacyl ratio (S/G), a sign of lignin transformation, also indicated humification during composting. NMR spectroscopic properties of composts were also studied by means of principal components analysis (PCA) and revealed changes according to the degree of compost maturation. The factorial map presents a chronological distribution of composts on the two first principal components. The influences of eight chemical factors on the PCA ordination of composts as monitored by their evolution by NMR were also studied by multivariate analyses. PCA clearly indicated two phases: the rapid decomposition of organic matter followed by the formation of humic‐like substances. The first phase, that is ‘new’ composts, was strongly correlated with OM contents, pH and C/N ratios whereas the second phase, corresponding to ‘old’ compost, was correlated with pH, HA content and HA/FA ratio. These results confirm that knowledge of the formation of humic substances is indispensable to suitable monitoring of the composting process.  相似文献   

17.
为探究C/N、菌剂、木酢液3因子及菌剂与木酢液交互作用对堆肥腐熟效果的影响,寻求最佳堆肥效果的因子水平组合。本研究以园林绿化废弃物为主要原料,通过L9(34)正交设计以鸡粪为C/N调理剂,菌剂和木酢液为添加剂进行堆肥试验。分析比较了各处理堆肥过程中温度、总有机碳、全氮、C/N、pH值、EC值、堆体体积等指标的变化情况,并以种子发芽率试验测定堆肥效果。结果表明,调节C/N比和添加适量菌剂与木酢液均能促使堆肥初温上升,高温期提前并延长,堆肥积温提高,发酵周期缩短,总有机碳降解量和总氮相对含量增加。适当调节C/N和添加适量菌剂均有利于堆肥pH值升高,防止EC值过高,而添加木酢液能明显降低堆肥pH与EC值。C/N、菌剂、木酢液、菌剂与木酢液交互作用对堆肥发芽指数的影响均达极显著水平,且影响效果表现为C/N菌剂木酢液。因素效应的差异显著性检验结果表明,C/N为30效果最好,0.4%菌剂与稀释500倍木酢液的交互作用最大,稀释50倍的木酢液对堆肥微生物活性存在一定的抑制作用。可见,基于种子发芽指数的园林绿化废物堆肥适宜参数组合为C/N30+0.4%菌剂+稀释500倍木酢液。  相似文献   

18.
Two composts were obtained by cocomposting a concentrated depotassified beet vinasse and grape marc using an aerated static pile and a windrow system. The composting mixtures comprised grape marc (83%) and vinasse (17%) for the aerated static pile system and grape marc (77%), vinasse (20%) and phosphate rock (3%) for the windrow. Changes in temperature followed a similar path for both mixtures, however the thermophilic phase was longer in the aerated static pile (25 days) than in the windrow (10 days). This fact caused differences in both organic matter degradation, weight losses (21% for static pile and 10% for windrow) and gas losses during the process. Nevertheless, the composts obtained by the two systems had a high fertilizer nutrient value (18.2 g kg?1 N; 3.1 g kg?1 P; 13.6 g kg?1 K, C/N 16.1 for compost obtained in static pile and 20.6 g kg?1 N; 13.7 g kg?1 P; 13.1 g kg?1 K; C/N 18 for compost obtained in windrow). A high degree of stability was reached in both composting systems (124 cmolc kg?1 CEC for static pile and 153 cmolc kg?1 CEC for windrow at 80 days of composting). The chemical and physical properties of both vinasse composts suggest their possible use as soil conditioner.  相似文献   

19.
《Applied soil ecology》1999,11(1):17-28
The objective of this work was to evaluate the effects of turning and moisture addition during windrow composting on the N fertilizer values of dairy waste composts. Composted-dairy wastes were sampled from windrow piles, which received four treatments in a 2×2 factorial of turning (turning vs. no turning) and moisture addition (watering vs. no watering) at two stages of maturity (mature vs. immature). Composts were characterized for their chemical properties. An 84-day laboratory incubation of soils with addition of the composts at two levels was conducted to evaluate the inorganic N accumulation patterns from the variously treated composts. Chemical analyses of variously treated composts did not differ between compost treatments or maturity. In contrast, the inorganic N accumulation patterns differed between soils that received immature versus mature turned composted-dairy wastes. The results suggested that turning was a more important factor than moisture addition affecting the composting process. There was no significant difference in inorganic N accumulation patterns among soils that received different immature composts, while the N accumulation patterns observed for soils that received different mature composts depended on compost treatments. Soils amended with mature composts treated by frequent turning had higher N mineralization potentials (N0), mineralization rate constants (K), and initial potential rates (N0K) in comparison to soils with composts that had not been turned. Soils with mature composts treated by watering had a higher N0, lower K, and therefore similar N0K when compared to soils with composts that had not been watered. Soils that received mature composts treated by watering and frequent turning had higher N mineralization potentials and N0 to total organic N ratios than soil alone, which suggested that intensive management of composting would ensure positive N fertilizer values of dairy waste composts, if the appropriate composting duration is completed.  相似文献   

20.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号