首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Exotic apple snails (Pomacea spp.) are a major threat to the productivity and profitability of rice farming globally. Cultural methods that are applicable to traditional rice transplanting are often successful in reducing snail damage to rice. However, high labor and irrigation costs associated with transplanting highlight the need to develop modern rice crop establishment methods to replace traditional, labor-intensive methods. This study examined four broad categories of rice crop establishment for their vulnerability to apple snail damage. Seedlings from dapog nurseries and wet-direct seeding were highly vulnerable to damage and produced no grain in snail-infested ponds in the Philippines. Rice transplanted from dry bed nurseries at 21 days after sowing (DAS) had high mortality (85%) and consequently low yields. In contrast, seedling broadcasting (21 DAS) significantly reduced rice vulnerability (22% seedling mortality) to snail damage compared to all other methods and resulted in the highest grain yields per plot in our experiments. We attribute lower vulnerability to snail damage and successful stand development to reduced transplanting shock at the time of seedling broadcasting and to the generally good condition of seedlings even after 21 days in polyvinyl chloride trays. We suggest that seedling broadcasting be considered as a crop establishment method with potential to sustainably manage apple snails in irrigated rice.  相似文献   

2.
Response of grain sorghum to fertilisation with human urine   总被引:1,自引:0,他引:1  
Human urine is rich in valuable plant nutrients, and, when separately collected, it can substitute for fertilisers. A high valorisation of urine in crop production requires that each nutrient be balanced to match the actual demand. The objective of the present study was to evaluate the effectiveness of phosphorus- (P) and potassium- (K) balanced urine as a nutrient source for the cultivation of sorghum (Sorghum bicolor (L.) Moench). For this purpose, human urine, mineral fertiliser and compost plus urine were compared in field experiments. Triple super phosphate and potassium chloride were added to the urine fertiliser and potassium chloride to the compost-urine fertiliser to supply similar amounts of nitrogen (N), P and K (100, 44, 83 kg ha−1 in 2006; 50, 22, 42 kg ha−1 in 2007 and 2009) as NPK mineral fertiliser. The mineral fertiliser treatment was repeated with the addition of water at the same volume as contained in urine to one variant.No distinct changes in the chemical soil properties were detected, but a consistent decrease in pH and cation content was observed for mineral fertiliser, while these parameters increased in the urine and compost treatments. The plants responded to all fertilisers with faster development and significant increases in the number of green leaves, size and total area. One hectare produced 520 kg grains in non-fertilised control soil while grain yields per hectare were 1657 kg in urine fertilised, 1244 kg in mineral fertilised and 1363 kg in mineral fertilised and water added and 2127 kg in compost fertilised plots.Our results demonstrate that for the cultivation of sorghum, the N requirement can be fully met and the P and K requirements can be partially met by urine and substitute mineral fertilisers. Where feasible, the combined application of compost and urine is recommended. The long-term impact of fertilisation with human urine requires further investigation with respect to N efficiency, the effect of sulphur and soil salinisation.  相似文献   

3.
Abstract

Information on the dynamics of nitrogen as influenced by crop establishment method and N management strategy is meager, but such information is necessary in optimizing nitrogen input for lowland rice (Oryza sativa L.). A field experiment was conducted at the experimental farm of the International Rice Research Institute (IRRI), Philippines, during the wet and dry seasons of 2003 and 2004 to evaluate the effects of crop establishment and nitrogen management strategies for lowland rice on the dynamics of mineral N. The experiment was laid out in a split-plot design with four crop establishment methods as main plots and two N management techniques as subplots with three replications. Zero-N fertilizer (N-omission) micro-plots were embedded in each plot. Crop establishment method did not significantly influence uptake of indigenous mineral N during the wet (44-55 kg ha-1) and dry (43-50 kg ha-1) seasons. Apparently, NH4+-N and NO3~-N accumulated in the top 20-cm layer of the soil during the wet season, resulting in relatively high initial N during the dry season. Crop establishment and N management strategies did not influence crop removal of N during a one-year period. Actual N balance across crop establishment methods during the one-year period ranged from 10 to 16 kg ha-1, whereas the apparent N balance ranged from 45 to 99 kg ha-1. A fertilizer recommendation should be developed based on the actual N balance along with the assessment of crop N requirement for a given yield potential.  相似文献   

4.
《Field Crops Research》1999,64(3):237-247
An experiment, over 3 years, studied the effects of mineral fertilizers and organic manures on potassium (K) balances in rainfed lowland rice on a light-textured Tropaqualf. Two rice crops were grown each year: the first direct seeded (DS) in moist soil that was later flooded by monsoon rain; the second transplanted (TP) into flooded soil towards the end of the wet season. A soybean crop followed the TP rice in the first year. In all the fertilizer and manure combinations studied, removal of K in the crop exceeded K additions and the soil K balance was negative unless crop residues were incorporated. For DS rice the relations between grain yield and K uptake fell within the limits of maximum K dilution and maximum K accumulation expected for well-managed irrigated rice. But those for TP rice tended to fall below the limit of maximum accumulation, yield being constrained by factors other than mineral nutrition, especially water deficit. In the DS rice, grain yields per unit K uptake were close to maximal in the treatments that received no K, but they were well below that in the K-fertilized treatments. Uptake was well correlated with exchangeable K in the soil at maximum tillering measured by ammonium acetate extraction. The mass balances of K inputs, K uptake and exchangeable K in the soil however, showed that a large part of the uptake was from non-exchangeable pools. The mobilization of non-exchangeable K was apparently plant-induced and was greater in treatments with greater growth. A mechanism for root-induced solubilization of non-exchangeable K, peculiar to rice growing in flooded soil, is proposed.  相似文献   

5.
Several cultural methods are known to reduce the densities of exotic apple snails (Pomacea spp.) and the damage they cause to rice in Asia. However, one aspect of seedling production – seedbed seed-density – has been largely overlooked and could compromise popular cultural control methods such as delayed transplanting. We conducted experiments to examine the effects of seedbed seed-density on hill survival in snail-infested paddy fields in the Philippines and to examine the interactions between seedbed seed-density and other cultural methods (delayed transplanting, 3 seedlings per hill and hand-picking). Seedbed seed-density determined seedling weight and stem thickness at the time of transplanting. Hill survival was highest where cultural methods (delayed transplanting and 3 seedlings per hill) were combined with low seed-density seedbeds (60–120 g m−2). Furthermore, reduced seedbed seed-density was directly related to increased hill biomass in field plots 32 days after transplanting. Hand-picking of snails together with delayed transplanting and 3 seedlings per hill eliminated hill mortality due to snail herbivory. Farmers adopting cultural snail control methods, but without adhering to low seedbed seed-densities risk increased losses due to snails because of poor quality seedlings. We suggest that seedbed seed-densities should not exceed 120 g m−2 with better results at even lower densities.  相似文献   

6.
稻螺生态种养模式是充分利用稻田空间、时间、生态环境等资源,在进行水稻种植的同时生态养殖田螺的模式,拓展了种植业与养殖业的发展空间,提高了稻田物质与能量的利用率与产出效益.以浏阳市利敏农业开发有限公司为例,介绍了稻螺生态种养模式的生态系统结构和构建原理,以及该模式的技术流程,分析了该模式的经济、生态、社会等效益,探讨了其发展前景.  相似文献   

7.
《Field Crops Research》2004,89(1):27-37
In water-limited environments soil water content at sowing is important in determining durum wheat germination, emergence and plant establishment. Soil water content interacts greatly with soil nitrogen content, affecting nitrogen uptake and crop productivity. Simulation models can be used to confirm the optimal strategy by testing several crop management scenarios.The CERES-Wheat model, previously calibrated and validated in southern Italy, has been used in a seasonal analysis to optimise nitrogen fertilisation of durum wheat at different levels of crop available water (CAW) at planting date in southern Italy. The simulation was carried out for a 48-year period with measured daily climatic data. The 99 simulated scenarios derived from the combinations of different CAW levels at sowing, nitrogen fertiliser rates and application times.The results obtained from the simulation indicated that the effect of CAW at sowing was relevant for durum wheat production at lowest and highest values, while the optimal sowing time to maximise yield and profit can be considered when CAW is 40–60%. In the case study optimal N fertiliser amount was estimated to be 100±20 kg ha−1, from a productive, environmental and economic point of view. The nitrogen split application—half at sowing and half at stem extension stage—resulted in the best management practice.This application of the CERES-Wheat model confirmed the capability of the model to compare several crop management strategies in a typical durum wheat cropping area.  相似文献   

8.
Large within-field variation in rice growth often causes production loss in broadcast-seeded (BC) rainfed lowland rice. The spatial variability of direct-seeded rainfed lowland rice was evaluated in 2004, 2005, and 2007 in on-station experiments at Ubon Ratchathani, northeast Thailand, in relation to soil water content and weed infestation, by adopting semivariogram and block kriging, including comparisons among BC with harrowing (BCH; no weeding), BC with no harrowing (BCNH; no weeding), and row-seeded (RS; interrow weeding once) fields. BCH and BCNH were also compared in 11 farmers’ fields in 2006 and 2007, to assess the effect of harrowing on rice growth and weed infestation. During most of the rice growing periods, flooded and non-flooded portions existed simultaneously in the fields, with different proportions among years and among seeding methods in the on-station experiment. BCH and BCNH rice had large within-field variation in seedling density, heading date, shoot dry matter, grain yield, harvest index, panicle density, and filled spikelet per panicle, as well as in weed infestation, measured by a quick visual estimation. Many of the measured variables (except mean soil water content in RS in 2007, seedling density in BCH in 2005 and 2007, shoot dry matter in BCH and BCNH in 2007, and panicle density in BCH in 2007) were spatially dependent (i.e., data from nearby locations were most similar) by geostatistical analysis. Analysis of correlations using the 420 data sets of BCH plots in 2005 and BCH, BCNH, and RS plots in 2007 revealed a positive correlation between soil water content and grain yield and negative correlations between weed infestation and soil water content and grain yield. Compared with BCH, in 2007 BCNH had much lower grain yield because of lower soil water content after establishment and more weed infestation. BCH had higher grain yield than BCNH in weedy fields in the farmers’ fields experiment. RS with interrow weeding resulted in a smaller coefficient of variation, smaller sill value, and higher grain yield than BCH, due to less weed infestation and a higher proportion of flooded water. These results indicated that reducing the spatial variability in rice growth requires careful field preparation, such as harrowing to level the soil surface and to reduce the uneven distribution of standing water and the variability in soil water content, combined with effective crop and weed management (i.e., harrowing and row-seeding). This is the first study that examined spatial variability in the growth of direct-seeded rice as a function of soil water content and weed infestation in a rainfed lowland environment.  相似文献   

9.
Crop management plays an important role in the transition from a deepwater rice to a flooded rice production system but information about optimum management strategies are currently lacking. The goal of this study was to determine the effect of planting date and variety on flooded rice production in the deepwater area of Thailand. Two experiments were conducted at the Bang Taen His Majesty Private Development Project in 2009 and 2010 to represent conditions prior to flooding (early rainy season) and after flooding (dry season). The early rainy season crop covered the period from May to October 2009, while the dry season crop covered the period from November 2009 to April 2010. The experimental design was a split plot with four main plots and three sub plots replicated four times. The treatments for the main plot were various planting dates, while the treatments for the sub plots were rice varieties. The dates of the critical developmental phases of rice were recorded and biomass was sampled during the growing period. The collected data were statistically analyzed using ANOVA and treatment means were compared to identify the appropriate plating date and the best variety for the area. The highest average yield was obtained for variety PSL2 across transplanting dates from June 19 to July 23, with an average yield of 3898 kg ha−1. The dry season crop showed that both biomass and yield were affected by the interaction between planting date and variety. The highest yield was obtained for variety PTT1 transplanted on November 9. The research showed that the variety PSL2 is the most suitable variety for early rainy season production with a transplanting date ranging from June 19 to July 23, while the variety PTT1 planted on November 9 was the best management practice for the dry season crop. However, a high yielding flooded rice variety that has a short growth duration is still needed for this area.  相似文献   

10.
Permanent raised beds are being proposed for the rice–wheat system in the Indo-Gangetic Plain to increase its productivity and to save water. It is not clear whether reported water savings in rice arise from the geometry of the beds per se or from the particular water management that keeps the soil in aerobic conditions and that can also be applied on flat land. Moreover, little research has been reported on direct seeding of rice on raised beds and on the effect of raised beds on the subsequent wheat crop. In this paper we compare the yield, input water (rainfall and irrigation) use and water productivity of dry-seeded rice on raised beds and flat land with that of flooded transplanted and wet-seeded rice, and analyze the effects of beds on the subsequent wheat crop. The experiment was conducted in 2001–2003 at New Delhi, India.

Rice yields on raised beds that were kept around field capacity were 32–42% lower than under flooded transplanted conditions and 21% lower than under flooded wet-seeded conditions. Water inputs were reduced by 32–42% compared with flooded rice, but could also be accomplished with dry seeding on flat land with the same water management. Reduced water inputs and yield reductions balanced each other so that water productivity was comparable among most treatments. Wheat yield was 12–17% lower on raised beds than on flat land with conventional (20 cm) row spacing. Neither wheat nor rice on raised beds compensated for the loss in rows by extra tillering or leaf growth at the edges of the rows. There was no carry-over effect of type of land preparation in rice on the growth and yield of the subsequent wheat crop. Further research on raised beds should focus on the selection of suitable rice and wheat varieties, soil health issues such as nematodes and micro-nutrient deficiencies, weed control, bed stability and long-term carry-over effects from one crop to the other.  相似文献   


11.
In many parts of Asia, rice is transplanted in puddled fields and after the harvest of this crop wheat is grown. This traditional method of growing rice may have deleterious effect on the growth of the subsequent crop in a rice–wheat cropping system. Wheat crop was planted in the same plots following a rice crop to evaluate the residual effects of various tillage treatments suitable for rice on the growth of the subsequent crop. Rice cultivar Super-basmati was grown in summer and wheat cultivar Auqab-2000 in autumn after rice. Four treatments were used to grow rice viz. transplanting in continuously flooded conditions (TRF), transplanting with intermittent flooding and drying (TRI), direct seeded using dry seeds (DSR) and direct seeded using primed seeds (DSP). Traditional puddling tillage system was followed in TRF and TRI, while for DSR and DSP, dry tillage system was followed. For convenience, the abbreviations of the rice treatments were used to indicate the same plots during the wheat crop. For the rice crop, tiller number, fertile tillers, kernel and straw yield, and harvest index were significantly better with transplanted treatments (TRI and TRF) than the direct seeded treatments. TRI also gave a yield advantage of 5% over TRF. For wheat, crop following direct seeded rice was better than transplanting. This study suggests that intermittent irrigation in the traditional puddling tillage system and DSP dry tillage system are the promising alternatives that may be opted.  相似文献   

12.
《Field Crops Research》1995,41(2):123-134
Inconsistent seedling establishment is a constraint to the adoption of direct seeding of lowland rice (Oryza sativa L.) in the tropics. Rice cultivars with superior seedling establishment in flooded soil have been recently identified. The establishment of these tolerant cultivars was compared with a control cultivar with and without calcium peroxide-coated seed under various combinations of water level and sowing depth. Water level had little effect on seedling establishment when seed were sown on the soil surface, but establishment was reduced by raising the water level when seed were sown below the soil surface. Calcium peroxide-coated seed established better than the tolerant cultivars at 13- and 25-mm sowing depths, but their seedlings were shorter and less vigorous than those of tolerant cultivars. Tolerant cultivars and coated seed had longer mesocotyls than controls. Sowing tolerant cultivars beneath a flooded soil surface at less than 13 mm assists achievement of consistent seedling establishment in lowland rice production.  相似文献   

13.
栽培模式对水稻土脲酶活性及土壤碱解氮含量的影响   总被引:1,自引:0,他引:1  
为研究水稻栽培模式对土壤性质的影响,以南方典型双季稻田为研究对象,于湖南浏阳试验田采取土样,测定不同水稻栽培模式下土壤脲酶活性及碱解氮含量,结果表明:1)高氮水平处理的脲酶活性最高,氮空白对照的脲酶活性最低,处理间土壤脲酶活性高低为:超高产栽培〉高产高效栽培〉高效超高产栽培〉常规栽培〉氮空白;2)随着土层深度的增加碱解氮含量逐渐减少,脲酶活性在一定土层深度范围内随深度增加而降低;3)超高产栽培模式可提高耕作层下层土壤碱解氮含量及脲酶活性,说明超高产栽培能改变深层土壤性质。  相似文献   

14.
15.
In regions where rainfall is low and variable, water stored in the soil profile prior to sowing can alter yield expectation and hence management decisions. Thus, wheat farmers in Mediterranean regions may be able to benefit from knowing the amount of soil water at sowing by optimising their nitrogen (N) fertiliser management and by deciding on whether or not to sow a crop. We used the ASPIM-Nwheat model to explore how levels of plant available soil water (PAW) at sowing, N fertiliser rate, soil, site and season-type (below or above median rainfall) affected wheat yields at sites in the Mediterranean area of southwest Australia. Overall, the greatest influence on yield potential and the consequent N fertilisation requirement was season-type. The additional yield per mm PAW at sowing was generally higher in seasons with below median rainfall, except when yields were severely water-limited by below median rainfall of <222 mm combined with <40 mm PAW at sowing on light clay soil with 109 mm plant available water capacity (PAWC). Sowing was generally warranted; only on light clay soil with <10 mm PAW at sowing and below median rainfall of <222 mm was there an opportunity for a conditional sowing strategy. Scope for varying N fertiliser rates with PAW at sowing was limited to soils with higher PAWC (109 and 130 mm, respectively) in below median rainfall seasons at the wetter site (295 mm mean seasonal rainfall), and in both season-types at the drier site (225 mm mean seasonal rainfall). Only in these combinations, soil water at sowing modified the optimal N fertiliser rate for maximum average yield resulting in significant interactions between PAW at sowing and N fertiliser rates. Similar interactions were found for a site in the Mediterranean Basin and a site in the eastern Australian subtropics on soil with high PAWC (183 and 276 mm, respectively). In contrast, there was no benefit from modifying crop management based on PAW at sowing on soil with low PAWC (i.e. sandy soil) and/or under conditions of high in-season rainfall. The conditional N management approach becomes more viable as the proportion of water stored in the soil prior to sowing increases relative to total crop water use and as the PAWC of the soil increases. Knowledge of PAW at sowing × N fertiliser rate interactions in a particular soil × site × season-type context can help to identify sites where a more targeted N management dependent on amounts of PAW at sowing is potentially profitable.  相似文献   

16.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

17.
《Field Crops Research》2001,70(1):43-53
In a series of legume-based cropping systems experiments, the economic optimum N fertiliser rate for cotton ranged from 0 to 186 kg N ha−1 depending on the cropping system and soil N fertility. The economic optimum N fertiliser rate was closely correlated with pre-sowing soil nitrate-N (0–30 cm) and petiole nitrate-N (at early flowering). Pre-sowing soil nitrate-N and petiole nitrate-N were also strongly correlated with cotton N uptake at late boll-filling and lint yield of unfertilised cotton.These analyses allow for the estimation of the N fertiliser requirement, providing revised calibrations that more precisely estimate the N-fertiliser requirement of irrigated cotton crops where legume cropping has substantially improved soil N fertility. Such management tools are essential to avoid the problems associated with over- or under-fertilizing cotton crops.The importance of optimising N fertiliser application was demonstrated by examining the effects of crop N nutrition on cotton maturity and fibre quality. Crop maturity (rate of boll opening) was delayed by 1 day for each 83, 16 or 24 kg fertiliser N applied per hectare in the three experiments. Increasing N fertiliser rates generally increased fibre length, and tended to increase fibre strength, whereas micronaire tended to decline.  相似文献   

18.
Seed coating with molybdenum compounds improves seedling establishment for rice, wheat, barley, and soybean when such seeds were sown under flooded conditions. Tungsten belongs to the same chemical group as molybdenum in the periodic table, and similar to molybdenum, inhibits the generation of sulfide ions. Here, the effects of tungsten and molybdenum containing seed coatings on seedling establishment under flooded conditions were compared using rice, wheat, barley, and soybean. In rice, the effects of tungsten compounds on seedling establishment varied. Tungsten trioxide had little effect but tungstic acid and ammonium phosphotungstate significantly improved seedling establishment when the amounts were at least .1–.2 mol W kg?1. Although the effect of tungsten coating varied depending on the compound used, ammonium phosphotungstate, along with other tungsten compounds, improved seedling establishment in a manner comparable with that of molybdenum compounds. For wheat and barley, ammonium phosphotungstate treatment resulted in a significant increase in establishment that was only slightly less than the results observed using molybdenum compounds. Tungstic acid and ammonium phosphotungstate treatments improved soybean establishment in a significant manner that was comparable with those of molybdenum compounds. Collectively, these results suggest that tungsten compounds, as well as molybdenum compounds, improve seedling establishment under flooded conditions.  相似文献   

19.
《Plant Production Science》2013,16(3):276-279
Abstract

Direct-seeding has been proposed as a water- and labor-saving method to grow irrigated rice. Our objective was to compare the effects of flooded and aerobic conditions on the yield stability of direct-seeded rice. We set up four trials in the field: aerobic, near-saturated and flooded soils with direct seeding, and flooded soil with transplanting. Grain yield of direct-seeded rice was comparable to that of transplanted under flooded conditions. However, the yield of direct-seeded rice under aerobic conditions was up to 21% lower than that under flooded conditions. This poor performance was associated with reduced leaf growth during the vegetative stage. Our results indicate that the yield stability of direct-seeded rice could be lowered by the water-saving irrigation, compared with the conventional flooded culture. In order to save irrigation water, physiological research on direct-seeded rice should target the vulnerability of rice to aerobic soils or to soil moisture fluctuations.  相似文献   

20.
Climate change will have significant impacts on the rain-fed rice production ecosystem, and particularly on the ecosystem’s hydrology and water resources. Under rain-fed lowland conditions, substantial variations among fields in grain yield are commonly observed, but a method that can account for field-scale yield variability to produce regional-scale yield estimates is lacking, thereby limiting our ability to predict future rice production under changing climate and variable water resources. In this study, we developed a model for estimating regional yields of rain-fed lowland rice in Northeast Thailand, by combining a simple crop model with a crop calendar model. The crop model incorporates the effects of two important resources (water and nitrogen) on crop growth. The biomass accumulation is driven by water use, whereas the nitrogen supply determines canopy development and thereby constrains crop water use. Accounting for the wide range of planting dates and the strong photoperiod-sensitive characteristics of rice varieties through the calendar model is an essential component in determining regional yield estimates. The present model does not account for the effects of mid-season drought or flooding, but was nonetheless able to explain the spatial and temporal yield variations at the province level for the past 25 years. Thus, it can be used as a prototype for simulating regional yields of rain-fed lowland rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号