首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
苦瓜单瓜种子数与种皮颜色的遗传分析   总被引:1,自引:0,他引:1  
以苦瓜自交系29 和惠州大顶为亲本构建6 个世代(P1、P2、F1、B1、B2、F2)群体,分别对
苦瓜单瓜种子数和苦瓜种皮颜色进行遗传分析。结果表明,苦瓜单瓜种子数的遗传符合2 对等显性主基因+
加性-显性多基因混合遗传模型(E-6 模型),由主基因和多基因共同控制,多基因显性效应较大,F1 表现
出超亲优势。苦瓜种皮颜色的黑色对棕黄色表现为1 对基因控制的显性遗传。  相似文献   

2.
以长茄高代自交系125 和126 构建的茄子6 个不同世代的遗传群体〔P1、P2、F1、F2、 B1(125×F1)、B2(126×F1)〕 为试材,利用主基因+ 多基因混合数量性状遗传模型对茄子的株高性状进行多世代遗传联合分析。结果表明:供试亲本株高 性状差异显著,分离世代株高性状数值均呈单峰的偏正态分布,属于数量性状遗传。多世代遗传联合分析结果显示茄子株高 性状的最适遗传模型为C-0 模型,不存在主基因遗传效应,表现为多基因控制的加性- 显性- 上位性遗传模式。采用二阶 遗传参数进一步分析株高的多基因遗传效应,结果显示,茄子分离世代F2、B2 的多基因遗传率分别为49.24%、22.77%,茄 子株高以多基因遗传为主。  相似文献   

3.
以茎/叶性状不同的3个茎瘤芥自交系为亲本配制了2个杂交组合,对其P1、P2、F1、F2 群体茎/叶性状的遗传体系应用主基因+多基因混合遗传模型分离分析方法进行了研究。结果表明:2个杂交组合的茎/叶性状遗传体系均由1对加性-显性主基因+加性-显性-上位性多基因(D-0)构成;F2 世代的主基因遗传率为60.17%~68.74%,多基因遗传率为6.83%~10.23%;主基因以加性效应为主,且均有不同程度的负向显性效应。  相似文献   

4.
甜瓜果实酸性性状的遗传分析   总被引:1,自引:0,他引:1  
以果实口感无酸味的甜瓜材料60 和酸甜味的材料61 为亲本,构建P1、P2、F1、BC1、BC2 及F2 六世代群体,利用主基因+多基因混合遗传模型的六世代联合分析法,分析甜瓜果实柠檬酸含量、可滴定酸值(TA)和pH 值的遗传效应。结果表明:柠檬酸含量的遗传模型为1 对加性-显性主基因+加性-显
性-上位性多基因模型,F2 群体的主基因遗传率为31.06%,多基因遗传率为30.48%;TA 值的遗传模型为2 对加性-显性-上位性主基因+加性-显性-上位性多基因模型,F2 群体的主基因遗传率为78.06%,多基因遗传率为0;pH 值的遗传模型为1 对加性-显性主基因+加性-显性-上位性多基因模型,F2 群体的主基因
遗传率为84.07%,多基因遗传率为12.90%。  相似文献   

5.
青花菜花球‘荚叶’性状主基因+多基因遗传分析   总被引:4,自引:2,他引:2  
 以青花菜86101 ×90196组合获得的DH群体和配制的6个联合世代( P1、P2、F1、B1、B2和F2 ) 群体为试材, 采用主基因+多基因混合遗传模型对花球‘荚叶’性状进行了遗传分析。DH群体分析结果表明, 花球荚叶性状的遗传受到2对连锁并具有加性-加性×加性-上位性作用主基因+多基因( E-220模型) 的控制; 经6个世代联合分析结果表明, 花球荚叶性状的遗传受到2对加性-显性-上位性主基因+加性-显性-上位性多基因( E模型) 的控制, DH群体的主基因遗传率为70.80% , B1、B2和F2世代主基因遗传率分别为73.59%、57.70%和87.07%。上述结果表明: 青花菜花球荚叶性状的遗传受到2对主基因+多基因的控制, 主基因遗传率相对较高。  相似文献   

6.
黄瓜嫩果皮颜色的遗传研究   总被引:2,自引:0,他引:2  
 以2 个嫩果皮颜色不同的黄瓜自交系为试验材料,通过目测分类、色彩色差仪测定果皮色L 值和C 值,并利用P1、P2、F1、B1、B2 和F2 等6 个世代联合分析方法,研究了黄瓜嫩果皮颜色的遗传规 律。结果表明:黄瓜嫩果皮颜色性状符合两对加性-显性-上位性主基因 + 加性-显性-上位性多基 因模型(E-0 模型);L 值和C 值F2 代主基因遗传力分别为93.61%和80.86%,遗传力较高;多基因遗传 力和环境效应都较低,在育种时对黄瓜嫩果皮颜色的选择应在早期分离世代进行。  相似文献   

7.
西瓜强雌性状的遗传效应分析   总被引:5,自引:0,他引:5  
 以强雌性西瓜品系BG1和普通花性型品系ZY10为材料配制杂交组合, 调查单株30节位内的 雌花比率, 利用主基因+多基因混合遗传模型多世代联合分析法, 对该组合的P1、P1、F1、F2、BC1P1和BC1P2等6个世代群体的雌花率性状进行分析。结果表明: 西瓜强雌性状遗传受两对主基因的加性-显性-上位性模型控制(即B-1模型) , 主基因表现为隐性。第1和第2对主基因的加性效应值分别为33.46和5.17; 而显性效应值分别为- 20.56 和- 11.20。主基因遗传率在BC1P1和F2世代中高达93.75%和94.32% , 在BC1P2世代中较低, 为60.91%。在该组合中不存在多基因的效应。  相似文献   

8.
房桂萍  成玉富  徐强 《蔬菜》2023,5(5):11-16
为探究2个茄子组合品种的果形指数遗传规律,选用3种果形指数差异显著的高代自交系茄子(长筒、高圆和短筒果形)为材料,构建了2个杂交组合(组合Ⅰ:长筒×高圆,组合Ⅱ:高圆×短筒),采用六世代联合分析法研究果形指数的遗传规律。结果表明:果形指数遗传属于数量性状,2个组合果形指数遗传模型均适于E-3模型,即2对加性主基因+加性-显性多基因模型,组合Ⅰ表现出一负一正的主基因加性效应,组合Ⅱ表现出2个负向的主基因加性效应,2个组合多基因的加性效应均大于显性效应,说明以加性效应遗传为主。组合Ⅰ中B1、B2世代主基因遗传率大于多基因遗传率,以主基因遗传为主,F2世代多基因遗传率大于主基因遗传率,以多基因遗传为主,B2世代环境效率较高,为48.49%;组合Ⅱ中B1、B2分离世代的主基因遗传率大于多基因遗传率,以主基因遗传为主,F2的多基因遗传率大于主基因遗传率,以多基因遗传为主,B1和B2世代遗传受环境因素影...  相似文献   

9.
成熟黄瓜果皮红色性状的遗传分析及其基因定位   总被引:2,自引:0,他引:2  
 以黄瓜(Cucumis sativus L.)成熟瓜红色果皮自交系‘NCG127’(P1)和成熟瓜黄色果皮自交系‘9930’(P2)为试验材料构建F2遗传群体,对成熟瓜红色果皮R基因进行遗传分析和基因定位研究。结果表明,黄瓜成熟瓜红色果皮性状由显性单基因控制,红色对黄色为显性。以256株F2分离群体为试材,应用群体分离分析(BSA)法筛选得到与R基因连锁的20个多态性SSR标记,构建了R基因的分子标记连锁图谱,将R基因定位到黄瓜4号染色体上,物理距离为213.4 kb的区段内,两侧翼标记为UW019319和UW019203,与R遗传距离分别为0.8 cM和0.7 cM。生物信息学分析表明,该区段存在30个预测候选基因。  相似文献   

10.
甜瓜糖酸性状的遗传研究   总被引:7,自引:1,他引:6  
 以新疆厚皮甜瓜‘76-2’的60Co- γ射线诱变酸味突变自交系和‘黄皮脆’形成的P1、P2、F1与F2 为试验材料,通过4个世代联合分析法研究果实中糖含量、酸含量和糖酸比的遗传特点。结果表明, 酸味突变自交系ב黄皮脆’组合的糖含量性状遗传受两对等加性主基因和加性显性多基因模型 (E-4) 控制,主基因遗传率为88.8%,多基因遗传率为6.94%;酸含量性状遗传受一对加性—显性主基因和加性—显性上位性多基因 (D-0)模型控制,主基因遗传率为26.68%,多基因遗传率为72.77%;糖酸比性状遗传受两对加性—显性—上位性和加性—显性多基因混合遗传模型(E-1)控制,主基因遗传率为82.86%,多基因遗传率为16.02%。  相似文献   

11.
甜瓜抗蔓枯病基因Gsb-4 的分子标记   总被引:1,自引:0,他引:1  
 以甜瓜(Cucumis melo L.)抗蔓枯病自交系PI482398(含抗蔓枯病基因Gsb-4)和感病自交系‘白皮脆’以及它们的F1、BC1P1、BC1P2、F2 群体为材料,苗期进行蔓枯病菌(Didymella bryoniae)接种鉴定,结果表明甜瓜抗蔓枯病基因Gsb-4 为单显性遗传。利用集团分离分析法(bulked segregant analysis,BSA)对89 对SSR 引物进行筛选,引物CMTA170a 在抗性材料中可扩增出约为120 bp 的条带,并与抗性基因Gsb-4 表现出连锁关系。统计了CMTA170a 在118 个F2 单株上的多态性,并利用MAPMAKER/Exp version 3.0b 软件进行了计算,其与Gsb-4 的遗传连锁距离为5.14 cM。  相似文献   

12.
以高感根肿病的青花菜自交系‘93219’和高抗根肿病的甘蓝近缘野生种(Brassica macrocarpa Guss.)自交系‘B2013’为亲本配制的6个联合世代(P1、P2、F1、BC1、BC2和F2)群体为试材,采用主基因 + 多基因混合遗传模型对根肿病抗性进行了遗传分析。结果表明:青花菜 × 甘蓝近缘野生种‘B2013’后代对根肿病抗性的最适遗传模型为B-1模型,即由两对加性―显性―上位性主基因控制。BC1、BC2和F2世代主基因遗传率分别为81.22%、78.36%和80.00%,遗传变异平均值占表型变异的79.86%,环境变异平均值占表型变异的20.14%,表明抗病性以主基因遗传为主,同时受环境影响较大,应在早期世代进行选择,BC1、F2世代主基因选择效率较高。  相似文献   

13.
以甘蓝型油菜早花亲本3379、晚花亲本750及其衍生的F5∶6重组自交系群体为试材,利用R软件包SEA对西宁和元谋2个环境下的开花时间进行数量遗传分析,研究了甘蓝型油菜开花时间的遗传规律,以期为早熟育种提供参考依据。结果表明:控制甘蓝型油菜开花时间4对主基因加性效应均为负向效应,加性上位性作用明显,主导控制开花时间的遗传,累加在一起时主基因表现较弱,最终表现为多基因遗传,2个环境下的多基因遗传率为91.26%和91.91%。因此,在今后的早熟育种中可以考虑在现有品种中积累更多的早熟基因位点。  相似文献   

14.
以苦瓜自交系K7-359(P_1)和K7-422(P_2)分别作为母本和父本,通过杂交获得F_1,F_1自交获得F_2群体,采用主基因+多基因混合遗传模型分析苦瓜种子长度、宽度和单粒质量的遗传规律。结果表明,苦瓜种子长度和单粒质量的遗传均符合加性-显性-上位性多基因遗传模型(C-0模型),多基因遗传率分别为84.91%和76.55%,说明对苦瓜种子长度和单粒质量的选择宜在高世代进行;苦瓜种子宽度的遗传符合1对加性-显性主基因+加性-显性-上位性多基因模型(D-0模型),主基因和多基因遗传率分别为79.30%和3.86%,主基因遗传效应主要以加性效应为主,说明对种子宽度的改良可以采用组合育种的策略,且适宜在早期世代进行选择。  相似文献   

15.
以强雌性苦瓜品系09C-51、09C-54和普通性型品系09C-57为亲本配制杂交组合,调查单株主茎50节位内的雌花节率。通过对两个组合的P1、P2、F1、F2、BC1P1各世代植株的性型观察,并经χ2 测验,表明苦瓜强雌性性状由1对不完全显性基因控制。利用组合09C-51×09C-57的Pl、P2、Fl、F2群体的性型分离数据,进一步对性型进行数量遗传学分析,表明强雌性性状符合1对显性主基因+加性-显性多基因模型,说明苦瓜强雌性性状由1对主基因控制,且存在微效多基因的影响,其主基因遗传率为63.06%,多基因遗传率为26.96%。  相似文献   

16.
以华北型黄瓜霜霉病抗病自交系‘HNAU0023’、霜霉病感病自交系‘IL112’通过自交、杂交、回交所构建的P_1、P_2、F_1、F_2、B_1、B_2 6个世代作为研究材料,使用6世代联合分离分析软件(SEA-G 6)对黄瓜霜霉病抗性进行遗传分析。结果表明,抗性遗传的最佳模型为E-0模型,即"2对加性-显性-上位性主基因+加性-显性-上位性多基因"混合遗传模型。2对主基因加性效应相同,均为13.05;显性效应为负值,分别为-30.34、-15.88。B_1、B_2、F_2的主基因遗传率分别为68.63%、76.36%、87.15%,多基因遗传率分别为0、7.25%、0,各分离世代主基因遗传率明显大于多基因遗传率。因此,在黄瓜霜霉病抗性育种中应优先考虑主基因。  相似文献   

17.
以大果刺黄瓜自交系CNS5和小果刺黄瓜自交系RNS4为亲本,构建P_1、F_1、P_2、B_1、B_2和F_26世代群体,利用主基因+多基因混合遗传模型多世代联合分析法,对连续两季的黄瓜果刺大小的表型值(基座直径)进行遗传分析,以探究黄瓜果刺大小性状的遗传规律。结果表明,黄瓜果刺大小的遗传符合C-0模型,即加性-显性-上位性多基因混合遗传模型。多基因加性和显性效应均为正向,基因上位性效应累计为正向。2016~2017年连续两季F_2群体中多基因遗传率分别是79.21%和71.25%,相对较高,环境效应分别为20.79%和28.75%,影响较小。在基因定位策略上,选择高代回交群体效果会更好。  相似文献   

18.
苦瓜果色遗传的初步研究   总被引:13,自引:0,他引:13  
用苦瓜两个绿色自交系G9680 3 1、S961598和两个白色自交系ZH96112 3、G9612 11作亲本 ,对其两个杂交组合 (ZH96112 3×G9680 3 1和S961598×G9612 11)的各世代进行果色遗传统计分析的结果表明 :苦瓜果实绿色与白色受一对核基因控制 ,绿色对白色为显性。  相似文献   

19.
黄瓜嫩果果皮叶绿素含量的遗传   总被引:9,自引:0,他引:9  
 选用4个皮色性状不同的黄瓜品种配成正反杂交组合8个,测定结果表明相同亲本正反交组 合叶绿素含量差异不显著,表明黄瓜嫩果果皮叶绿素含量受核基因控制。应用植物数量性状主基因+多基因混合模型,对黄瓜嫩果果皮叶绿素低含量品种‘海阳白皮’与高含量品种‘济宁秋黄瓜’杂交组合的6个家系世代(P1、F1、P2、B1、B2和F2)进行群体叶绿素含量的多世代联合分析,结果显示:该组合叶绿素含量的遗传受2对加性一显性主基因+加性-显性多基因(E-2模型)控制。其B1、B2和F2群体叶绿素含量主基因遗传率(h2mg%)分别为83.94%、62.12%和86.98%,多基因的遗传率(h2pg%)为5.86%-18.15%。主基因中加性效应明显,第一对主基因的加性效应值显著高于第二对主基因的效应值,2对主基因对叶绿素含量的贡献率差异较大。两主基因的显性效应差异不大,分别为2.7762(ha)和2.3392(hb )。多基因效应主要表现为显性效应[h],效应值为-5.5243。  相似文献   

20.
以野生型西瓜优良自交系302为母本,利用化学诱变剂甲基磺酸乙酯(ethyl methane sulfonate,EMS)诱变获得的西瓜短节间突变体si302为父本,构建6世代分离群体,进行植株表型性状鉴定和短节间性状遗传分析;并通过极端性状混池重测序(bulked segregant analysis sequencing,BSA-seq)技术对突变基因进行初步定位。植株表型分析结果表明,突变体si302株型紧凑,主蔓长度和节间长度显著短缩,花器和果实均发育正常,符合西瓜简约化栽培株型要求;细胞形态学观察表明,si302茎蔓节间细胞长度缩短。遗传分析结果表明,F2群体野生型和突变体植株分离比例符合3∶1(χ2=0.16),突变体si302短节间性状由1对隐性基因控制;根据BSA-seq测序结果,将该基因初步定位在1号染色体36.0~36.7 Mb区间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号