首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples of upland-farm surface soils (0–10 em in depth) belonging to various great soil groups were collected in 28 upland sites in Thailand during the rainy season.

Among the microbes related to the transformation of nitrogen, namely ammonifiers, ammonia oxidizers, nitrite oxidizers and denitrifiers, the count of denitrifier showed the maximum value amounting to 104 to 105 per 1 g of dry soil, followed byammonifier. The population level of nitrogen-fixing blue green algae was unexpectedly high, being 103 to 101

The microbial counts in Brown Forest Soils, Rendzinas and Grumusols with high content of organic matter, available phosphorus and exchangeable potassium tended to be high.

Non-calcic Brown Soils, Reddish Brown Lateritic Soils, Alluvial Soils, Red-Yellow Podzolic Soils and Gray Podzolic Soils which lack in some nutrients showed intermediate levels of microbial populations, while the counts of nitrogen-fixing blue green algae in Alluvial Soils and those of denitrifier in Red-Yellow Podzolic Soils were markedly high. In the case of Low Humic Gley Soils and Regosols with low content of organic matter, available phosphorus and available potassium, the population of microbes was generally small.

The relationship between the organic matter content and the microbial population of soils was positively significant at 0.1 % level only in the case of fungal population (r=0.551), while the relationship between the available phosphorus content and the microbial population was positively significant at 0.1% level only in the case of Azotobacter (r=0.682).

The relationships between the total nitrogen, the exchangeable potassium, the amount of NH4+-N, the amount NO2 --N, or the amount of NH4 +-N+NO2 --N and each microbial population were not significant in any microbial groups.

The count of denitrifiers in upland farm soils of Thailand was 9 times as high as that in non-volcanic upland-farm soils of Japan and was 23 times higher than that in volcanic soils though large variations were seen among the great soil groups of Thailand. Conversely, the population of non-spore-forming nitrite oxidizers in the upland farm soils of Thailand was 1/100 that in non-volcanic soils of Japan and 1/280 that in volcanic soils. In the case of Azotobacter, the count in upland farm soils of Thailand averaged 2,800 per 1 g of dry soil. while that in non-volcanic upland farm soils of Japan was 77 on the average.

The ratio of aerobic bacteria to actinomycetes in upland farm soils of Thailand was 2.31, while that of non-volcanic soils of Japan was 7.28.  相似文献   

2.
The most probable number (MPN) method was used to estimate how numbers of autotrophic nitrifiers in Myrtillus-type and Calluna-type pine forest soils in southern Finland were affected by seven different fertilization treatments. No NH+4 oxidizers and only a few hundred NO2?1 oxidizers g?1 of soil were found in unfertilized organic (O) horizons. Ammonium nitrate and nitroform (ureaformaldehyde) had hardly any effect on the nitrifiers. Urea, alone or applied together with apatite + biotite or with apatite + biotite + micronutrients, increased numbers of NH4+ and NO2? oxidizers. Wood ash, alone or with apatite, also had a stimulative effect. The effects of the stimulative fertilizers were less in the A2 horizon than in the O horizon. The MPN counts were considerably affected by the duration of incubation: counts of NH4+ oxidizers kept increasing for at least 8 weeks and counts of NO2? oxidizers for at least 15 weeks. These MPN counts were compared with earlier results from incubation experiments on the same soils to find out how they reflect changes in soil nitrification after fertilization.  相似文献   

3.
The soil microbial biomass (SME) content and fluorescein diacetate (FDA) hydrolytic activity in 21 acidic tea field soils in Japan were determined. SM 3 content in the tea field soils was quantitatively similar to that in 13 arable soils with neutral soil pH previously reported. However, the ratio of the SMB content to organic matter content in the tea field soils classified as red-yellow soil, brown forest soil, and lithosol was clearly lower than that in the neutral arable soils classified as non-volcanic ash soil. FDA hydrolytic activity in the tea field soils was higher than the activity in various soils with neutral soil pH and showed a negative relationship with the soil pH.  相似文献   

4.
The characteristics of production and immobilization of NO3-N were evaluated for soils from four forest types in Kochi Prefecture, southern Japan. Net NO3-N production during the laboratory incubation differed among the soils from the four forest types, being high under Japanese cedar (Cryptomeria japonica D. Don) and deciduous hardwood, and negligible under Japanese red pine (Pinus densiflora Sieb. et Zucc.) and hinoki cypress (Chamaecyparis obtusa Endlicher). Nitrification under Japanese cedar and hardwood was mainly autotrophic based on the fact that nitrification was inhibited by acetylene or nitrapyrin, and was not affected by cycloheximide. Net NO3-N production in these soils increased by glycine addition, but did not increase appreciably by NH4Cl addition. However, net NO3-N production increased after the addition of CaCO3 with NH4Cl. These results indicate that the substrate of nitrification is NH3 rather than NH4 + and that the added NH4 + is not utilized by nitrifiers at low pH values. With NO3-N addition to soils under red pine and hinoki cypress, immobilization of NO3-N was observed followed by rapid production of NH4-N. These findings suggested that mobile NO3-N can be converted to less mobile NH4-N by the activities of soil microorganisms. This microbial process may play an important role in retaining nitrogen within forest ecosystems where the potential of N loss is high due to the high precipitation in the area.  相似文献   

5.
This study investigated general physicochemical properties of tea garden soils at the alluvial plain of Cong River in Tan Cuong commune, Vietnam. Four gardens were selected as study sites on three transect lines established perpendicularly to the river. Soil samples were collected from the surface (0–10 cm) and subsurface (20–30 cm). Soil texture classes varied from sandy loam to light clay, which was affected by different terrains along the transect lines as well as severe disturbance such as terracing and earth excavation. The levels of total C and total N were correlated with increasing garden age, suggesting the replenishment of soil organic matter pool by the addition of plant residue and manure. Meanwhile, the soils showed strongly acidic nature with the average pH(H2O) of 3.7 at the surface and 3.9 at the subsurface. The effective cation exchange capacity (ECEC) was low at 4.7 and 4.9 cmolc kg?1, respectively, and dominated by exchangeable Al3+. Soil acidification was exacerbated with increasing garden age. However, a relatively large saturation of exchangeable calcium (Ca2+), potassium (K+), and magnesium (Mg2+) on the ECEC was found in the surface soils. The levels of available P were high, occasionally exceeding 1000 and 500 mg kg?1 at the surface and subsurface, respectively. In spite of strongly acidic condition, ammonium (NH4-N) applied as fertilizer was converted to nitrate (NO3-N) to move down to deeper layers. The levels of the bases, P, and mineral N seem to be principally determined by management practices. Significant portion of these nutrients was likely to exist in water soluble forms without adsorption onto soils. It should be required to develop proper schemes and to educate the owners for adequate fertilizer managements.  相似文献   

6.
土壤微生物体氮测定方法的研究   总被引:29,自引:4,他引:25  
用熏蒸-0.5mol/LK2SO4 直接浸取NH4+-N法 (简称薰蒸 铵态氮法 ) ,熏蒸 淹水培养法和熏蒸 通气培养法测定了有机质、全氮和C/N比差异较大的 15种土壤的铵态氮增量 (FN)。结果表明 ,它们之间有极显著的正相关 ,在反映土壤微生物体氮上有相同趋势。两种培养方法测定的FN 近乎一致 ,由此而计算的微生物体氮也几乎相同。对红油土铵态氮法测定值仅为两种培养法的 1/ 10。把铵态氮法中的FN 校正后 ,其结果与 2种培养法测定的微生物体氮同样近乎一致。用 3种方法测定的微生物体氮均与土壤有机碳存在显著正相关性。淹水培养和铵态氮法水分条件易控制 ,又无NH3的挥发损失 ,比通气培养法更加优越。对培养试验和长期肥料定位试验的土样测定结果表明 ,土壤中易矿化新鲜有机物料也会使熏蒸 淹水培养法测定的FN 显著下降 ,由此而计算的微生物体氮也显著减少 ,但熏蒸 铵态氮法测定的FN 不受新鲜有机物质的影响。与土壤微生物数目进行比较后发现 ,土壤中含易分解有机物质少或微生物体氮含量低时 ,选用熏蒸 淹水培养法测定误差小 ;当土壤中富含新鲜有机物质时 ,熏蒸 铵态氮法测定的结果更加可靠。用这两种方法在同类土壤上测定的FN 的比值相对稳定 ,微生物体氮 (BN)的平均比值为 0.98~1.01,不受施肥的影响  相似文献   

7.
Rhizophere and bulk soil chemistry were investigated in a Norway spruce stand in SW Sweden. The rhizosphere and bulk soil chemistry in water extracts in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatment regime was started in 1988. Cylindrical core samples of the LFH-layer and mineral soil layers were collected in 1992 and used for water extract analyses. Samples of soil from LFH-layer and mineral soil layers were taken in 1991 and 1993 for determination of CEC and base saturation. Soil pH and NH4-N, NO3-N and SO4-S, Al, Ca, K and Mg concentrations in water extracts were measured for rhizosphere and bulk soils. The pH-values of bulk and rhizosphere soils in NS plots decreased compared with those in control plots, whereas concentrations of NH4-N, NO3-N, SO4-S, base cations and Al in water extract increased. In both bulk and rhizosphere soils the concentration of NH4-N was much higher than that of NO3-N. A significant difference in the pH and Mg concentration of bulk and rhizosphere soil between the treated and control plots was found only in the 0–10 cm layer. For all layers, there was a significant difference in NH4-N concentrations in the bulk and rhizosphere soil between the NS treatment and control plots. Concentrations of exchangeable base cations and the base saturation level in the LFH-layer decreased in the NS plots. The concentration of extractable SO4-S increased in the NS plots. The NS treatment enhanced the amount of litter in L-layer, owing to increases in needle biomass and litterfall but led to losses of base cations, mainly K and Mg, from LFH-layer. It was concluded that the NS treatment displaced cations from exchangeable sites in the LFH-layer leading to higher concentrations of these elements in both rhizosphere and bulk soil.  相似文献   

8.
Summary Populations of several bacterial groups on the root surface of wheat and in root-free soil were investigated in volcanic ash soil and non-volcanic ash soil throughout a series of predetermined intervals. Over time, the populations changed similarly both on the root surface and in root-free soil. The numbers of total bacteria, fluorescent Pseudomonas spp., phosphate-solubilizing bacteria, and NH inf+ sup4 -oxidizing bacteria, were consistently lower in the plots with volcanic ash soil than with nonvolcanic ash soil, but the numbers of cellulose-decomposing bacteria were opposite to those of the other groups. Superphosphate application improved the growth of wheat in the volvanic ash soil. It did not, however, bring about any significant changes in the bacterial populations among the volcanic ash soils supplemented with three different levels of superphosphate, though there were some variations with plant age.  相似文献   

9.
Nutrient addition has a significant impact on plant growth and nutrient cycling. Yet, the understanding of how the addition of nitrogen (N) or phosphorus (P) significantly affects soil gross N transformations and N availability in temperate desert steppes is still limited. Therefore, a 15N tracing experiment was conducted to study these processes and their underlying mechanism in a desert steppe soil that had been supplemented with N and P for 4 years in northwestern China. Soil N mineralization was increased significantly by P addition, and N and P additions significantly promoted soil autotrophic nitrification, rather than NH4+-N immobilization. The addition of N promoted dissimilatory NO3 reduction to NH4+, while that of P inhibited it. Soil NO3-N production was greatly increased by N added alone and by that of N and P combined, while net NH4+-N production was decreased by these treatments. Soil N mineralization was primarily mediated by pH, P content or organic carbon, while soil NH4+-N content regulated autotrophic nitrification mainly, and this process was mainly controlled by ammonia-oxidizing bacteria rather than archaea and comammox. NH4+-N immobilization was mainly affected by functional microorganisms, the abundance of narG gene and comammox Ntsp-amoA. In conclusion, gross N transformations in the temperate desert steppe largely depended on soil inorganic N, P contents and related functional microorganisms. Soil acidification plays a more key role in N mineralization than other environmental factors or functional microorganisms.  相似文献   

10.
西南地区冬水田剖面的微生物空间分异规律   总被引:1,自引:0,他引:1  
为研究冬水田土壤基本理化性质对微生物多样性和冬水田生态系统功能与结构的作用,以西南地区3个不同样地的冬水田为研究对象,采用烘干法、电位法、静态室内培养法、稀释涂布平板法和氯仿熏蒸法对土壤理化和生物学指标进行检测。结果表明:(1)各样地含水量均沿垂直深度逐渐降低,pH为6.3~7.1,呈微酸—中性生境,铵态氮(NH4+—N)含量总体呈现为合川区冬水田沙坪坝区冬水田北碚区紫色土基地,且表层(0—10cm)亚表层(10—20cm)底层(20—40cm),整体为36.97~52.02mg/kg,3种冬水田各土层硝态氮(NO3-—N)含量差异不显著(2.13~2.61mg/kg)。(2)微生物量碳(MBC)和微生物量氮(MBN)含量呈现为北碚区紫色土基地合川区冬水田沙坪坝区冬水田,不同层次表现为表层(0—10cm)亚表层(10—20cm)底层(20—40cm)。(3)各样地间微生物丰度表现为细菌放线菌真菌,微生物数量沿土层垂直深度降低,各土层细菌、放线菌和真菌数量均呈极显著负相关(p0.01),不同样地间表现为合川区冬水田沙坪坝区冬水田北碚区紫色土基地。  相似文献   

11.
为探究不同间伐强度对杉木人工林土壤碳氮及其组分特征的影响,以福建省三明市官庄国有林场11年生杉木(Cunninghamia lanceolata)人工林为研究对象,采用弱度间伐(LIT)、中度间伐(MIT)、强度间伐(HIT)等3种间伐强度,研究不同间伐强度林分0—10,10—20,20—40,40—60,60—80,80—100 cm土层总有机碳(SOC)、全氮(TN)及易氧化有机碳(ROC)、硝态氮(NO_3~--N)、铵态氮(NH_4~+-N)、微生物量碳(MBC)、微生物量氮(MBN)、微生物熵碳(qMBC)、微生物熵氮(qMBN)的变化特征,以探讨不同间伐强度对杉木人工林土壤碳氮及其组分特征的影响。结果表明:间伐降低了土壤SOC和TN的含量,降低幅度分别为1.4%~36.9%,3.1%~45.7%。间伐增加了土壤MBC、NO_3~--N的含量,而对ROC、NH_4~+-N和MBN的程度在不同土层有差异,qMBC和qMBN随着间伐强度的增加而增大。相关性分析表明,土壤SOC分别与TN、qMBC、ROC、NH_4~+-N、MBC、MBN呈极显著正相关(P0.01);TN与qMBN、ROC、NH_4~+-N、MBC、MBN呈极显著正相关(P0.01)。杉木人工林间伐处理降低了土壤表层SOC和TN含量,增加了土壤SMBC和qMBC、qMBN,同时也增加了土壤表层(0—10 cm)SMBN。抚育间伐导致土壤SOC和TN含量降低主要是由于活性碳、氮含量的增加,提高土壤中有机质分解速率,最终导致土壤SOC和TN含量降低。  相似文献   

12.
The occurrence of nitrification in some acidic forest soils is still a subject of debate. Identification of main nitrification pathways in acidic forest soils is still largely unknown. Acidic yellow soil (Oxisol) samples were selected to test whether nitrification can occur or not in acidic subtropical pine forest ecosystems. Relative contributions of autotrophs and heterotrophs to nitrification were studied by adding selective nitrification inhibitor nitrapyrin. Soil NH4+-N concentrations decreased, but NO3--N concentrations increased significantly for the no-nitrapyrin control during the first week of incubation, indicating that nitrification did occur in the acidic subtropical soil. The calculated net nitrification rate was 0.49 mg N kg-1 d-1 for the no-nitrapyrin control during the first week of incubation. Nitrapyrin amendment resulted in a significant reduction of NO3--N concentration. Autotrophic nitrification rate averaged 0.28 mg N kg-1 d-1 and the heterotrophic nitrification rate was 0.21 mg N kg-1 d-1 in the first week. Ammonia-oxidizing bacteria (AOB) abundance increased slightly during incubation, but nitrapyrin amendment significantly decreased AOB amoA gene copy numbers by about 80%. However, the ammonia-oxidizing archaea (AOA) abundance showed significant increases only in the last 2 weeks of incubation and it was also decreased by nitrapyrin amendment. Our results indicated that nitrification did occur in the present acidic subtropical pine forest soil, and autotrophic nitrification was the main nitrification pathway. Both AOA and AOB were the active biotic agents responsible for autotrophic nitrification in the acidic subtropical pine forest soil.  相似文献   

13.
Extensive use of chemical fertilizers in agriculture can induce high concentration of ammonium nitrogen(NH4+-N) in soil. Desorption and leaching of NH4+-N has led to pollution of natural waters. The adsorption of NH4+-N in soil plays an important role in the fate of the NH4+-N. Understanding the adsorption characteristics of NH4+-N is necessary to ascertain and predict its fate in the soil-water environment, and pedotransfer functions(PTFs) could be a convenient method for quantification of the adsorption parameters. Ammonium nitrogen adsorption capacity, isotherms, and their influencing factors were investigated for various soils in an irrigation district of the North China Plain. Fourteen agricultural soils with three types of texture(silt, silty loam, and sandy loam) were collected from topsoil to perform batch experiments. Silt and silty loam soils had higher NH4+-N adsorption capacity than sandy loam soils.Clay and silt contents significantly affected the adsorption capacity of NH4+-N in the different soils. The adsorption isotherms of NH4+-N in the 14 soils fit well using the Freundlich, Langmuir, and Temkin models. The models’ adsorption parameters were significantly related to soil properties including clay,silt, and organic carbon contents and Fe2+ and Fe3+ ion concentrations in the groundwater. The PTFs that relate soil and groundwater properties to soil NH4+-N adsorption isotherms were derived using multiple regressions where the coefficients were predicted using the Bayesian method. The PTFs of the three adsorption isotherm models were successfully verified and could be useful tools to help predict NH4+-N adsorption at a regional scale in irrigation districts.  相似文献   

14.
通过田间试验研究了不施肥(CK)、施氮360 kg?hm?2(T1)、施氮720 kg?hm?2(T2)处理下茶园土壤无机氮、p H、各形态氟含量的动态变化和春、夏、秋茶树新梢一芽四叶、一芽五叶氟含量,探讨茶园施氮对土壤和茶树新梢氟含量的影响。结果表明:1)茶园施氮后短期内(20~30 d)土壤水溶态氟含量显著降低,土壤交换态氟和铁锰结合态氟含量降低;长期(45~50 d)土壤水溶态氟含量的降低作用减弱,土壤交换态氟和铁锰结合态的含量增加;在试验结束时(164 d),与CK处理相比,T1处理0~20 cm土壤各形态氟含量降低,T2处理0~20 cm土壤各形态氟含量增加。2)0~20 cm茶园土壤水溶态氟、铁锰结合态氟与NH4+-N分别呈极显著负、正相关(P0.01),20~40 cm土壤水溶态氟、交换态氟与NO3?-N分别呈极显著正、负相关(P0.01)。土壤p H与土壤水溶态氟含量极显著负相关(P0.01),与其他3种形态氟含量相关性不显著。土壤铁锰结合态氟与交换态氟、有机结合态氟呈显著、极显著正相关,但与土壤水溶态氟均无显著相关性。3)春茶前后施氮可以降低春、夏、秋茶树新梢一芽四叶、一芽五叶氟含量,但未达显著水平。T1处理新梢氟含量的降低值为夏茶(25.15~27.95 mg?kg?1)秋茶(21.06~24.31 mg?kg?1)春茶(18.58~21.03 mg?kg?1),T2处理的降低值为秋茶(18.64~22.34 mg?kg?1)夏茶(7.79~14.14 mg?kg?1)春茶(3.52~7.30 mg?kg?1)。春、夏、秋茶树新梢氟含量主要受0~20 cm土壤无机氮和20~40 cm土壤p H的影响。因此推测施氮通过影响茶树根系氟的吸收和氟在叶片中的累积过程调控茶树新梢氟含量,该研究成果为合理利用施氮技术降低茶园土壤和茶树新梢氟含量提供了理论依据。  相似文献   

15.
Incubation studies (5 weeks at 30°C) of nitrification were made in an acid (pH 5.8) and a neutral (pH 7.1) soil receiving varying concentrations of pig slurry and (NH4)2SO4 solution. Mineral-N and pH changes were observed at weekly intervals and inorganic salts media were used to obtain separate estimates of the numbers of NH4-N- and NO2-N-oxidizing bacteria. In the acid soil, pig slurry NH4-N was nitrified to a greater extent than (NH4)2SO4. In the neutral soil, slurry additions resulted in the accumulation of NO2?-N and, in one case, the complete inhibition of nitrification for 4 weeks. Slurry raised the pH of both soils more than (NH4)2SO4 and nitrification in the acid soil was most rapid in a 2 week period of elevated pH following slurry applications. Numbers of Nitroxomonas isolated from the acid soil were considered high enough to account for NH4-N oxidation in slurry-treated samples. Numbers of nitrifiers recovered from the incubated neutral soil samples were variable but frequently high enough (>104/g dry soil) to account for observed rates of nitrification. Results are discussed in relation to heterotrophic nitrification in soils, and the practical implications of spreading slurry on agricultural land.  相似文献   

16.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

17.
干土效应对土壤生物组成及矿化与硝化作用的影响   总被引:25,自引:3,他引:25  
将经过风干、过筛后的2种旱地红壤加水培养,并和新鲜土培养条件相比较,研究干土效应对土壤生物组成及矿化与硝化作用的影响.试验共4个处理(1)农田旱地风干土加水培养(RU);(2)农田旱地新鲜土培养(FU);(3)苗圃旱地风干土加水培养(RN);(4)苗圃旱地新鲜土培养(FN).结果表明红壤风干土加水预培养5 d后,细菌、放线菌、真菌数量比新鲜土显著增加(p<0.01),细菌数量增加最为明显,农田旱地和苗圃旱地风干土处理分别是新鲜土的6.26倍和6.84倍,红壤风干土加水培养处理的微生物量碳、氮也随之增加.培养28 d后土壤中微生物数量趋于稳定,与预培养5 d时的数量相当或稍有下降,但风干后加水培养处理的微生物数量仍保持大于新鲜土的趋势(农田旱地的放线菌除外),微生物量碳、氮也存在同样的趋势.风干土加水培养后微生物数量的迅速增加,使得氮素矿化速度加快,由此导致NH+4-N量显著增加(p<0.01),培养28 d后,NH+4-N量较预培养5 d时有所增加,且明显高于新鲜土培养处理;NO-3-N含量也增加,但新鲜土处理显著高于风干土处理.土壤风干处理对土壤自由生活线虫的影响比较大,农田旱地和苗圃旱地风干土加水培养28 d后,其自由生活线虫数量仅为新鲜土的16.0%和30.1%,显示风干土加水培养难以恢复土壤微型动物的数量.28 d的矿化和硝化培养试验结果显示,风干土加水培养处理的净矿化量和矿化率均高于新鲜土处理,苗圃旱地风干土处理的增量达到了显著水平(p<0.05),但是硝化作用却刚好相反,农田旱地和苗圃旱地的净硝化量及硝化率均是新鲜土处理显著高于风干土处理(p<0.05),其原因是对硝化作用起重要作用的硝化菌(氨氧化细菌和亚硝酸氧化细菌)数量在经历了风干过程后很难恢复到新鲜土水平.  相似文献   

18.
Switchgrass (Panicum virgatum L.) is a perennial biofuel crop with a high production potential and suitable for growth on marginal land. This study investigates the long-term planting effect of switchgrass on the dynamics of soil moisture, pH, organic carbon (SOC), total nitrogen (TN), nitrate nitrogen (NO3-N) and ammonium nitrogen (NH4+-N) for soils to a depth of 90-cm in a sandy wasteland, Inner Mongolia, China. After crop harvesting in 2015, soil samples were collected from under switchgrass stands established in 2006, 2008, and 2009, native mixture, and a control that was virgin sand. Averaged across six layers, soil moisture and pH was significantly higher under the native mixture than switchgrass or virgin sand. However, SOC and TN were significantly higher under the 2006 switchgrass stand when compared with all other vegetation treatments and the control. The SOC and TN increased from 2.37 and 0.26 g kg?1, respectively, for 2009 switchgrass stand, and to 3.21 and 0.42 g kg?1, respectively, for 2006 switchgrass stand. Meanwhile, SOC and TN contents were 2.51 and 0.27 g kg?1, respectively, under the native mixture. The soil beneath switchgrass and native mixture showed the highest NO3-N and NH4+-N, respectively. The soil moisture increased with depth while SOC, TN, and NO3-N decreased. An obvious trend of increasing moisture, SOC, TN, and mineral N was observed with increasing switchgrass stand age. Thus, growing switchgrass on sandy soils can enhance SOC and TN, improve the availability of mineral N, and generate more appropriate pH conditions for this energy cropping system.  相似文献   

19.
A crop rotation field study with manure application was established at Tartu in 1985. Biological and chemical properties were evaluated on fine sandy loam Podzoluvisol in May 1989. The treatments included unmanured (No and N80) controls, two peat based composts and five manures of different origin. The procedures of the most probable number (MPN) and spread plate counts were used for microbiological investigation, but also enzymatic activities, nitrogen forms, total‐C and pH were simultaneously estimated in plough layer soil. The most variable i.e. the most clearly differentiated physiological groups within manures were cellulolytic and ammonifying bacteria followed by Azotobacter spp. together with actinomycetes. Abundance of aerobic cellulolytic and ammonifying bacteria correlated positively with the number of soil algae and fungi, and negatively with nitrate‐ and nitrite‐reductase. The number of actinomycetes correlated positively with urease and catalase activity. Soil enzymatic activity was mainly modified by nitrite‐reductase. Peat composts had the highest C‐content and highest pH value compared with other soils. Pig slurry and NH4NO3 (N80) treatment had the highest level of fixed NH+ 4 ‐ions in soil. Nine months after manure application no differences were found in the unstable NO 3content of soil. Variation in the number of the studied microbial physiological groups between treatments remained insignificant.  相似文献   

20.
Summary An investigation was conducted during the summer months of 1986–1987 and 1987–1988 in Western Australia to evaluate the effect of soil solarization on the control of root rot of gerbera an also on the microbial and nutrient status of the soil. Infested soil cores were sampled from a site where root-rot was a severe problem and were removed to a non-infested site where they were subjected to soil solarization or fumigation. Soil solarization resulted in reduced root rot (root disease index 28.6%) in comparison to the untreated control (52.0%) 8 months after planting. Plants in the fumigated plots had 15.8% less disease than those in solarized plots. Solarization increased the total numbers of bacteria and actinomycetes, and the proportion of bacteria and fungi antogonistic to Fusarium oxysporum, F. solani and Rhizoctonia solani. The proportion of actinomycetes antagonistic to these fungi, however, did not differ between solarized and control soil treatments. There was a significant reduction in disease in plants grown in infested fumigated soil to which a 10% concentration of solarized soil had been added, suggesting the development of microbial suppression in solarized soil. Phytophthora cryptogea was eradicated to 30 cm by solarization as well as by fumigation. Solarization eliminated R. solani but not F. oxysporum to a soil depth of 10 cm. Solarization increased the levels of NO n3 -N and NH4 +-N in soil, but did not affect the concentrations of PO4 3–, K+, Fe2+, organic C and pH. Yield (as number of flowers per plant) was increased by soil solarization and by fumigation.Increased yields and decreased disease severity in the solarized plots could have been caused by (1) a reduction in the infectivity of the infested soils, (2) an increase in the suppressiveness of the soil, and (3) an increased available of plant nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号