首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There have been several papers dealing with the difference in chemical composition between callus tissue and normal parent tissue. WEINSTEIN, TULECKE, NICKELL, and LAURENCOT (1–3) revealed, in a series of papers, that the contents of amino acids, sugars, and nucleic acids often differed strikingly between callus and normal tissue of Agave toumeyana Trel. (1), Ginkgo biloba, L. (2), and PAUL's scarlet rose (3). STEWARD, THOMPSON, and POLLARD (4) also reported that the content of some amino acids of rapidly growing and randomly proliferating tissue is outstandingly different from that of normal tissue.  相似文献   

2.
The volatile fatty acids produced by the representative strains of clostridia isolated from paddy field soil were surveyed. All the strains, except Cl. tertium, utilized only amino acids as the sole source of energy for growth. All of them produced acetic and butyric acids, and some of them produced propionic acid in addition. Iso-valeric and iso-butyric acids were also produced, except by Cl. tertium. These results suggest that all the strains, except Cl. tertium, may carry out the STICKLAND reaction. The cells of each strain harvested from the culture in the VL medium were subjected to examination whether or not they carried out the STICKLAND reaction in the presence of leucine or glycine. All the strains, except Cl. tertium, catalyzed the STICKLAND reaction and some strains also metabolized leucine and glycine even when they were supplied singly.  相似文献   

3.
In a previous communication from this laboratory it has been indicated that mint plants respond typically to different environmental conditions (day length and temperature) by marked alterations in growth, and synthesis of essential oil (SINGH and SINGH, 1968a (1)). Similar work on M. piperita L. carried out by several workers clearly shows that the mineral nutrition and metabolism of this plant are equally affected by environmental changes (CRANE and STEWARD, 1962 (2) ; RABSON, 1965 (3) ; STEWARD et al. 1959 (4)), and the metabolic consequences which flow from deficiencies of nutrient elements are greatly influenced by these factors, e. g., lack of phosphorus under short days is accompanied by greater accumulation of amides than under long days and, therefore, causes decrease in other soluble constituents, viz. amino acids (CRANE and STEWARD, 1962).  相似文献   

4.
Abstract

The presence of 4-MeGln in the tulip plant was discovered by ZACHARIUS et al. (1954), and it was found that this amide generally occurred in the leaves of almost all the species of genus Tulipa (FOWDEN and STEWARD 1957a). The 4-MeGln compound has been detected in every part of the tulip plant, i.e., bulb scales, roots, basal plate, young shoots, leaves, stern, and flower (FOWDEN and STEWARD 1957a, b; OHYAMA 1986; OHYAMA et al. 1985, 1988a, b; ZACHARIUS et al. 1954, 1957). Especially 4-MeGln was found to be a major soluble N constituent in the leaves and stem of tulip of the flowering stage (OHYAMA et al. 1985; OHYAMA 1986).  相似文献   

5.
Recent studies have shown that the incorporation of ammonium nitrogen into amino acids in the leaves is strictly dependent on light (1-4). It is speculated that the effect of light on ammonium assimilation may be through the synthesis of the precursors of amino acids, or by the supply of the energy required for amination and amidation with organic acids. In the Vicia faba chloroplasts Givan et al. (1) exhibited that the synthesis of glutamic acid from a-ketoglutarate was linked with the generation of reduced pyridin nucleotide by photosynthetic electron transport. Mitchell and Stocking (2) suggested the direct coupling of glutamine formation with photophosphorylation in the pea chloroplasts. On the other hand. the processes of nitrate assimilation are more indebted to light than those of ammonium assimilation, because the former ones involve the reduction of nitrate to ammonium which is believed to be light-dependent (5). Canvin and Atkins (6). and Atkins and Canvin (7) reported that the incorporation of 15N-labeled ammonium and nitrate into amino acid fractiom was depressed by the dark treatment and by photosystem inhibitors; 3-(3′,4′-dichlrophenyl)-1-1-dimethylurea (DCMU) and carbonyl-cyanide-m-chlorophenyl-hydrazone(CCCP).  相似文献   

6.
Laminar opaline silica was first found in the 0.2 to 5 μ fraction and most abundant in the 0.4 to 2 μ fractions of young Japanese Andosols by Shoji and Masui (1969a, b). It was noted that the A horizon of a profile tends to be relatively rich in opaline silica whereas the B or C horizon, in allophane (Shoji and Masui, 1972a, b). They (I972a) distinguished four types of opaline silica particles such as circular, elliptical, rectangular, and rhombic, of which the circular and elliptical types predominate. It has been suggested that the formation of opaline silica is favored by a plentiful supply of soluble silica in the early weathering stage of Andosols, the supersaturation of silica by surface evaporation of soil solution, and the suppression of aluminum activity in the soil solution by the accumulation of soil organic matter (Shoji and Masui, 1972b; Wada and Harward, 1974). The purpose of the present short communication is to describe the occurrence of laminar opaline silica particles in some Oregon Andosols, U.S.A.  相似文献   

7.
Investigations on the extraction and determination of organic acids in flooded soil have been reported by TAKAI (1) and TAKIJIMA (2). TAKAI applied water to extract acids from soil and determined them by BULLEN's method (3). However, TAKIJIMA reported that organic acid could not be completely extracted by TAKAI's procedure, especially in soil with a high organic matter content such as muck and peaty soils, and proposed an extraction procedure with 0.5 N sulfuric acid. He also discussed the absorption of acids by soil.  相似文献   

8.
Blast disease is one of the biggest diseases of rice plant in Japan. For example, in 1953, the total area of damage by blast disease was about 160 × 104 hectare and the decreased yield of rice Was about 67.5 × 104 ton in Japan. There have been many studies on blast disease for a long time. Tanaka and Katsuki (7)studied the relation between environmental conditions and blast disease. They always used adult healthy rice plants as plant materials and have not analysed the plants damaged by blast fungus directly. They suggested the presence of growth-promoting factors of blast funngus especially in susceptible rice varieties. Tamari and Kaji (5, 6) suggested that the blast fungus produced some effective toxic substances which might cause the disease. Suzuki, Doi and Toyoda (4) continued to study the mechanism of rice blast resistance and they have proposed 3 phases of resistance. They are (a) resistance and environtmental factors, (b) resistance and host camponents and (c) relation of host variety to fungus race.  相似文献   

9.
Fractional analysis of phosphorus compounds in plant tissue has been carried out by many workers, and reported on tobacco plant by Holden (1) and Komatsu (2). The fractional distribution of foliar absorbed phosphorus was investigated by Yatazawa (3) who indicated that the phosphorus was first converted into the phosphate-ester as an intermediate substance on the phosphorus metabolism. The methods of fractional analysis used by these authors were based on the method proposed by Page and Umbereit (4) in which they used trichloroacetic acid as the first extracting reagent. Recently, in order to separate the protein bound phosphorus, Wildmann, Campell and Bonner (5) adopted the salting-out method without using trichloroacetic acid. They reported that the protein-bound phosphorus plays an important role and is in the dynamic state. Fujiwara and Kadowaki (6) paid attention to the phosphorus bound to cytoplasmic protein as energy-rich phosphate compounds, and adopted the method so as to separate such compounds. In order to reveal the utilization of foliar absorbed phosphorus by the tobacco plant, the fractional distribution of phosphorus was examined. In this paper, the degree of change to organic phosphorus was taken as an index of phosphorus utilization. Paper electrophoresis was used for this purpose because the inorganic and the protein-bound phosphorus could be separated easily.  相似文献   

10.
Abstract

Microbial metabolism in reduction process of waterlogged paddy soils has been studied by Takai, Koyama, and Kamura (1, 2, 3, 4, 5, 6), Koyama (7, 8, 9, 10, 11, 12), and others. The results indicated that microbial metabolism in waterlogged soils takes place according to the following steps: (1) In the early stage of the incubation period, dissolved O2, is consumed and the redox potential drops rapidly. (2) NO2? and NO2? are reduced to N2. (3) Mn4+ is reduced to Mn2+. (4) Fe3+ is reduced to Fe2+. (5) SO4 2? is reduced to S2?. (6) H2 and CH4 are produced. Takai and Chiang (13) reported that NH4+ and PO4 3+ in waterlogged paddy soils increase with the incubation period. Chiang and Takai (14) indicated that carbohydrates in the soil solutions almost remain constant throughout the incubation period, however, organic acids change similarly to those reported previously (5, 6).  相似文献   

11.
A greenhouse experiment was conducted at Land Resources Research Institute, NARC, Islamabad to examine the impact of humic substances (HSs) coating on potassium fertilizers use efficiency. Tomato variety “Rio Grande” was used. The treatments applied were T1= Control (N, P at 250 and100?mg kg?1 respectively), T2?=?N, P?+?K at 200?mg kg?1 as SOP, T3?=?N, P?+?K at 200?mg kg?1 as NPK blend, T4?=?N, P?+?K at 200?mg kg?1 HSs coated SOP) and T5?=?N, P?+?K at 200?mg kg?1 HSs coated NPK blend. Results indicated a positive impact of sole and HSs coated products on agronomic traits, nutrient concentration, fruit quality traits, flower number, fruit umber, fruit weight, chlorophyll contents, fresh and dry biomass, tissue water contents, diameter and fruit mineral composition. The response of afore said traits to applied treatment varied.  相似文献   

12.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

13.
It is well known that methyl mercaptan is porduced by the microbiological decomposition of methionine1),2),3). According to Kondo 4) and Onitake 1)not only hydrogen sulfide, but also methyl mercaptan were produced from cystine by E. coli and Proteus vulgaris in the medium containing one of glucose, lactose, sucrose, glycerin or histidine. Moreover, Onitake 1) found that methyl mercaptan was produced by the action of E. coli in the medium containing hydrogen sulfide and a trace of ethyl alcohol, and that evolution of methyl mercaptan began only 5 minutes after the start of experiment in the medium containing methionine, but it began after 12hrs in the medium containing 1-cystine and glucose. According to Birkinshaw, Findlay and Webb5) methyl mercaptan was found in the medium containing glucose, sulfate and other mineral salts, inoculated by Schizophyllum commune. In the same cultural condition as given above, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide were detected by Challenger and Chartons 5) from the data presented above, in addition to microbiological formation of methyl mercaptan from methionine, the possibility cannot be excluded of methyl mercaptan formation by microbes from cystine, sulfate or hydrogen sulfide in the medium containing one of organic compounds such as sugars, glycerin, histidine and ethyl alcohol, etc.  相似文献   

14.
Abstract

Several silicon (Si) extractants are being employed in different countries mostly for lowland acidic soils. Present investigation was conducted to evaluate suitable extractants for upland paddy grown on alkaline soils. Available Si was extracted by using ten different extractants. Tris buffer pH 7.0 (1:10) in Inceptisols showed positively highest and significant correlation with grain yield (r?=?0.870), grain Si uptake (r?=?0.887), straw yield (r?=?0.852), and straw Si uptake (r?=?0.919). However, 0.5?M acetic acid (1:2.5) in Vertisols showed positively highest and significant correlation with grain yield (r?=?0.810), grain Si uptake (r?=?0.852), straw yield (r?=?0.850), and straw Si uptake (r?=?0.929). The application of Si @ 200?kg ha?1 along with chemical fertilizers significantly increased yield and nutrient uptake of upland paddy on Vertisols. Tris buffer pH 7.0 (1:10) and 0.5?M acetic acid (1:2.5) were suitable extractant for Inceptisols and Vertisols, respectively based on its correlation with yield and nutrient uptake.  相似文献   

15.
Soil humus plays a significant role in the cation exchange of a soil. YOSHIDA (1) showed that, as a general rule, divalent ions such as calcium and magnesium were adsorbed more strongly onto humus than monovalent ions such as ammonium and potassium in an ion-exchange reaction. He did not, however, describe the behavior of heavy metal ions. BREMNER et al. (2) first suggested that soil organic matter forms complexes with polyvalent cations. HIMES and BARBER (3) found that soil organic matter reacts with divalent metal ions in a manner similar to the chelation reaction. Reviews of the soil organic matter-metal complex have been written by BREMNER et al. (2) and KAWAGUCHI, MATSUO and KYUMA (4).  相似文献   

16.
Occurrence of D-amino acid has been reported in various higher plants (11, 13). However detailed aspects of the synthesis and degradation of D-amino acids in higher plants are poorly documented.  相似文献   

17.
It has been well known that the inorganic nitrogen compounds used as the common nitrogen source for the growth of higher plants can be replaced by some organic nitrogen compounds such as amino acids or amides. According to GHOSH and BURRIS (1), who investigated the effect of some amino acids as the nitrogen source, alanine, asparagine, glutamate and histidine were better nitrogen sources than ammonia for clover and tomato plants. For tobacco, however, nitrate and ammonia were superior to all organic nitrogen compounds used. RATNER et al. (2). made the same kind of study by using corn and sunflower plants and reported that the plants could grow with glycine, aspartate, glutamate and arginine, but all of them were inferior to inorganic nitrogen as the nitogen source.  相似文献   

18.
A characteristic gel-like substance has been noticed around weathered pumice grains in the pumice beds of Kanuma near Utsunomiya and of Kitakami, Iwate prefecture. This substance was first studied by SHIOIRI (6) in 1934, and reported as allophane according to its chemical composition, refractive index, and dye-adsorbing nature similar to the colloid of volcanic ash soils of the Onji-type. Recently, KUWANO and MATSUI (5) remarked that the colloidal film in the Kanuma and Imaichi pumice beds diffracted x-rays at about 8 and 33 Å, and they presumed that this substance might be an early transitional material from allophane to some crystalline clay minerals. KANNO (2) and KANNO et al. (3) examined this gel-like substance from Imaichi and Kitakami districts precisely by the x-ray diffraction, differential thermal, infrared spectroscopical, electron microscopical, and chemical methods, and they concluded that the substance was a mixture of poorly crystallized montmorillonite, allophane in various weathering stages, and free sesquioxide, although there was no positive evidence of montmorillonite. YOSHINAGA and AOMINE (7) noticed that the properties of imogolite designated by themselves bore a striking likeness to those of the gel-like substance reported by KANNO et al. (3), and they considered that both substances were essentially of the same kind irrespective of occurrence.  相似文献   

19.
In 1949, GEST and KAMEN (1,2) reported that Photosynthetic bacteria can fix molecular nitrogen. LINDSTROM et al. (3,4) tested the nitrogen fixing ability of five species of photosynthetic bacteria under the following four conditions; 1) anaerobic light, 2) aerobic light, 3) aerobic dark, 4) anaerobic dark. As the result of the experiment, they certified that it Was only under the anaerobic light condition that the bacteria can fix molecular nitrogen.  相似文献   

20.
In 1946 BREMNER et al.(1) suggested a theory that, in soils, polyvalent metals are combined with organic matter as metal-organic matter complexes, and that these complexes are insoluble in solvents that do not themselves form complexes with metals. The principle of one of the most prevailing methods for humus extraction, the neutral sodium pyrophosphate extraction proposed by BREMNER and LEES (2), is a corollary of the theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号