首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effect of dietary β‐glucan on the bacterial community in the gut of common carp (Cyprinus carpio) was examined after oral application of Aeromonas hydrophila. Carp received either feed supplemented with 1% MacroGard®, a β‐1,3/1,6‐glucan, or a β‐glucan‐free diet. Fourteen days after feeding, half of the carp from each group were intubated with 109 colony‐forming units (CFU) of a pathogenic strain of A. hydrophila. Gut samples were taken 12 hr to 7 days after application and analysed using microbiological and molecular biological techniques (NGS, RT‐PCR‐DGGE). The reaction of the mucosa and the microbiota to an A. hydrophila intubation differed in carp fed with β‐glucan compared to carp from the control group. In β‐glucan fed carp, the total bacterial amount was lower but the number of bacterial species was higher. Bacterial composition was different for carp from both treatment groups. The number of mucin filled goblet cells was reduced in carp fed the β‐glucan diet. Mucus was obviously released from the goblet cells and was probably washed out of the gut together with high numbers of bacteria. This might be protective against pathogenic bacteria and, therefore, feeding with β‐glucan may provide protection against infections of the gut in carp.  相似文献   

2.
Two separate feeding trials examined the effects of dietary supplementation of the prebiotics GroBiotic®‐A and inulin on growth performance and gastrointestinal tract microbiota of the red drum, Sciaenops ocellatus. In the first feeding trial, fish meal‐based diets without prebiotics or supplemented with either GroBiotic®‐A or inulin at 1% of dry weight were fed to triplicate groups of juvenile red drum (initial weight of 2.6 g) in 110‐L aquaria operated as a brackish water (7 ppt) recirculating system for 8 wk. In the second feeding trial, soybean meal/fish meal‐based diets supplemented with either GroBiotic®‐A or inulin at 1% of dry weight were fed to triplicate groups of red drum (initial weight of 15.8 g) in 110‐L aquaria operated as either a common recirculating water system or closed system with individual biofilters (independent aquaria) for 6 wk. Supplementation of the prebiotics in either feeding trial did not alter weight gain, feed efficiency ratio, or protein efficiency ratio of red drum fed the various diets. In the second feeding trial, the culture system significantly affected weight gain, feed efficiency ratio, and protein efficiency ratio although there were no effects of dietary treatments on fish performance or whole‐body protein, lipid, moisture, or ash. Denaturing gradient gel electrophoresis (DGGE) analysis of the gastrointestinal tract microbial community showed no effect of the dietary prebiotics as the microbial community appeared to be dominated by a single organism with very low diversity when compared with other livestock and fish species. DGGE of the microbial community in the biofilters of the independent aquariums showed a diverse microbial community that was not affected by the dietary prebiotics.  相似文献   

3.
Traditional culture‐based technique and 16S rDNA sequencing method were used to investigate the mucosa‐associated autochthonous microbiota of grass carp (Ctenopharyngodon idellus). Twenty‐one phylotypes were detected from culturable microbiota, with Aeromonas, Shewanella, Lactococcus, Serratia, Brevibacillus, Delftia, Pseudomonas, Pantoea, Enterobacter, Buttiauxella and Yersinia as their closest relatives. Genomic DNA was directly extracted from the gut mucosa of C. idellus originating from six different geographical regions, and used to generate 609 random bacterial clones from six clone libraries and 99 archaeal clones from one library, which were grouped into 67 bacterial and four archaeal phylotypes. Sequence analysis revealed that the intestinal mucosa harboured a diversified bacterial microbiota, where Proteobacteria, Firmicutes and Bacteroidetes were dominant, followed by Actinobacteria, Verrucomicrobia and Deinococcus‐Thermus. The autochthonous bacterial communities in the gut mucosa of fish from different aquatic environments were not similar (Cs < 0.80), but γ‐Proteobacteria was a common bacterial class. In comparison to bacterial communities, the archaeal community obtained from one library consisted of Crenarchaeota and Euryarchaeota. These results demonstrate that molecular methods facilitate culture‐independent studies, and that fish gut mucosa harbours a larger bacterial diversity than previously recognized. The grass carp intestinal habitat selects for specific bacterial taxa despite pronounced differences in host environments.  相似文献   

4.
Yeast probiotics have great promise, yet they received little attention in fish. This study investigated the influence of Aqualase®, a yeast‐based commercial probiotic composed of Saccharomyces cerevisiae and Saccharomyces elipsoedas, on health and performance of rainbow trout (Oncorhynchus mykiss). Probiotics were incorporated in the diets at three different inclusion levels (1%, 1.5% and 2%) and administered to the fish for a period of 8 weeks. After the feeding trial, intestinal total viable aerobic bacterial count was significantly higher in fish group that received 2% in‐feed probiotics. In addition, a significant increase in at least 11% in intestinal lactic acid bacteria population was observed in all probiotic‐fed groups. Total protein level and lysozyme activity in skin mucus were significantly elevated following probiotic feeding. Inhibitory potential of skin mucus against fish pathogens was significantly enhanced by at least 50% in probiotic‐fed groups. Humoral and cellular immune parameters were influenced by probiotic feeding and the effects were dependent on inclusion level. Digestive physiology was affected by in‐feed probiotics through improvement of intestinal enzyme activities. All growth performance parameters were significantly improved following probiotic administration specifically at inclusion rate 1.5% and above. Taken together, the results revealed that Aqualase® is a promising yeast‐based probiotic for rainbow trout with the capability of modulating the intestinal microbiota, immunity and growth.  相似文献   

5.
High aquacultural rearing density and handling of fish may frequently result in skin or gills wounds, thereby facilitating the onset of secondary infections. The capacity of the zebrafish to regenerate tissues, as well as fins and other organs, makes it an ideal animal model for studying the mechanisms of tissue regeneration. Since macrophages are involved in tissue regeneration, a diet including ß‐glucans might positively affect the process through activation of macrophages and other immune pathways. Consequently, the aim of this study was to investigate the effects of the oral administration of 1,3‐1,6 β‐glucans on the regeneration process of the caudal fin after its amputation in zebrafish. One hundred and twenty zebrafish were randomly distributed into four groups with three replicates each: an untreated non‐amputated group (CNA) and an untreated amputated group (CA) fed a control diet; two treated and amputated groups (MI and MII) fed for 14 days the same diet with the addition of two differently extracted 1,3‐1,6 ß‐glucans (MacroGard® and Experimental MacroGard®, Biorigin©). ß‐glucans were added to allowed the administration of 12.5 mg/kg of fish body weight (0.35 g/kg of feed). Results showed that 1,3‐1,6 ß‐glucans decreased fish mortality rate and enhanced both daily and cumulative regenerated fin area, independent of the specific ß‐glucan extraction method used. Based on the mechanisms similarities of the innate immune system and tissue regeneration among different teleost species, these results may likely be extended to species of interest for the aquaculture sector.  相似文献   

6.
An 8‐week growth trial was conducted to investigate the effects of non‐genetically modified (nGM) soybean (Youchun 06‐1) and genetically modified (GM) soybean (Roundup Ready®) with and without a heat treatment on the growth and health of three Cyprinidae species with different feeding habits (grass carp Ctenopharyngodon idellus, gibel carp Carassius auratus gibelio, and black carp Mylopharyngodon piceus; body weight: 283.0 ± 2.0 g, 60.5 ± 0.7 g, and 261.4 ± 3.1 g). Five diets (FM, nGMS, hnGMS, GMS, and hGMS) were made with fishmeal and full‐fat soybean (Youchun 06‐1, heat‐treated Youchun 06‐1, Roundup Ready®, and heat‐treated Roundup Ready®). The FM diet contained fishmeal as the sole protein source. The experimental diets contained full‐fat soybean meal as 60% of dietary protein. Both temperature (60, 80, 100, and 120°C) and duration (1 and 2 hr) of heating influenced trypsin inhibitor activity (TIA) and protein solubility of nGM soybean and GM soybean. The TIA in GM soybean was higher than that in nGM soybean. After heating at 120°C for 2 hr, each amino acid of soybean treatment showed a slight decline. Neither source of soybean nor heat treatment affected the growth performance, feed utilization, chemical composition of the whole fish body and muscle, and lipase or amylase activity of the three Cyprinidae species (p > 0.05). Heat treatment of soybean meal slightly increased the plasma antioxidant capacity of the three fish and plasma cholecystokinin of black carp and grass carp. The unheated soybean treatment adversely affected the height and density of black carp intestinal villi, and all the soybean treatments caused disruption of the grass carp intestinal epithelium.  相似文献   

7.
The study was conducted to investigate the effects of soybean meal (SBM), raffinose and stachyose on juvenile crucian carp (Carassius auratus gibelio♀ × Cyprinus carpio♂). The experimental diets consisted of one control diet based on fish meal (FM), one diet containing 300 g kg?1 SBM and four FM‐based diets with the addition of either 6.7 g kg?1 raffinose (Raf), 33.9 g kg?1 stachyose (Sta), a combination of raffinose and stachyose (Raf?Sta) and finally a Raf?Sta diet supplemented with 2.5 g kg?1 saponins (Raf?Sta?Sap). After 3 weeks of feeding, the relative gut lengths of SBM‐fed fish and the fish fed stachyose‐containing diets were shorter than those of the FM‐fed fish; further, more SBM‐fed fish showed fissures on the tips of the intestinal folds. After 8 weeks of feeding, the growth of SBM‐fed fish was significantly lower than that of FM‐fed fish (P<0.05). The fish fed Raf?Sta?Sap had a low relative gut length (P<0.05). In comparison with the other fish, the SBM‐fed fish had a higher number of large‐sized homogeneous vacuoles in the cytoplasm of epithelial cells and shorter microvilli. No significant difference was observed in body composition or intestinal microflora. The results indicated that raffinose and stachyose played no or only minor roles in the development of soybean‐induced growth reduction.  相似文献   

8.
The effects of dietary yeast culture (YC) or short‐chain fructo‐oligosaccharides (FOS) on intestinal autochthonous bacterial communities in juvenile hybrid tilapia, Oreochromis niloticus♀×Oreochromis aureus♂ were studied by 16S rDNA denaturing gradient gel electrophoresis (DGGE). Ninety Tilapias in tanks (10 fish per tank) were randomly and equally divided into three groups. At the end of an 8‐wk feeding period of CK (the control treatment), YC (3 g/kg), or FOS (1 g/kg), autochthonous gut bacteria were analyzed in intestinal samples of all fish in each tank of a recirculating aquaculture system. The clear differences in the banding patterns indicated the obvious effects of dietary prebiotics on intestinal communities in hybrid tilapia. Higher variation was detected within the dietary YC group. This difference might be due to the effects of certain immune‐stimulating agents in YC on the immunity response of hybrid tilapia. It was concluded that dietary prebiotics, YC, and FOS obviously affected the intestinal bacterial community in hybrid tilapia with different patterns for different kinds.  相似文献   

9.
Dried distiller's grain (DDG) is considered as an alternative ingredient of dietary feed due to its high contents of protein, fibre and fat. In this study, 60 g kg‐1 of DDG was used to feed grass carp (Ctenopharyngodon idella), bluntnose black bream (Megalobrama amblycephala), gibel carp (Carassius gibelio) and black carp (Mylopharyngodon piceus) for 8 weeks, and its effect on fish production and gut allochthonous microbiota was investigated for the development of a suitable fish feed high in nutrients and low in cost for polyculture freshwater fish. DDG supplementation resulted in the less weight gain and higher feed conversion ratio of black carp (< 0.05), but had no significant effects on other fish or parameters. PCR–denaturing gradient gel electrophoresis (DGGE) analysis indicated that all four fish species had some common and unique bacteria in their digestive tracts, and the gut microbiota of bluntnose black and gibel carp fed the control diet and DDG diets were very similar (Cs > 91%); of them, the total counts of intestinal bacteria studied by qPCR increased in grass carp (< 0.05) and depressed in black carp (< 0.05) when fed dietary DDG. Thus, we assumed that dietary DDG modulated production and gut microbiota of fish in a host‐specific way.  相似文献   

10.
This study was conducted to evaluate the potential of graded levels of GroBiotic®‐A to improve performance of Nile tilapia, Oreochromis niloticus, fed a 29% crude protein (CP) diet. A 29% CP diet was formulated and supplemented with 0, 0.4, 0.8, and 1.2% GroBiotic®‐A and compared to performance of fish fed a 33% CP diet. Enhanced weight gain and feed efficiency were generally observed in fish fed the diets supplemented with GroBiotic®‐A compared to the 29% CP diet. No significant differences in these responses were observed between fish fed diets supplemented with GroBiotic®‐A compared to those fed the 33% CP diet. Supplementation of 0.8 and 1.2% GroBiotic®‐A induced significantly lower condition factor and hepatosomatic index compared to fish fed the 29% CP diet, but those values were similar to that of fish fed the 33% CP diet. GroBiotic®‐A supplementation and protein reduction had no effect on the viscerosomatic index of fish or moisture, lipid, and protein content of muscle samples. However, muscle ash increased significantly with protein reduction (29% CP diet), but GroBiotic®‐A supplementation (0.8 and 1.2%) reduced muscle ash content. Activities of catalase and superoxide dismutase were markedly reduced in fish fed GroBiotic®‐A (0.8 and 1.2%) compared to those fed the control diet. GroBiotic®‐A supplementation also induced significantly higher neutrophil oxidative radical production compared to fish fed the 29% CP diet, but no significant difference was observed in comparison with the 33% CP diet. After 8 wk of feeding, exposure to Aeromonas hydrophila for 3 wk resulted in 40% (0.4, 0.8% GroBiotic®‐A) and 27% (1.2% GroBiotic®‐A) mortality and reduced signs of disease, while 47% mortality was observed in fish fed the 29% CP diet. Based on the result of this study, it is concluded that 0.8 and 1.2% GroBiotic®‐A positively influenced growth performance and feed efficiency of tilapia fed diets containing 29% crude protein to levels comparable to fish fed the 33% CP diet. GroBiotic®‐A supplementation also significantly increased neutrophil oxidative radical production as well as resistance to Ae. hydrophila infection.  相似文献   

11.
Herbivorous grass carp (Ctenopharyngodon idella) has a powerful capability to digest aquatic weed. Cellulase activity or cellulase‐producing bacteria were found in the gut of grass carp. However, it remains uncertain whether the cellulase‐producing bacteria were a part of indigenous intestinal microbiota that the fish harboured or were introduced with food. In the present study, the bacterial diversities and population abundance in the gut of starved grass carps have been investigated by sequencing 16S rRNA gene libraries. The 16S rRNA gene libraries revealed that 28 parasitic bacteria from gut were affiliated to seven genera of Vibrio, Acinetobacter, Providencia, Yersinia, Pseudominas, Morganella or Aeromonas, respectively, and Aeromonas was identified as the most dominant genus in the gut of C. idella. All of cellulase‐producing bacteria isolated from the gut of C. idella in this research belonged to Aeromonas. On the whole, the results in this research showed that cellulase activity within C. idella should be at least partially resulting from bacteria of Aeromonas with cellulase‐producing capabilities, which were indigenous and dominant intestinal species.  相似文献   

12.
We assessed the effects of a fishmeal (FM)‐ and two soya‐based diets [without or with prebiotic (GroBiotic® ‐A; GBA) supplementation] on the production performance, non‐specific immunity, blood parameters and gut microbiota diversity of red drum, Sciaenops ocellatus. All diets were formulated to contain 450 g/kg crude protein (CP) and 120 g/kg lipid. A combination of soya bean meal and soya protein concentrate (SP) was used to replace 88% of the FM in the FM‐based diet (REF) originating the first soya‐based diet (SOY). The second soya‐based diet (SOY + GBA) was designed identically to SOY except for the supplementation of GBA (20 g/kg) substituting for wheat flour. After feeding the experimental diets to triplicate groups of 25 (~3.4 g/fish) and 90 (~4.1 g/fish) red drum juveniles for 9 (Trial I) and 16 weeks (Trial II), our results showed that (i) red drum was highly sensitive to the soya‐based diets in the first week of feeding; (ii) replacing 88% of FM with SP reduced the production performance of red drum without affecting intestinal micromorphology; (iii) whole‐blood leucocyte oxidative radical production was unaffected while lower haematocrit and higher plasma lysozyme activity were found in fish fed REF; (iv) plasma osmolality was unaffected while lower glucose and higher lactate levels were observed in fish fed SOY and SOY + GBA; (v) 16S rRNA gene‐based diversity of fish gut microbiota was affected both by SP and by GBA. This study expands the information on red drum responses to soya‐based diets and prebiotic supplementation.  相似文献   

13.
The aim of this study was to investigate the effects of dietary fermentable fibre (Vitacel®) on haemato‐immunological and serum biochemical parameters, intestinal histomorphology, growth performance and proximate body composition of rainbow trout (Oncorhynchus mykiss). One hundred and twenty fish (81.65 ± 1.49 g) were fed diets containing 0 and 10 g kg?1 fermentable fibre (Vitacel®) for 50 days. At the end of feeding trial, growth performance parameters were significantly improved in fermentable fibre (Vitacel®)‐fed fish. Although feeding on fermentable fibre (Vitacel®)‐supplemented diet had no remarkable effect on haematological parameters (RBC, Htc and Hb) (> 0.05), white blood cell (WBC) count and monocyte level were significantly affected (P = 0.040 and P = 0.020, respectively). In case of serum biochemical parameters, a significant increase and decrease were observed in serum total protein (P = 0.040) and cholesterol level (P = 0.000), respectively. Also, lysozyme level was significantly increased following administration of Vitacel® in diet (P = 0.006). Histomorphological evaluations revealed that villus length (P = 0.004) and tunica muscularis thickness (P = 0.000) were significantly higher in fermentable fibre (Vitacel®)‐fed fish. These results indicate that fermentable fibre can be considered as a dietary supplement for improving the health status and performance of rainbow trout.  相似文献   

14.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

15.
This study examined the diversity of siderophore‐producing bacteria in the intestinal tracts of coastal fish in Japan and screened candidate bacterial strains for probiotic use in aquaculture. Of the 2637 bacteria isolated from the 27 fish specimens (13 species) and six environmental samples collected in this study, 266 isolates exhibited the ability to produce siderophores. Siderophore producers were detected in the intestines of 18 of the fish specimens caught (68%) at densities of 2.3 × 104–2.3 × 108 CFU g?1, in all three seawater samples at 2.0 × 102–1.3 × 103 CFU mL?1 and in all three sand samples at 2.6 × 101–2.8 × 104 CFU g?1. These findings suggest that siderophore‐producing bacteria are widely distributed in the intestinal tracts of coastal fish and their environments. Analysis of 16S rRNA gene sequences revealed that the siderophore producers belonged to 38 species, of which Vibrio splendidus, Vibrio ichthyoenteri and Vibrio crassostreae accounted for 32.7%, 19.5% and 11.3% of the 266 isolates, respectively, suggesting that these bacteria are indigenous to the intestinal tract of coastal fish. Six bacterial species, Enterovibri norvegicus, Photobacterium leiognathi, Photobacterium phosphoreum, Photobacterium rosenbergii, V. crassostrea and Vibrio scophthalmi were identified as possible candidates for use as probionts in fish aquaculture.  相似文献   

16.
Grass carp, Ctenopharyngodon idellus, harbours complex intestinal bacterial communities, which are important in several physiological processes of their host. Intestinal microbiota of grass carp have been previously described in numerous studies. However, an overview on the bacterial community diversity, including their establishment, their functions in host's nutritional processes and immune‐related responses, and use as probiotics, is absent. This study aimed to summarize the current understanding of the grass carp intestinal microbiota. In this review, we provide general information on the establishment and composition of intestinal microbial communities and factors influencing the diversity of gut microbiota. Also, this review covers the dietary effects of probiotics, prebiotics and/or synbiotics on the grass carp intestinal microbial communities and physiological characteristics. Although our knowledge of the grass carp intestinal microbiota is expanding rapidly, further studies on the factors affecting the diversity of intestinal microbes, interactions between intestinal microbiota and their hosts and application of probiotics/prebiotics/synbiotics in aquaculture industry, are needed.  相似文献   

17.
The gut microbiomes of fish play important roles in host development, digestion and health. Evidence suggests that abiotic factors, such as diet and rearing temperature, could affect fish gut microbiota. In this study, the effect of dietary short‐chain fructooligosaccharides (scFOS) on turbot intestinal health, microbiota and digestive enzymes was investigated at two rearing temperatures: 15 and 20 °C. Four practical diets were supplemented with scFOS at 0, 5, 10 and 20 g kg?1. scFOS did not affect fish performance. PCR‐DGGE did not show differences in bacterial profiles between dietary treatments; however, the number of operational taxonomic units, richness and diversity were higher at 20 °C. Enzyme activities in the foregut were not affected by rearing temperature, while in the hindgut, enzyme activities were higher at 15 °C. Total alkaline protease, α‐amylase and lipase activities in the foregut were higher in fish fed 20 g kg?1 scFOS. Prebiotic supplementation had no effect on hindgut α‐amylase activity, while lipase activity of fish reared at 20 °C was higher in fish fed diet with 5 g kg?1 scFOS. No differences were observed in intestinal morphology. This was the first study to simultaneously evaluate the effect of dietary prebiotic level and rearing temperature on fish intestinal microbiota and health.  相似文献   

18.
As adhesion and translocation through fish gut enterocytes of the pathogen Vibrio (Listonella) anguillarum are not well investigated, the effective cause of disease and mortality outbreaks in larval sea bass, Dicentrarchus labrax, suffering from vibriosis is unknown. We detected Vanguillarum within the gut of experimentally infected gnotobiotic sea bass larvae using transmission electron microscopy and immunogold labelling. Intact bacteria were observed in close contact with the apical brush border in the gut lumen. Enterocytes contained lysosomes positive for protein A‐gold particles suggesting intracellular elimination of bacterial fragments. Shed intestinal cells were regularly visualized in the gut lumen in late stages of exposure. Some of the luminal cells showed invagination and putative engulfment of bacterial structures by pseudopod‐like formations. The engulfed structures were positive for protein A‐colloidal gold indicating that these structures were V. anguillarum. Immunogold positive thread‐like structures secreted by V. anguillarum suggested the presence of outer membrane vesicles (MVs) hypothesizing that MVs are potent transporters of active virulence factors to sea bass gut cells suggestive for a substantial role in biofilm formation and pathogenesis. We put forward the hypothesis that MVs are important in the pathogenesis of Vanguillarum in sea bass larvae.  相似文献   

19.
The study was conducted in nine 150‐L capacity glass aquaria for 192 h to determine the changes in the microflora in the gut and hepatopancreas of tiger shrimp, Penaeus monodon, after bioaugmenting (water treatment and probiotics). Results showed that luminous bacterial counts were significantly lower in bioaugmented than in nonbioaugmented systems (range 0–5.9 × 103 cfu/g and 0–3.2 × 103 cfu/g in gut and hepatopancreas, respectively). Biochemical tests of isolates showed that the bioaugmented systems were dominated by Gram‐positive Bacillus and Streptococcus and the Gram‐negative Vibrio dominated the control. In water‐treated and probiotics‐fed bioaugmented system, the change in bacterial dominance to Bacillus became evident 2 h in the gut and 24 h in the hepatopancreas. Bacterial dominance shifted to Vibrio species after 120 h. Shrimp in the control were observed to become lethargic after 72 h as Vibrio species significantly increased in number. Dissolved oxygen and unionized ammonia levels were significantly lower in bioaugmented system compared with the control.  相似文献   

20.
Chitin consists of β‐1,4‐linked N‐acetylglucosamine residues and is estimated as the second most abundant biomass in the world after cellulose. However, relatively little chitin is utilized as a material for industrial, agricultural and medical applications and aquacultural purposes. Chitin may be useful as a constitutive material in formulated fish feed, and the interesting effects in fish merit further evaluation. There is evidence that fish and aquatic animals harbour a gut bacterial community that is distinctly different from that reported in the surrounding habitat or in the diet. Thus, the gut environment provides a specific niche, and bacterial activity in the gut is not merely a continuum of that observed in the environment. Today, it is well accepted that the gut microbiota in fish are modulated by dietary manipulations. But to what extent can dietary chitin and krill (chitin‐rich) modulate the intestinal microbiota of fish and how do these dietary components affect the immune system? These questions will be discussed in the present review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号