首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors influencing degradation of pesticides in soil   总被引:3,自引:0,他引:3  
Degradation and sorption of six acidic pesticides (2,4-D, dicamba, fluroxypyr, fluazifop-P, metsulfuron-methyl, and flupyrsulfuron-methyl) and four basic pesticides (metribuzin, terbutryn, pirimicarb, and fenpropimorph) were determined in nine temperate soils. Results were submitted to statistical analyses against a wide range of soil and pesticide properties to (i) identify any commonalities in factors influencing rate of degradation and (ii) determine whether there was any link between sorption and degradation processes for the compounds and soils studied. There were some marked differences between the soils in their ability to degrade the different pesticides. The parameters selected to explain variations in degradation rates depended on the soil-pesticide combination. The lack of consistent behavior renders a global approach to prediction of degradation unrealistic. The soil organic carbon content generally had a positive influence on degradation. The relationship between pH and degradation rates depended on the dominant mode of degradation for each pesticide. There were positive relationships between sorption and rate of degradation for metsulfuron-methyl, pirimicarb, and all acidic pesticides considered together (all P < 0.001) and for dicamba and all bases considered together (P < 0.05). No relationship between these processes was observed for the remaining seven individual pesticides.  相似文献   

2.

Purpose

The impact of agriculture on water resources has long been a problem associated with the formation of runoff, the siltation of lakes and reservoirs, and overall depletion of water quality. In Brazil, these problems are mainly related to soil degradation by water erosion. However, studies of catchment-scale erosion are still rare particularly in grain-producing regions which have adopted conservative tillage systems for soil protection. In order to contribute to a better understanding of the impact of conservation agriculture on water resources, this study determined the runoff coefficient and sediment yield for two agricultural catchments.

Materials and methods

Hydrological and sedimentological monitoring was conducted in two catchments: the Conceicao catchment is characterized by grain production in weathered soils and a gently sloping landscape, while the Guapore catchment is characterized by heterogeneous soils and topography. Both catchments have problems associated with water erosion.

Results and discussion

The magnitudes of annual runoff coefficients and sediment yield were high, even if compared to similar agricultural regions, including a catchment with widespread adoption of no-tillage. The sediment yield was 140 t km?2 year?1, and the runoff coefficient was 14 % for the Conceicao catchment, while the sediment yield was 270 t km?2 year?1, and the runoff coefficient was 31 % for the Guapore catchment. The results indicate that problems such as gullies, soil compaction, runoff, floods, siltation, and water quality depletion associated with the misuse of agricultural areas in terms of soil conservation and water use are still evident and important even in regions with widespread adoption of no-tillage systems.

Conclusions

The magnitudes of both runoff and sediment yield clearly indicate the need to adopt complementary practices of soil conservation measures, such as mechanical runoff control.  相似文献   

3.
The application of a new, spatial nitrogen leaching/retention model N_EXRET to the Oulujoki river basin (22800 km2) in Finland is discussed. The model utilizes remote sensing-based land use and forest classification and evaluated export coefficients obtained from detailed small catchment studies. The present and future N depositions were estimated with the regional deposition model DAIQUIRI. Based on source apportionment, N deposition, forestry and agriculture each contribute 16–17% of the total export, with pronounced variation between the different sub-basins. The effect of changing forestry and deposition on N fluxes is assessed by using N deposition scenarios based on recent international emission reduction agreements.  相似文献   

4.
Page  T.  Beven  K. J.  Freer  J.  Jenkins  A. 《Water, air, and soil pollution》2003,142(1-4):71-94
This study investigates the uncertainty associated with the modelled response of a catchment to historic and predicted future acidic deposition for the period 1851–2041. The MAGICmodel is applied within a GLUE framework to the 3.88 km2 Afon Gwy catchment at Plynlimon, Wales. Nine million Monte Carlo simulations resulted in 5700 being accepted as behaviouralas defined by a fuzzy measure comparing observed to simulated variables. Model output and parameter sensitivity analysis indicate that, for this example where weathering rates are low,model dynamics are limited compared to control exerted by modelinitial conditions and by the specified acidic deposition boundary conditions. The results show that despite the small number of behavioural simulations, they are widely spread acrossthe ranges for most of the parameters varied. The GLUE methodology allows simulated prediction ranges for important variables to be presented as quantitative likelihood weighteduncertainty estimates rather than a single prediction for eachvariable over time.  相似文献   

5.

Purpose

The Isábena catchment (445 km2), Spain, features highly diverse spatial heterogeneity in land use, lithology and rainfall. Consequently, the relative contribution in terms of water and sediment yield varies immensely between its subcatchments, and also temporally. This study presents the synthesis of ~2.5 years of monitoring rainfall, discharge and suspended sediment concentration (SSC) in the five main subcatchments of the Isábena and its outlet.

Materials and methods

Continuous discharge at the subcatchment outlets, nine tipping bucket rainfall and automatic SSC samplers (complemented by manual samples), were collected from June 2011 until November 2013. The water stage records were converted to discharge using a rating curve derived with Bayesian regression. For reconstructing sediment yields, the data from the intermittent SSC sampling needed to be interpolated. We employed non-parametric multivariate regression (Quantile Regression Forests, QRF) using the discharge and rainfall data plus different aggregation levels of these as ancillary predictors. The subsequent Monte Carlo simulations allowed the determination of monthly sediment yields and their uncertainty.

Results and discussion

The stage–discharge rating curves showed wide credibility intervals for the higher stages, with great uncertainties associated with the discharge rates, especially during floods. The water yield of the subcatchments differed considerably. The entire catchment’s output was dominated by the northernmost subcatchment (~360 mm year?1). The smaller, southern subcatchments featured much higher variability and lower runoff rates (55–250 mm year?1). The SSCs exhibited a wide range and can exceed 100 g l?1 for the central subcatchments, where most of the badlands are located. For the reconstruction of the sedigraphs, the QRF method proved suitable with Nash–Sutcliffe indices of 0.50 to 0.84. The specific sediment yield ranges from relatively low (32 t km?2 year?1) in the highly vegetated north to high values (3,651 t km?2 year?1) in areas with many badland formations.

Conclusions

The Isábena catchment shows high erosion dynamics with great variability in space and time, with stark contrasts even between adjacent subcatchments. The natural conditions make water and sediment monitoring and instrumentation very challenging; the measurement of discharge is particularly prone to considerable uncertainties. The QRF method employed for reconstructing sedigraphs and monthly yields proved well suited for the task.  相似文献   

6.
This study compared the degradation of [carboxyl-14C] 2,4-dichlorophenoxyacetic acid (2,4-D) (C2,4-D) and [ring-U-14C] 2,4-D (R2,4-D) in 114 agricultural soils (0–15 cm) as affected by 2,4-D sorption and soil properties (organic carbon content, pH, clay content, carbonate content, cation exchange capacity, total microbial activity). The sample area was confined to Alberta, Canada, located 49–60° north longitude and 110–120° west latitude and soils were grouped by soil organic carbon content (SOC) (0–0.99%, 1–1.99%, 2–2.99%, 3–3.99% and >4% SOC). Degradation rates of C2,4-D and R2,4-D followed first-order kinetics in all soils. Although total microbial activity increased with increasing SOC, degradation rates and total degradation of C2,4-D and R2,4-D decreased with increasing SOC because of increased sorption of 2,4-D by soil and reduced bioavailability of 2,4-D and its metabolites. Rates of R2,4-D degradation were more limited by sorption than rates of C2,4-D degradation, possibly because of greater sorption and formation of bound residues of 2,4-D metabolites relative to the 2,4-D parent molecule. Based on the sorption and degradation parameters quantified, there were two distinct groups of soils, those with less than 1% SOC and those with greater than 1% SOC. Specifically, soils with less than 1% SOC had, on average, 2.4 times smaller soil organic carbon sorption coefficients and 1.4 times smaller 2,4-D half-lives than soils with more than 1% SOC. In regional scale model simulations of pesticide leaching to groundwater, covering many soils, input parameters for each pesticide include a single soil organic carbon sorption coefficient and single half-life value. Our results imply, however, that the approach to these regional scale assessments could be improved by adjusting the values of these two input parameters according to SOC. Specifically, this study indicates that for 2,4-D and Alberta soils containing less than 1% SOC, the 2,4-D pesticide parameters obtained from generic databases should be divided by 2.5 (soil organic carbon sorption coefficient) and 1.5 (half-life value).  相似文献   

7.
In many developing countries, the management of sediment‐related environmental problems is severely hampered by a lack of information on sediment mobilization and delivery in river basins. The sediment budget concept represents a valuable framework for assembling such information, which can, in turn, be used to assist with the design and implementation of soil erosion and sediment control policies. However, the information necessary to construct a catchment sediment budget is difficult to assemble. Against this background, an integrated approach to establishing a catchment suspended sediment budget, involving a river monitoring station, the use of 137Cs measurements to estimate soil erosion and deposition and floodplain accumulation rates within the catchment, and sediment source fingerprinting, has been developed and tested in the 63 km2 catchment of the upper Kaleya River in southern Zambia. The approach developed not only provides detailed information on individual components of the suspended sediment delivery system, but also permits the establishment of the overall catchment sediment budget. A sediment budget for the upper Kaleya catchment is presented and both its key features and its wider implications for catchment management are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
In slopes of Mediterranean mid-mountain areas, land use and land cover changes linked to the abandonment of cropland activity affect soil quality and degradation and soil redistribution; however, limited attention has been paid to this issue at catchment scale. This paper evaluates the effects of cropland abandonment and post-land abandonment management (through natural revegetation and afforestation) on soil redistribution rates using fallout 137Cs measurements in the Araguás catchment (0.45 km2, Central Spanish Pyrenees). A total of 52 soil core samples, distributed in a regular grid, from the first 30–40 cm and 9 sectioned reference samples were collected across the catchment and soil properties were analysed. Fallout 137Cs was measured in a 5 cm sectioned references samples and in bulk grid samples. 137Cs inventories were used to estimate soil erosion and deposition rates across the catchment. Results show that the highest erosion rates were recorded under sparsely vegetated sites in the badland area, while the lowest rates were found in the afforested area, but no significant differences were observed between the different uses and covers in soil redistribution rates likely due to a long history of human intervention through cultivation in steep slopes and afforestation practices. However, the recovery of the soil organic matter in afforested areas suggest that afforestation can reduce soil degradation at long-term scale. The information gained achieve a better understanding of soil redistribution dynamics and provide knowledge for effective land management after cropland abandonment of agroecosystems in Mediterranean mountain areas.  相似文献   

9.
A small catchment with an area of 1.98 km2 was chosen for detailed studies. The soils of the catchment area are dominated by leached and weakly leached chernozems on loess deposits. The 137Cs activity in the soils on a relatively flat area was about 26.7 ± 1.2 Bq/kg. In 20 years after the Chernobyl accident, a contrasting pattern of the 137Cs pollution density characterized the small catchment Gracheva Loshchina.  相似文献   

10.
Increasing concern for problems of soil degradation and the off‐site impacts of accelerated erosion has generated a need for improved methods of estimating rates and patterns of soil erosion by water. The use of environmental radionuclides, particularly 137Cs, to estimate erosion rates has attracted increased attention and the approach has been shown to possess several important advantages. However, the use of 137Cs measurements to estimate erosion rates introduces one important uncertainty, namely, the need to employ a conversion model or relationship to convert the measured reduction in the 137Cs inventory to an estimate of the erosion rate. There have been few attempts to validate these theoretical conversion models and the resulting erosion rate estimates. However, there is an important need for such validation, if the 137Cs approach is to be more widely applied and reliance is to be placed on the results obtained. This paper reports the results of a study aimed at validating the use of two theoretical conversion models, namely the exponential depth distribution model and the diffusion and migration model, that have been used in several recent studies to convert measurements of 137Cs inventories on uncultivated soils to estimates of soil erosion rates. The study is based on data assembled for two small catchments (1.38 and 1.65 ha) in Calabria, southern Italy, for which measurements of sediment output are available for the catchment outlet. The two catchments differ in terms of the steepness of their terrain, and this difference is reflected by their sediment yields. Because there is no evidence of significant deposition within the two catchments, sediment delivery ratios close to 1.0 can be assumed. It is therefore possible to make a direct comparison between the estimates of the mean annual erosion rates within the two catchments derived from 137Cs measurements and the measured sediment outputs. The results of the comparison show that the erosion rate estimates provided by both models are reasonably consistent with the measured sediment yields at the catchment outlets. However, more detailed assessment of the results shows that the validity of the erosion rate estimates is influenced by the magnitude of the erosion rates within the catchment. The exponential depth distribution model appears to perform better for the catchment with higher erosion rates and to overestimate erosion rates in the other catchment. Similarly, the basic migration and diffusion model performs better for the catchment with lower erosion rates and overestimates erosion rates in the other catchment. However, the improved migration and diffusion model appears to perform satisfactorily for both catchments. There is a need for further studies to extend such independent validation of the 137Cs technique to other environments, including cultivated soils, and to other conversion models and procedures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Gbris   . Kertsz  L. Zmb 《CATENA》2003,50(2-4):151-164
Gully erosion can be widely observed on cultivated hillslopes in Hungary. Loose sediments covering two thirds of the total area of the country are prone to gully erosion.A detailed study of gully formation was carried out in the Rakaca catchment (58 km2), northeastern Hungary. The objectives include (1) a detailed survey of the present gullies, (2) an explanation of differences in gully distribution within the catchment, (3) clarification of the role of influencing factors like slope gradient, vegetation cover and soil type and (4) a study of changes of gully distribution and development in time over the last 200 years based on the comparison of topographic maps.The present gully distribution was first surveyed by applying 1:10 000 topographic maps and aerial photographs. The total length of the network is 70.9 km, i.e. 1.22 km/km2. Distribution inhomogeneities within the catchment can well be explained by differences in slope gradient and vegetation cover.The rate of increase of the gully length per unit area (1 km2) calculated for different time periods shows the following trends: (1) until 1860, when more than 50% of the catchment was forested, it was 5 m year−1 km−2; (2) between 1860 and 1920, when forest area dropped to almost 25% and agricultural land use was extended to slopes steeper than 25%, it still remained at roughly 5 m year−1 km−2; (3) after 1920, with 24–25% forest cover and with the extension of farming activity to the steepest slopes, it reached 10 m year−1 km−2.It could be shown that gully erosion on cultivated slopes leads to the development of gully systems in 50–60 years even if slope gradient is below 12%.To prevent further development of gully systems, it is suggested that at least 30% of the area should be forested and slopes steeper than 17% should not be cultivated at all.  相似文献   

12.
[目的]确定适宜的集水阈值,使自动提取的水系河网与实际河道相符。[方法]以DEM数据为基础,利用ArcGIS水文分析模块对研究区流域河网水系进行自动提取,基于河网密度与集水阈值的相关性,在已提出的拟合函数一阶导数求转折点、二阶导数求拐点法确定集水阈值的基础上,以龙川江流域为例,提出求解河网密度变化率等于集水阈值变化率的数值方法,得到适宜的集水阈值。[结果]通过设置不同集水阈值生成河网,发现不同集水阈值对主河道长度及地理空间位置影响较小,但对提取的河网特征影响较大,最终确定龙川江流域集水阈值设置为0.12km2为宜。[结论]集水阈值的确定影响着河网提取的精度,通过变化率确定集水阈值的方法主观因素较少,避免了人为干扰,相对客观,可对区域水土流失监测提供一定依据。  相似文献   

13.
Sediment budgets have been established for two small (<4 km2), lowland, agricultural catchments, by using 137Cs measurements, sediment source fingerprinting and more traditional monitoring techniques to quantify the individual components of the budget. The gross and net erosion rates for the fields on the catchment slopes were estimated using 137Cs measurements within selected fields, which encompassed a representative range of slope angles, slope lengths and land use. These estimates were extrapolated over the entire catchment, using a simple topographically driven soil erosion model (Terrain-Based GIS, TBGIS) superimposed on a DEM, to derive catchment average gross and net erosion rates. Suspended sediment yields were measured at the catchment outlets and sediment source fingerprinting techniques were used to establish the relative contributions from the catchment surface, subsurface tile drains and eroding channel banks to the sediment yields. In-channel and wetland storage were quantified using both direct measurements and 137Cs measurements. The sediment budgets established for the catchments highlighted the importance of subsurface tile drains as a pathway for sediment transfer, accounting for ca. 60% and 30% of the sediment output from the two catchments. Erosion from channel banks contributed ca. 10% and 6% of the sediment output from the two catchments. Although the suspended sediment yields from these catchments were considered high by UK standards (ca. 90 t km−2 year−1), the sediment delivery ratios ranged between 14% and 27%, indicating that a major proportion of the mobilised sediment was stored within the catchments. In-field and field-to-channel storage were shown to be of similar magnitude, but storage of sediment in the channel system and associated wetlands was relatively small, representing <5% of the annual suspended sediment yield.  相似文献   

14.
Sorption-desorption interactions of pesticides with soil determine the availability of pesticides in soil for transport, plant uptake, and microbial degradation. These interactions are affected by the physical and chemical properties of the pesticide and soil, and for some pesticides, their residence time in the soil. The objective of this study was to characterize sorption-desorption of two sulfonylaminocarbonyltriazolinone herbicides incubated in soils at different soil moisture potentials. The chemicals were incubated in clay loam and loamy sand soils for up to 12 wks at -33 kPa and at water contents equivalent to 50 and 75% of that at -33 kPa. Chemicals were extracted sequentially with 0.01 N CaCl(2) and aqueous acetonitrile, and sorption coefficients were calculated. Sufficient sulfonylaminocarbonyltriazolinone herbicides remained (>40% of that applied) during incubation to allow calculation of sorption coefficients. Aging significantly increased sorption as indicated by increased sorption coefficients. For instance, for sulfonylaminocarbonyltriazolinone remaining after a 12-wk incubation at -33 kPa, K(d) increased by a factor of 4.5 in the clay loam soils and by 6.6 in the loamy sand as compared to freshly treated soils. There was no effect of moisture potential on sorption K(d) values. These data show the importance of characterization of sorption-desorption in aged herbicide residues in soil, particularly in the case of prediction of herbicide transport in soil. In this case, potential transport of sulfonylaminocarbonyltriazolinone herbicides would be over-predicted if freshly treated soil K(d) values were used to predict transport.  相似文献   

15.
This paper reports the results of an investigation of the erosional response of the 3·86 km2 Zhaojia Gully catchment in the rolling loess plateau region of Zichan County, Shaanxi Province, China. In the absence of direct measurements, information derived from reservoir deposits and from caesium-137 measurements on both the catchment soils and reservoir deposits was used to obtain a retrospective assessment of the longer-term (ca. 30 year) erosional response of the catchment and of the relative contributions of the rolling plateau surface and the gully areas to the sediment output from the basin. Net erosion rates on cultivated land occupying the gentle crest slopes and steeper lower slopes of the rolling plateau and the steep gully slopes were estimated to be 4500 t km−2 year−1, 8584 t km−2 year−1 and 15851 t km−2 year−1, respectively. Estimates of annual sediment yield from the study catchment based on analysis of sediment deposits in the two sediment-trap reservoirs ranged between 4627 and 32472 t km−2 year−1. Almost all the sediment transported from the catchment was contributed by 2–4 large floods each year. Measurements of the caesium-137 content of recent sediment deposits in a sediment-trap reservoir allowed the relative contributions of the total sediment yield derived from the rolling plateau and gully areas of the catchment to be estimated at 23 and 77 per cent, respectively. Analysis of the sediment deposits dating from 1973–1977 in another sediment trap reservoir allowed individual flood event couplets to be identified and indicated that the sediment associated with the first one or two floods in a season, when the soils of the plateau area were relatively dry, was derived primarily from the gully areas. The cultivated soils of the rolling plateau contributed an increased proportion of the total sediment yield during the latter stages of the flood season when the soils were wetter, and surface runoff and erosion were more widespread. Based on analysis of the caesium-137 content of the sediment deposited in this sediment-trap reservoir, the relative contributions of sediment from the rolling plateau and gully areas over the period 1973–1977 were estimated to be 21 and 79 per cent, respectively. The results obtained demonstrate the potential for using caesium-137 measurements and analysis of reservoir deposits to document the erosional response of a drainage basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
Previously presented evidence of Zn competition for Cd soil sorption sites has been confirmed by detailed studies of two Danish soils. Cadmium distribution between soil and solute decreases for increasing Zn solute concentrations. A Langmuir model accounting for both Cd and Zn sorption onto the same sorption sites was supported by independent experimental data on Cd and Zn distribution. The competition of Zn is governed by the product of the Zn soil sorption stability constant and the actual Zn solute concentration. Cadmium distribution coefficients may be significantly influenced by Zn at Zn solute concentrations above 100 μg Zn dm?3. This may have implications for interpreting Cd plant uptake and leaching.  相似文献   

17.
The Ca l?Isard catchment (1.32 km2), a sub-basin of the Vallcebre experimental catchments, yields large amounts of sediments (about 580 Mg km− 2 year− 1) that are produced in relatively small but very active eroded areas (badlands). Several lines of evidence suggest that there is a delay between sediment production, caused by intense summer rainstorms, and sediment transport, occasioned by the main floods produced by large precipitation events following wet antecedent conditions. First, a calibration–validation exercise was carried out with sediment yield data obtained using containers provided with slot divisors in a badlands micro-catchment (1240 m2). Then, the model was applied to the main badlands areas in the Ca l?Isard sub-catchment for a 4-year period and the simulated sediment yields were compared with the records at the gauging station. The test was performed with the Generalized Likelihood Uncertainty Estimation (GLUE) approach for assessing the uncertainty associated with model predictions, which assumes that many parameter sets can give acceptable simulations. The results demonstrated the capacity of KINEROS2 to simulate badland erosion, although it showed limited robustness. A clear temporal mismatch between erosion and sediment transport and the relevance of sediment stores in the catchment were confirmed, while the total weights of sediment were generally under-predicted. The limited suitability of the area used for calibration or the role of sediment sources not simulated in the approach may account for this shortcoming.  相似文献   

18.
A semi-empirical model to assess uncertainty of spatial patterns of erosion   总被引:3,自引:0,他引:3  
Distributed erosion models are potentially good tools for locating soil sediment sources and guiding efficient Soil and Water Conservation (SWC) planning, but the uncertainty of model predictions may be high. In this study, the distribution of erosion within a catchment was predicted with a semi-empirical erosion model that combined a semi-distributed hydrological model with the Morgan, Morgan and Finney (MMF) empirical erosion model. The model was tested in a small catchment of the West Usambara Mountains (Kwalei catchment, Tanzania). Soil detachability rates measured in splash cups (0.48–1.16 g J− 1) were close to model simulations (0.30–0.35 g J− 1). Net erosion rates measured in Gerlach troughs (0.01–1.05 kg m− 2 per event) were used to calibrate the sediment transport capacity of overland flow. Uncertainties of model simulations due to parameterisation of overland flow sediment transport capacity were assessed with the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. The quality of the spatial predictions was assessed by comparing the simulated erosion pattern with the field-observed erosion pattern, measuring the agreement with the weighted Kappa coefficient of the contingency table. Behavioural parameter sets (weighted Kappa > 0.50) were those with short reinfiltration length (< 1.5 m) and ratio of overland flow power α to local topography power γ close to 0.5. In the dynamic Hortonian hydrologic regime and the dissected terrain of Kwalei catchment, topography controlled the distribution of erosion more than overland flow. Simulated erosion rates varied from − 4 to + 2 kg m− 2 per season. The model simulated correctly around 75% of erosion pattern. The uncertainty of model predictions due to sediment transport capacity was high; around 10% of the fields were attributed to either slight or severe erosion. The difficult characterisation of catchment-scale effective sediment transport capacity parameters poses a major limit to distributed erosion modelling predicting capabilities.  相似文献   

19.
To contribute to the understanding of Hg flow to forest lakes the storage of Hg in the soil of a catchment was quantified, the transport of Hg from the recharge area to the discharge area was studied and a mass balance for different soil horizons was calculated. The transport of Hg in soil, ground and stream water was estimated using water flows from a hydrological model and by determining Hg in water sampled with a clean procedure. The estimate for the annual Hg flux out of the till overburden in the catchment was 3.4 g km−2. The annual flux was reduced to 1.3 g km−2 in the stream, indicating interception in a lake. The transport was predominantly taking place in the upper 50 cm of the soil. The storage of Hg in the soil was 8.8 kg km−2, which is large compared to the flux. A net accumulation, amounting to 80% of the Hg deposition, is almost entirely located to the nor layer.  相似文献   

20.
Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and upland (77%) was divided into 675 grid cells, and each of the cells had unique combination of vegetation, hydrology, soil properties, and topography. Driven by local climate, topography, soil, and vegetation conditions, MIKE SHE was used to generate daily flows as well as water table depth for each grid cell across the watershed. Forest-DNDC was then run for each cell to calculate its biogeochemistry including daily fluxes of the three greenhouse gases (GHGs). The simulated daily average CH4, CO2 and N2O flux from the watershed were 17.9 mg C, 1.3 g C and 0.7 mg N m−2, respectively, during the period from 2003–2007. The average contributions of the wetlands to the CH4, CO2 and N2O emissions were about 95%, 20% and 18%, respectively. The spatial and temporal variation in the modeled CH4, CO2 and N2O fluxes were large, and closely related to hydrological conditions. To understand the impact of spatial heterogeneity in physical and biogeochemical characteristics of the target watershed on GHG emissions, we used Forest-DNDC in a coarse mode (field scale), in which the entire watershed was set as a single simulated unit, where all hydrological, biogeochemical, and biophysical conditions were considered uniform. The results from the field-scale model differed from those modeled with the watershed-scale model which considered the spatial differences in physical and biogeochemical characteristics of the catchment. This contrast demonstrates that the spatially averaged topographic or biophysical conditions which are inherent with field-scale simulations could mask “hot spots” or small source areas with inherently high GHGs flux rates. The spatial resolution in conjunction with coupled hydrological and biogeochemical models could play a crucial role in reducing uncertainty of modeled GHG emissions from wetland-involved watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号