首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Hydrolysis of phytate in the stomach and the small intestine as influenced by intrinsic plant (wheat) and supplemented microbial phytase (Aspergillus niger) were investigated with six minipigs (40-50 kg initial body weight) fitted with re-entrant cannulas in the duodenum, 30 cm posterior to the pylorus (animals 1, 4, 5 and 6) and ileocecal re-entrant cannulas, 5 cm prior the ileocecal junction (animals 1, 2 and 3), respectively. Dietary treatments were as follows: (1) diet 1, a corn-based diet [43 U phytase/kg dry matter (DM)]; (2) diet 2, diet 1 supplemented with microbial phytase (818 U/kg DM); and (3) diet 3, a wheat-based diet (1192 U/kg DM). At 07 30 h and 19 30 h, each animal was fed 350 g diet mixed with 1050 ml de-ionized water. Digesta were collected continuously and completely during a 12-h period after feeding. Mean hydrolysis rates of IP6 in the stomach as measured at the proximal duodenum of animals 1, 4, 5 and 6 were 9.0, 77.2 and 66.2% for diet 1, 2 and 3, respectively. Microbial phytase was much more effective in phytate hydrolysis than wheat phytase. Mean IP6 hydrolysis rates of the respective diets in the stomach and small intestine as measured at the distal ileum of animals 1, 2 and 3 were 19.0, 62.6 and 64.6% and were lower than treatment means of the stomach only. Differences existed between experimental animals with respect to their ability to hydrolyse IP6 in the stomach independent of the presence and source of dietary phytase. Considerable amounts of hydrolysis products occurred in both the duodenal and ileal digesta when diets 2 and 3 were fed; however, only traces were determined after ingestion of diet 1. Independent of dietary treatment, four IP5 isomers were detected, but in different amounts.  相似文献   

2.
Hydrolysis of phytate in the stomach and the small intestine as influenced by intrinsic plant (wheat) and supplemented microbial phytase (A. niger) were investigated with six minipigs (40-50 kg initial BW) fitted with re-entrant cannulas in the duodenum, 30 cm posterior to the pylorus (animals 1, 4, 5, and 6) and ileocecal re-entrant cannulas, 5 cm prior the ileocecal junction (animals 1, 2, and 3), respectively. Dietary treatments were as follows: (1) diet 1, a corn-based diet (43 U phytase/kg DM); (2) diet 2, diet 1 supplemented with microbial phytase (818 U/kg DM) and (3) diet 3, a wheat-based diet (1192 U/kg DM). At 0730 and 1930 per animal 350 g diet mixed with 1050 ml de-ionized water were fed. Digesta were collected continuously and completely during 12 h after feeding. In the duodenal digesta, 70% of the microbial phytase (diet 2) and 45% of the wheat phytase (diet 3) were recovered within 12 h after ingestion of the phytases, whereas only negligible amounts were detected in the digesta of pigs fed the phytase-poor corn-based diet 1. Most phytase activity passed through the stomach within the first hour after feeding. Microbial phytase activity at pH 2.8 was less sensitive to acidic pHs, such as those found in the stomach, than phytase activity at pH 5.3. Phytase activities in the digesta of the distal ileum did not depend either on source or amount of dietary phytase activity.  相似文献   

3.
1. The study aimed to assess the effect of a commercially available microbial phytase on phytate phosphorus and total phosphorus content at the terminal ileum as well as true ileal amino acid digestibility. 2. Five diets, each containing a different plant-based feedstuff, were supplemented with microbial phytase and fed, along with a non-supplemented corresponding diet, to 28-d-old broiler chickens, Chromic oxide was used as an indigestible marker. Ileal contents were collected and analysed, along with the diets, for total phosphorus, phytate phosphorus and amino acids. 3. Endogenous phosphorus determined at the terminal ileum was 272 +/- 108 mg/kg food dry matter (mean +/- SE). Endogenous ileal amino acid flows ranged from 58 +/- 10 mg/kg food dry matter for methionine to 568 +/- 47 mg/kg food dry matter for glutamic acid. 4. Supplementation with microbial phytase resulted in a significantly greater phytate P disappearance from the terminal ileum for rice bran (17% units), but not for soyabean meal, maize, wheat or rapeseed meal. Similarly total phosphorus digestibility was significantly (P < 0.05) higher when microbial phytase was added to the rice-bran-based diet but not for any of the other feedstuffs. 5. Amino acid digestibility was significantly greater in the presence of microbial phytase for all the amino acids examined in wheat, for several of the amino acids each in maize and rapeseed meal and for one amino acid in rice bran and soyabean meal. The average increase in amino acid digestibility for those amino acids affected, was 13, 6, 10, 7 and 12% units for wheat, maize, rapeseed meal, rice bran and soyabean meal, respectively. 6. It appears that microbial phytase improves phosphorus digestibility and amino acid digestibility for certain plant-based feedstuffs.  相似文献   

4.
1. The influence of a microbial phytase on the performance, toe ash contents and nutrient utilisation of male broilers fed diets based on maize and wheat was investigated. The experiment was conducted as 2 x 2 x 2 factorial arrangement of treatments. Within the factorial, two diet types (maize-soy or wheat-soy) containing two levels of non-phytate phosphorus (3.0 or 4.5 g/kg) were evaluated and each level of non-phytate phosphorus was supplemented with 0 or 500 PU phytase/kg diet. Each of the 8 dietary treatments were fed to 6 pens of 8 birds from d 1 to 21 post-hatching. 2. Main effects of diet type and phytase were observed for all parameters. Main effect of non-phytate phosphorus was significant only for feed/gain and toe ash contents. Phytase addition improved weight gains irrespective of diet type or non-phytate phosphorus level, but the magnitude of improvement in the phosphorus-deficient wheat-soy diet was greater, resulting in a diet type x non-phytate phosphorus interaction. Responses in toe ash contents were noted only in phosphorus-deficient diets, as indicated by a non-phytate phosphorus x phytase interaction. 3. Phytase addition improved apparent metabolisable energy values of wheat-based diets, but had little effect on the apparent metabolisable energy of maize-based diets as shown by a diet type x phytase interaction. The apparent metabolisable energy was not influenced by dietary non-phytate P. 4. Phytase improved ileal nitrogen digestibility in both diet types, but the responses to added phytase tended to be higher in wheat-based diets, as shown by a diet type x phytase interaction. 5. Increasing the dietary non-phytate phosphorus level reduced phosphorus digestibility and increased excreta phosphorus content. Addition of phytase improved phosphorus digestibility, but the increments were higher in low phosphorus diets resulting in a non-phytate phosphorus x phytase interaction. Phytase addition tended to lower the excreta phosphorus content, but the effects were greater in birds fed low phosphorus diets, as shown by a non-phytate phosphorus x phytase interaction.  相似文献   

5.
A 24-week performance trial was conducted to evaluate the efficacy of an experimental phytase on performance, egg quality, tibia ash content and phosphorus excretion in laying hens fed on either a maize- or a barley-based diet. At the end of the trial, an ileal absorption assay was conducted in order to determine the influence of phytase supplementation on the apparent absorption of calcium and total phosphorus (P). Each experimental diet was formulated either as a positive control containing 3.2 g/kg non-phytate phosphorus (NPP), with the addition of dicalcium phosphate (DCP), or as a low P one, without DCP addition. Both low P diets (containing 1.3 or 1.1 g/kg NPP) were supplemented with microbial phytase at 0, 150, 300 and 450 U/kg. The birds were housed in cages, allocating two hens per cage as the experimental unit. Each of 10 dietary treatments was assigned to 16 replicates. Low dietary NPP (below 1.3 g/kg) was not able to support optimum performance of hens during the laying cycle (from 22 to 46 weeks of age), either in maize or barley diets. Rate of lay, daily egg mass output, feed consumption, tibia ash percentage and weight gain were reduced in hens fed low NPP diets. The adverse effects of a low P diet were more severe in hens on a maize diet than in those on a barley diet. Low dietary NPP reduced egg production, weight gain, feed consumption and tibia ash content and microbial phytase supplementation improved these parameters. Hens given low NPP diets supplemented with phytase performed as well as the hens on positive control diets containing 3.2 g/kg of NPP. A 49% reduction of excreta P content was achieved by feeding hens on low NPP diets supplemented with phytase, without compromising performance. Phytase addition to low NPP diets increased total phosphorus absorption at the ileal level, from 0.25 to 0.51 in the maize diet and from 0.34 to 0.58 in the barley diet. Phosphorus absorption increased linearly with increasing levels of dietary phytase. Mean phosphorus absorption was higher in barley diets than in maize diets (0.49 vs 0.39).  相似文献   

6.
Six barrows of approximately 37 kg BW, fitted with two simple T-cannulas in the duodenum (25 cm posterior to the pylorus) and terminal ileum (12 to 15 cm anterior to the ileocecal junction), were fed two diets containing 2.1 g of P/kg in the form of phytic acid and a low intrinsic phytase activity (corn-soybean meal based diet [Diet A] or a typical Dutch diet [Diet B]) without or with supplementary microbial phytase from Aspergillus niger (var. ficuum) equal to 1,500 phytase units per kilogram of diet, in a crossover design. The apparent duodenal, ileal, and total tract (overall) digestibilities of DM, total P, and phytate P (phytic acid x .282) were calculated using both Cr-NDR (neutral detergent residue mordanted with Cr) and Co-EDTA as dual-phase markers. Concentration of total P in the ileal digesta (P less than .01) and feces (P less than .001) of pigs fed microbial phytase was lower than without this enzyme, irrespective of the diet. Ileal digestibility of total P was 18.5 and 29.8 percentage units higher (which was a 1.7- to 2.9-fold increase) due to added Aspergillus niger phytase (P less than .05). Also, total tract (overall) digestibility increased by 27.0 to 29.7 percentage units (P less than .01). Phytic acid concentration in the duodenal and ileal digesta of pigs receiving microbial phytase was lower (P less than .01 or .001), resulting in its higher ileal digestibility (dephosphorylation rate) by 50.1 percentage units for Diet A and by 75.4 percentage units for Diet B. Irrespective of the treatment, no phytase activity could be detected in the ileal digesta of pigs.  相似文献   

7.
The effect of phytase and xylanase supplementation of a wheat-based pig diet on the ileal and total tract apparent digestibility of dietary components and minerals were studied in eight growing pigs fitted with a PVTC cannula in a randomized block design experiment. The diets (A and B) were similar in major ingredient composition and in nutrient content. In diet A, part of the limestone was replaced with di-calcium phosphate to increase the content of available phosphorus (P). Diet B was fed without or with supplementation with phytase (500 FTU/kg; diet BP), xylanase (4000 XU/kg; diet BX) and phytase + xylanase (500 FTU and 4000 XU/kg; diet BPX). There were no differences (P > 0.05) between diets in the ileal or total tract digestibility of organic matter (OM), NDF and crude protein (CP). The ileal and total tract digestibility for P and Ca differed (P < 0.05) between diets, while there were no treatment effects for Zn. The ileal and total tract digestibility for P and Ca was higher (P < 0.05) on diets BP and BPX than on the other diets. In conclusion, phytase improved the utilization of dietary P and Ca in a wheat-based diet, while xylanase had no additional benefits in terms of OM and CP digestibility or mineral utilization. Phytase had no effect on the digestibility of OM, CP or NDF.  相似文献   

8.
The objective of this study was to eval- uate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1,150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phos- phorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2,120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemen- ted with 0,250,500 ,or 1,000 P-'rU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conver- sion as a result of feeding the different sources of in- organic phosphorus. The digestibility of phosphorus was significantly lower (P =0.01 ) for chicks fed di- ets supplemented with tricalcium phosphate than for chicks fed the other two diets. However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feedconversion showed a linear improvement (P = 0.03 ) with increasing levels of phytase inclusion ( days 0 to 33 ). Phytase supplementation resulted in linear increa- ses in the digestibility of dry matter (P = 0.02 ), crude protein ( P --- 0.04 ) and energy ( P 〈 0.01 ). Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium ( P = 0.05 ) and bone breaking strength (P = 0.04 ) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets sup- plemented with dicalcium phosphate, tricalcium phos- phate or defluorinated phosphate was similar and therefore production costs could be lowered by choo- sing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formu- lated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase sup- plementation. However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be suf- ficient justification for the routine inclusion of phytase in diets fed to broilers.  相似文献   

9.
The objective of this study was to evaluate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1, 150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phosphorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2, 120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemented with 0, 250, 500, or 1,000 FTU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conversion as a result of feeding the different sources of inorganic phosphorus. The digestibility of phosphorus was significantly lower (P = 0.01) for chicks fed diets supplemented with tricalcium phosphate than for chicks fed the other two diets.  However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feed conversion showed a linear improvement (P = 0.03) with increasing levels of phytase inclusion (days 0 to 33).  Phytase supplementation resulted in linear increases in the digestibility of dry matter (P = 0.02), crude protein (P = 0.04) and energy (P < 0.01).  Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium (P = 0.05) and bone breaking strength (P = 0.04) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets supplemented with dicalcium phosphate, tricalcium phosphate or defluorinated phosphate was similar and therefore production costs could be lowered by choosing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formulated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase supplementation.  However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be sufficient justification for the routine inclusion of phytase in diets fed to broilers.  相似文献   

10.
Two experiments were conducted to determine the effect of phytase on plasma metabolites and AA and energy digestibility in swine. In Exp. 1, eight barrows (surgery BW = 52 kg) were fitted with steered ileocecal cannulas. The experiment was a Latin rectangle and the treatments were 1) corn-soybean meal diet adequate in Ca and P (0.5% Ca, 0.19% available P [aP]), 2) corn-soybean meal diet with reduced Ca and P (0.4% Ca, 0.09% aP), 3) Diet 1 with 500 phytase units/kg, or 4) Diet 2 with 500 phytase units/kg. Pigs were fed twice daily to a total daily energy intake of 2.6 x maintenance (106 kcal of ME/kg of BW(0.75)). For each ileal digesta sample, digesta samples were collected for two 24-h periods and combined for each pig. The combination of supplementing with phytase and decreasing the concentration of dietary Ca and P increased average ileal AA (P < 0.02), starch (P < 0.02), GE (P < 0.04), and DM (P < 0.03) digestibilities. In Exp. 2, a feeding challenge was conducted with barrows (eight per treatment; average BW of 53 kg). The treatments consisted of a corn-soybean meal diet or corn-soybean meal diet + 500 phytase units per kilogram of diet. In the diet with no phytase, Ca and aP were at 0.50% and 0.19%, respectively, and, in the diet with phytase, Ca and aP were each decreased by 0.12%. A catheter was surgically inserted into the anterior vena cava of each pig 6 d before the start of the feeding challenge. The barrows were penned individually, and the diets were fed for 3 d before the challenge. The pigs were held without feed for 16 h, and blood samples were obtained at -60, -30, and 0 min before the pigs were fed (2% of BW). Blood samples were then collected at 10, 20, 30, 40, 50, 60, 75, 90, 105, 120, 150, 180, 210, 240, 270, and 300 min after feeding. Glucose area under the response curve and plasma glucose, insulin, urea N, and total alpha-amino N concentrations were increased (P < 0.05) in pigs fed the diet with reduced Ca and P and the phytase addition. Area under the response curve for insulin, urea N, and total alpha-amino N; insulin:glucose; and plasma NEFA concentration, clearance, and half-life were not affected by diet. In conclusion, the combination of Ca and P reduction and phytase addition increased nutrient and energy digestibility in diets for pigs and increased plasma concentrations of glucose, insulin, urea N, and alpha-amino N.  相似文献   

11.
The objective of this study was to determine the functional location and disappearance of activity of a supplemental Escherichia coli AppA2 phytase and its impact on digesta P and Ca concentrations in the gastrointestinal tract of pigs. In Exp. 1, 18 pigs (8.3 +/- 0.2 kg of BW) were allotted to 3 groups (n = 6 each) and fed a low-P (0.4%) corn-soybean meal, basal diet (BD), BD + phytase [500 units (U)/kg of feed], or BD + inorganic P (iP, 0.1%) for 4 wk. In Exp. 2, 30 pigs (14.5 +/- 0.2 kg of BW) were allotted to 3 groups (n = 10 each) and fed BD, BD + 500 U of phytase/kg of feed, or BD + 2,000 U of phytase/kg of feed for 2 wk. Five or six pigs from each treatment group were killed at the end of both experiments to assay for digesta phytase activity and soluble P concentration in 6 segments of the digestive tract and digesta total P and Ca concentrations in stomach and colon. Compared with pigs fed BD, pigs fed BD + 500 U of phytase/kg of feed in Exp. 1 and BD + 2,000 U of phytase/kg of feed in Exp. 2 had greater (P < 0.05) phytase activities in the digesta of the stomach and upper jejunum (2 m aborally from the duodenum). No phytase activity was detected in the digesta of the lower jejunum (2.12 m cranial to the ileocecal junction) or ileum from any of the treatment groups in either trial. Concentrations of digesta-soluble P peaked in the upper jejunum of pigs fed BD in Exp. 1 and 2, but showed gradual decreases between the stomach and the upper jejunum of pigs fed BD + phytase or BD + iP. In both experiments, pigs fed only BD had greater (P < 0.05) colonic digesta phytase activity and soluble P concentrations than those fed phytase. In Exp. 2, total colonic digesta P or Ca concentrations, or both, of pigs displayed a phytase-dose-dependent reduction (P < 0.05). In conclusion, supplemental dietary AppA2 mainly functioned in the stomach and was associated with a reduced phytase activity in colonic digesta of weanling pigs.  相似文献   

12.
Fifty-four pigs, weaned at 26 days of age at an average body weight of 7.74 kg were used in a 26-day experiment to assess the zinc requirement of piglets, using diets based on maize and soybean meal, with or without microbial phytase. The nine experimental diets were the basal diet containing 33 mg of zinc/kg supplemented with 10, 25, 40, 60 or 80 mg of zinc as sulphate (ZnSO(4), 7H(2)O)/kg and the basal diet supplemented with 0, 10, 25 or 40 mg of zinc as sulphate/kg and 700 units (U) of microbial phytase (Natuphos)/kg. Pigs were fed the basal diet for a 7-day adjustment period prior to the 19-day experimental period. Microbial phytase enhanced plasma alkaline phosphatase (AP) activity, plasma zinc and bone zinc concentrations. These parameters increased linearly with zinc intake, with a similar slope with and without phytase. The response of bone zinc-to-zinc added did not plateau. Without microbial phytase, plasma AP activity and zinc concentration were maximized when dietary zinc reached 86 and 92 mg/kg respectively. With microbial phytase they were maximized when dietary zinc concentration reached 54 and 49 mg/kg respectively. Accounting for a safety margin, the recommended supply of zinc for weaned piglets up to 16 kg fed maize-soybean meal diets supplemented with zinc as sulphate is thus of 100-110 mg/kg diet. This supply may be reduced by around 35 mg if the diet is supplemented with 700 U of microbial phytase.  相似文献   

13.
1. Male broilers (n=900) were fed on wheat-sorghum-soyabean meal based diets containing 3 concentrations of phytic acid (10.4, 13.2 and 15.7 g/kg; equivalent to 2.9, 3.7 and 4.4 g/kg phytate P), 2 concentrations of non-phytate (or available) phosphorus (2.3 and 4.5 g/kg) and 3 concentrations of microbial phytase (0, 400 and 800 FTU/kg) from day 7 to 25 post-hatch. The dietary concentrations of phytic acid were manipulated by the inclusion of rice pollards. All diets contained celite (20 g/kg) as a source of acid-insoluble ash. 2. The apparent metabolisable energy (AME) concentrations of the diets were determined using a classical total collection procedure during the 3rd week of the trial. On d 25, digesta from the terminal ileum were collected and analysed for phosphorus, nitrogen and amino acids. Nutrient digestibilities were calculated using acid-insoluble ash as the indigestible marker. 2. Ileal digestibilities of nitrogen and essential amino acids were negatively influenced by increasing dietary levels of phytic acid but these negative effects were overcome by the addition of phytase. 3. Supplemental phytase increased AME, ileal digestibilities of phosphorus, nitrogen and amino acids and the retention of dry matter, phosphorus and nitrogen in broilers. There were no differences in the phytase responses between additions of 400 and 800 FTU/kg. 4. The responses in all variables, except AME, were greater in low non-phytate phosphorus diets. 5. In the case of AME, the response to added phytase was greater in adequate non-phytate phosphorus diets. Supplemental phytase increased AME values from 13.36 to 13.54 MJ/kg dry matter in low non-phytate phosphorus diets and from 12.66 to 13.38 MJ/kg dry matter in adequate non-phytate phosphorus diets.  相似文献   

14.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

15.
Inclusion of phytase in animal feedstuff is a common practice to enhance nutrients availability. However, little is known about the effects of phytase supplementation on the microbial ecology of the gastrointestinal tract. In this study, freeze-dried Mitsuokella jalaludinii phytase (MJ) was evaluated in a feeding trial with broilers fed a low available phosphorus (aP) diet. A total of 180 male broiler chicks (day-old Cobb) were assigned into three dietary treatments: Control fed with 0.4% (w/w) of available phosphorus (aP); Group T1 fed low aP [0.2% (w/w)] supplemented with MJ; and T2 fed low aP and deactivated MJ. The source of readily available P, dicalcium phosphate (DCP), was removed from low aP diet, whereby additional limestone was provided to replace the amount of Ca normally found in DCP. For each treatment, 4 replicate pens were used, where each pen consisted of 15 animals. The animals' energy intake and caecal bacterial community were monitored weekly for up to 3 weeks. The apparent metabolizable energy (AME) and apparent digestibility of dry matter (ADDM) of broilers fed with different diets were determined. In addition, the caecal microbial diversities of broilers were assessed using high-throughput next-generation sequencing targeting the V3-V4 region of bacterial 16S rRNA. The results showed that broilers fed with T1 diet have better feed conversion ratio (FCR) when compared to the Control (p < .05) and T2 diets (p < .05), demonstrating the efficiency of MJ as a supplement to low aP diet. Nevertheless, MJ did not significantly affect the microbial population and diversity in broilers' caeca, which mainly consists of members from Bacteroidetes, Firmicutes, and Proteobacteria. Regardless, significant variations in the caecal bacterial composition were observed over time, probably due to succession as the broilers aged. This is the first reported study on the effect of MJ on the microbial diversity of broiler's caeca.  相似文献   

16.
1. A 3-week feeding trial with 96 sexed d-old broiler chickens was conducted to examine the effects of microbial phytase supplementation (Natuphos 5000) at 2 dietary energy concentrations on their performance, and the utilisation of nitrogen (N), phosphorus (P), calcium (Ca) and zinc (Zn) and on tibiae ash, Ca, P and Zn concentrations. Four replicate pens (6 birds per pen) of a completely randomised design were used in a 2x2 factorial arrangement of treatments with 2 contents of metabolisable energy (11.72 and 12.55 MJ ME/kg) and 2 additions of phytase (0 and 500 U of microbial phytase/kg). 2. Phytase supplementation significantly improved the utilisation of N, P, Ca and Zn (as a percentage of intake) and increased the concentration of Ca and Zn in the tibiae (P<0.05) because of higher intakes of dry matter, N, P, Ca and Zn. Phytase also significantly reduced the amount of P in the excreta (P<0.05). 3. The AME content of the diet influenced significantly (P<0.05) the excretion of N, P, Ca and Zn and the concentration of P and Ca in tibiae with the birds fed on the high AME diet excreting more minerals and having a smaller percentage of these minerals in their tibiae. However, there were strong interactions between phytase addition and AME in tibia ash and P, with the phytase supplementation producing a higher ash content at the higher AME a and a lower P content at the lower AME.  相似文献   

17.
The objective of this study was to evaluate the effect of a combined low-protein, low-phosphorus diet supplemented with limiting amino acids and microbial phytase on performance, nutrient utilization and carcass characteristics of late-finishing barrows. 4 x 8 crossbreed barrows were continuously housed in metabolism cages from 70-110 kg BW and were fed diets, either conventional (A) or protein reduced (B) or protein and phosphorus reduced diets (C) based on barley, maize and soybean meal. Diet A (positive control) contained in air dry matter 13% and 10% CP as well as 0.49% and 0.42% P at growth phases I (70-100 kg BW) or 11 (100-110 kg BW), respectively. Diet B was low in CP (11.3%, 8.4%), diet C low in CP and low in P (CP: as B, P: 0.36%, 0.30%). To diet B the limiting amino acids lysine, methionine, threonine and trypthophan were added to meet the levels in diet A. To diet C the limiting amino acids and 800 FTU/kg Aspergillus-phytase were supplemented. At the end of the balance periods the barrows were slaughtered, the carcasses scored and loin chops, ham and Phalanx prima IV were analysed for nutrients and minerals. The CP or P reduction in diets B and C did not generally negatively affect growth, feed efficiency, absolute nitrogen retention or overall carcass performances of the pigs. With the low CP diets B and C, N excretion per unit BWG was decreased by about 23%. The addition of microbial phytase (diet C) increased apparent total tract digestibility of P by about 20%. In spite of 30% reduction of P intake (diet C), the absolute P retention related to 1 kg BW did not differ between treatments. Thus, phytase supplementation in diet C reduced P excretion per unit BWG by about 33%. Phytase raised apparent digestibility of Zn by about 20% but not Ca digestibility. Generally the carcass traits and meat characteristics were not affected by any of the diet strategies. Mineralization of the Phalanx prima IV was also similar in all treatment groups. However, phytase supplementation led to significantly increased zinc concentration in bones (25%). In contrast, Fe incorporation into the Phalanx prima IV was not affected. In general, the feeding regimen introduced in this experiment offers substantial benefits in maintaining a sustainable environmental-friendly pork production even at the stage of late-finishing barrows.  相似文献   

18.
A feeding trial was designed to assess the effect of super dosing of phytase in corn–soya‐based diets of broiler chicken. One hundred and sixty‐eight day‐old broilers were selected and randomly allocated to four dietary treatment groups, with 6 replicates having 7 chicks per treatment group. Two‐phased diets were used. The starter and finisher diet was fed from 0 to 3 weeks and 4 to 5 weeks of age respectively. The dietary treatments were consisted of normal phosphorus (NP) group without any phytase enzyme (4.5 g/kg available/non‐phytin phosphorus (P) during starter and 4.0 g/kg during finisher phase), three low‐phosphorus (LP) groups (3.2 g/kg available/non‐phytin P during starter and 2.8 g/kg during finisher phase) supplemented with phytase at 500, 2500, 5000 FTU/kg diet, respectively, to full fill their phosphorus requirements. The results showed that super doses of phytase (at 2500 FTU and 5000 FTU/kg) on low‐phosphorus diet improved feed intake, body weight gain, ileal digestibility (serine, aspartic acid, calcium, phosphorus), blood P levels and bone minerals such as calcium (Ca), P, magnesium (Mg) and zinc (Zn) content. It could be concluded that super doses of phytase in low‐phosphorus diet were beneficial than the normal standard dose (at 500 FTU/kg) of phytase in diet of broiler chicken.  相似文献   

19.
1. The effects of microbial phytase on the performance and nutrient utilisation in broilers fed on phosphorus-adequate starter diets were examined in this study. The effect of phytase on the apparent ileal digestibility of fatty acids was of particular interest. Two grain types (maize and wheat) and two inclusion concentrations of a phytase enzyme from Escherichia coli expressed in Schizosaccaromyces pombe (0 or 500 phytase units (FTU)/kg of feed) were evaluated in a 2 × 2 factorial arrangement of treatments.

2. Supplemental phytase improved the weight gain and feed per gain, but had no effect on the feed intake of young broilers receiving phosphorus-adequate diets.

3. Phytase supplementation improved the apparent ileal digestibility of nitrogen and phosphorus in both diet types. Phytase supplementation tended to improve the apparent ileal digestible energy in wheat-based diets, but had no effect on the apparent metabolisable energy in both diet types.

4. Supplementation of phytase increased the apparent ileal digestibility of fat, with similar effects for the different fatty acids measured. Increments on ileal fat digestibility due to phytase were not dependent on the type of diet.

5. Dietary supplementation of microbial phytase enhanced not only the digestibility of phosphorus, but also that of nitrogen and fat, exhibiting increased ileal digestibility for all fatty acids in P-adequate maize- and wheat-based diets.  相似文献   


20.
试验选取1日龄AA肉鸡600只,随机分为6个处理,每个处理5个重复。试验基础日粮为玉米-豆粕型,1~3周龄和4~6周龄正、负对照组调整有效磷水平分别为0.43%、0.23%和0.34%、0.14%,负对照组基础上添加不同水平的植酸酶与负对照组一起形成0、250、500、750、1 000 U/kg 5个梯度。结果表明:日增重与植酸酶水平之间存在显著二次曲线相关(P<0.05);随着植酸酶添加水平的增加,胫骨强度有呈二次曲线增加的趋势(P<0.1)。进行3 d代谢试验,植酸酶不仅与粪中磷含量存在显著二次曲线相关(P<0.05),而且与粪中钙含量也有二次性响应的趋势(P<0.1)。从单个处理来看,在低磷日粮中添加500 U/kg植酸酶提高日增重和改善胫骨强度最为显著。综合各项指标二次曲线统计分析的结果,本试验日粮基础上添加750 U/kg植酸酶最为科学合理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号