首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
有限供水条件下,随着灌溉供水量和降水量的变化,作物优化的灌水时间是变化的,作物生长期优化的土壤含水率调控下限值也应该是变化的,为此,基于典型年的优化灌溉制度提出了动态灌水下限的概念及其理论分析方法。利用天津农学院灌溉试验基地2008、2009、2011和2012年4个年度试验资料对冬小麦复播玉米水模型参数及其整体合理性进行了率定和检验,由此分析提出了天津市5个典型年不同灌溉供水条件下冬小麦复播玉米的优化灌溉制度,得到了45组灌水前土壤含水率(0~60 cm平均值)和对应的灌水时间及可供水量(包括灌溉供水量和降雨量)数据,交替使用规划求解与多元回归分析的方法确定了冬小麦复播玉米动态灌水下限预测模型。利用该动态灌水下限进行灌溉预报,可明显地增加产量和效益,冬小麦复播玉米生长期灌溉4次水和3次水较现状经验灌水5年(2008-2012年)平均增加产量,冬小麦分别为8.3%和18.1%,复播玉米分别为5.8%和1.3%,增加的效益分别为10.0%和14.1%。该方法避免了单纯依靠田间试验确定灌水下限的不足,为优化灌溉制度的实施和灌溉用水计划的动态修正提供了重要的方法。  相似文献   

2.
华北典型区冬小麦区域耗水模拟与灌溉制度优化   总被引:3,自引:0,他引:3  
以经校验Aquacrop模型模拟了不同土壤条件下冬小麦水分与产量响应关系,结合北京大兴区土壤分布及其冬小麦实际种植情况,对模型模拟结果进行区域尺度拓展,以此为基础分析了研究区不同灌溉制度下冬小麦耗水量、产量及水分生产率的变化规律,并推荐了与华北地区水资源实际情况相适宜的冬小麦亏缺灌溉制度。结果表明:应用Aquacrop模型能较好模拟冬小麦生育期内土壤墒情和冠层覆盖度的动态变化过程及其生物量与产量情况,可利用经校验后的模型进行冬小麦水分与产量响应关系研究。灌溉定额在300 mm范围内,随着灌溉量增加,耗水量增大;在灌水次数相同条件下,灌溉日期不同,因蒸腾量变化导致耗水量差异显著。在相同处理下总体上降水多年份产量较高,而不同处理之间随着灌溉量增加产量增大;在灌水次数相同情况下,灌溉关键生育时段选择对冬小麦产量形成及水分生产率提高至关重要。以冬小麦增产提效为原则,在灌1水情况下重点保障拔节-抽穗阶段的需水;灌2水情况下重点保障返青-拔节、抽穗-乳熟阶段需水;灌3水情况下重点保障返青-拔节、拔节-抽穗、抽穗-乳熟阶段需水。针对华北水资源严重短缺实际,建议北京大兴区冬小麦采用灌2水的亏缺灌溉制度,较灌4水情况下的灌溉量与耗水量分别减少140、65 mm,能确保75%产量。可见,在与华北类似的资源性缺水区域,选择适宜亏缺灌溉制度,能大幅降低区域灌溉量与耗水量,在稳定区域冬小麦产量及涵养地下水源方面具有重要的现实意义。  相似文献   

3.
冬小麦节水高效优化灌溉制度模型应用研究   总被引:4,自引:1,他引:4  
根据霍泉灌区田间试验资料,考虑水分亏缺的后效性,以冠层叶面积指数修正后的作物-水模型作为目标函数,建立二雏动态规划模型,计算冬小麦节水高效优化灌溉制度。结果显示,该模型充分反映了灌水时间、灌水定额和灌溉水量产生的冬小麦的产量效应,所建模型和参数确定较合理,在实践中更有实用性。  相似文献   

4.
非充分灌溉对冬小麦产量及水分利用效率影响研究   总被引:1,自引:0,他引:1  
通过田间试验,研究冬小麦在不同生育期缺水以及不同程度的缺水对其生长发育及产量的影响,为半干旱区冬小麦建立优化灌溉制度提供理论依据。通过试验观测:枯水年份,冬小麦各生育期耗水比例相差较大,0~80cm土层的耗水量占总耗水量的绝大部分,总耗水量随灌水量的增加而增大,非充分灌溉对冬小麦叶面积、产量和水分利用率均会产生显著影响,灌水可显著提高植株叶面积,不灌水会显著降低作物产量与耗水量;灌1水的灌溉水利用效率明显高于灌2水和灌3水的灌溉水利用效率,其中以T2处理的灌溉水利用效率最高,边际效益最大;灌冬浇水与拔节水可获得较理想的产量和水分利用效率,在半干旱区水资源不足时,可作为冬小麦最佳灌水模式。  相似文献   

5.
灌水延续时间是确定灌水率进而影响渠道断面大小等工程规模的重要依据。利用天津农学院灌溉试验基地2008年和2009年两个年度冬小麦试验资料率定和检验作物水模型,以作物水模型为依据,以灌溉效益最大为目标,建立了灌溉制度优化模型;采用模式法和外推法,分析确定了考虑灌水延续时间(10、15及20d)与不考虑灌水延续时间两种情况下的最优灌水时间和相应的作物产量。结果表明:不考虑灌水延续时间时,小麦的产量和效益随着灌水次数的增加而增加,并随着灌水次数的增加,相邻两次最优灌水时间间隔明显减小;考虑灌水延续时间确定的优化灌水时间,较常规不考虑灌水延续时间确定的最优灌水时间有明显的提前或延后现象;在有限供水条件下,考虑灌水延续时间进行灌溉制度优化可增加灌区总产量,因此,确定优化灌溉制度时应该考虑灌水延续时间。  相似文献   

6.
根据田间试验资料,对冬小麦畦灌与喷灌条件下的耗水量与灌溉制度进行了研究分析,并取得初步成果:冬小麦生育期内深层土壤水的利用量随着灌溉水量的增加而减少;为了节省灌溉用水量,充分利用土壤水,灌水次数不宜过多;在灌水量相近的情况下,喷灌与畦灌相比可获得更高的产量,其水分生产率较高;喷灌可以实现小水勤灌,但在冬小麦生长期灌水次数不宜过多。  相似文献   

7.
泾惠渠灌区冬小麦夏玉米连作需水量及灌水模式研究   总被引:1,自引:1,他引:0  
为了寻求冬小麦-夏玉米连作下的节水高效灌溉制度,采用大田小区试验,在连作种植模式下,统筹分析了冬小麦和夏玉米的需水量及生育期内降雨量,并与当地传统灌溉制度进行了产量对比。结果表明,连作种植模式下,泾惠渠灌区冬小麦、夏玉米全生育期需水量分别为410 mm和400 mm。在年降雨量为490 mm时,连作种植1 a内的经济灌溉定额为305 mm,相比于传统灌溉能节水8.9%。连作条件下作物总产量为12 010 kg/hm~2,产量相对于传统单作种植增加了6.2%,达到了增产目的。在冬小麦抽穗期和夏玉米播种期减少灌水,可在保证产量的基础上有效提高水分利用效率,是更为优化的连作灌水模式。  相似文献   

8.
为了提高农业生产用水效率,降低农业灌溉水资源的浪费,2013-2016年,在陕西省泾惠渠灌区进行了连续3年的冬小麦夏玉米连作非充分灌溉制度试验,研究其灌溉制度优化。试验设置8个非充分灌水处理,每个处理重复2次。通过分析3年冬小麦夏玉米生育期的降雨量、灌水量,及其在产量、水分利用效率、益损比方面的影响,进而确定不同降雨频率年型下的冬小麦、夏玉米合理灌溉制度。试验结果表明:冬小麦、夏玉米生长发育阶段不同灌水期和灌水量对其产量影响显著。产量和水分利用效率两者相协调的最优灌溉制度是T4(冬灌+返青灌)与H4(压茬灌+抽雄灌),全年四次灌水,灌溉定额为4800 m~3/hm~2。  相似文献   

9.
泾惠渠灌区冬小麦合理灌溉制度研究   总被引:2,自引:0,他引:2  
确定合理的冬小麦灌溉制度,可以达到增产节水的效果。在泾惠渠灌区进行了3 a的大田冬小麦灌溉制度试验,试验设置8个灌水处理,每个处理重复2次。基于试验数据分析不同生育期灌水处理,对冬小麦的产量及水分利用效率的影响,确定了不同降雨年型冬小麦的适宜灌溉制度。研究结果表明:在一定灌溉定额内,灌水期及灌水量对冬小麦的产量影响显著,生育前期出现旱象的情况下,冬灌是冬小麦丰产的基本保证;拔节期和抽穗期间,土壤水分对冬小麦生长影响较大,是其生长发育需水关键期。2013-2014年降雨年型(75%枯水年),最优灌溉制度为压茬灌+冬灌+返青灌全生育期灌水3次组合,灌溉定额2 700 m~3/hm~2;2014-2015年与2015-2016年降雨年型相似,属50%中水年,最优灌溉制度为冬灌+拔节灌+抽穗灌浆灌全生育期灌水3次组合,灌溉定额3 412.5 m~3/hm~2。研究成果为泾惠渠灌区农田合理灌溉,农业节水增产提供一定指导依据。  相似文献   

10.
不同灌水处理对冬小麦生长及水分利用效率的影响   总被引:52,自引:7,他引:52  
1998~ 1 999年在山东省桓台县进行了冬小麦节水灌溉试验。通过对冬小麦生长动态观测表明 :减少灌水量可以促进冬小麦发育。起身拔节水对冬小麦株高有显著影响。叶面积指数、冠层干物重、根系总量随着灌水量的增加而增加。各处理冬小麦根系总量的 80 %以上分布在 0~ 2 0 cm土层内。随着灌水次数的增加 ,灌水量的增多 ,灌溉水的利用效率逐渐减小。全生育期浇越冬水、起身拔节水、开花水的处理经济产量最高 ,达到 771 6.7kg/hm2 ,水分利用效率最大 ,达到 1 5 .92 kg/(hm2· mm) ,单位水资源量的边际效率也最大 ,达43 .1 2 kg/mm,单次灌水的最大平均产量为 85 1 .65 kg/hm2。  相似文献   

11.
Irrigation needs to be scheduled properly for winter wheat, the main food crop in North China where the water resources are limited. We optimized the irrigation timing of crops under limited water supply by integrating a soil water balance model, dated water production function with cumulative function of water sensitivity index, and a nonlinear search method. The optimization produced the optimal irrigation date series with the predetermined irrigation quota for each application, which aims to obtain higher crop yield with limited irrigation water and be convenient for irrigation management. This simulation–optimization model was used to investigate the irrigation scheduling of winter wheat in Xiaohe irrigation Area in North China. Results show that optimal irrigation date series, corresponding relative yield and relative evapotranspiration are all closely related to the irrigation quota and initial soil water conditions. For rich and medium initial soil water conditions in medium precipitation year, it takes four times of irrigation (60 mm each time) after greening in order to obtain higher crop yield. But it increases to five times for poor initial condition. With limited irrigation water, irrigation should generally be applied in the preferential sequence of early May or late April (in the jointing stage), then mid and late May (in the heading stage), and finally March (in the greening stage). Irrigation should be applied earlier with lower initial soil water storage. Higher irrigation quota increases the crop yield but tends to decrease the marginal value, especially when irrigation quota exceeds 180 mm. The study also indicates that the optimized relative yield is generally higher than that obtained in field experiment. Based on the optimization, we proposed to use the quadratic polynomial function to describe the frontier water production function, which shows the mathematical relationship between optimized relative yield and relative evapotranspiration.  相似文献   

12.
鲁西南地区冬小麦非充分灌溉模式   总被引:2,自引:0,他引:2  
经过1995~1998年的田间试验,在摸清了鲁西南地区冬小麦需水特性的基础上,结合当地降水及其分布特点,提出了冬小麦非充分灌溉的灌水指标及优化运行模式,该灌溉模式与充分灌溉相比,在单产接近的条件下,减少了灌水次数,节省了灌溉水量,提高了灌溉水的生产效率,使有限的水资源得到充分利用。  相似文献   

13.
基于作物生长模型的冬小麦灌溉方案研究   总被引:1,自引:0,他引:1  
利用作物生长模拟模型(PS123),以黄淮海平原曲周砂壤土种植的冬小麦为例,对2 280个不同淡水灌溉方案和2 055个微咸水灌溉方案进行了模拟研究,分析了不同灌溉方案对作物生产力、水分利用效率的影响。结果表明,曲周地区多年冬小麦平均生产潜力为11.27 t/hm2,冬小麦最高生产潜力的最小需水量为240 mm,与目前节水灌溉试验相吻合;通过灌溉方案模拟,提出了在冬小麦生育期淡水灌溉1到4次,获得高产的最佳灌溉方案;在灌溉4次的冬小麦生产体系中,建议冬前用淡水灌溉,返青后可以考虑1~2次微咸水灌。  相似文献   

14.
水分处理对冬小麦生育期耗水分配及产量影响   总被引:2,自引:1,他引:1  
【目的】探索冬小麦产量及水分利用效率对灌溉水在生育期运筹的响应过程。【方法】通过人工控水试验开展了6个生长季(2012—2018年)的测坑冬小麦灌溉试验,试验设置不同灌溉水时间和不同次灌水定额,3个处理分别为拔节90 mm(I90)、拔节45 mm+抽穗45 mm(I45*2)、拔节30 mm+抽穗30 mm+灌浆30 mm(I30*3),总灌溉额均为90 mm,重点研究了灌溉水在生育期分配对冬小麦产量和水分利用效率(WUE)的影响。【结果】6个生长季的试验数据统计分析表明,I90、I45*2和I30*3处理的平均产量分别为6 878.3、7 249.1和7 568.6 kg/hm^2;与I90处理相比,I45*2和I30*3处理的产量分别提高了4.4%和10.0%;在灌溉定额一定条件下,不同灌溉处理对生育期总耗水没有显著影响,但I45*2处理比I90处理生殖生长阶段的耗水增加了23.7%,且生育期水分利用效率提高了14.8%。【结论】有限供水条件下,小定额多次灌溉可以有效改善生育后期麦田水分状况,有利于光合产物向籽粒的转化,进一步提高冬小麦千粒质量和收获指数,最终提高了冬小麦经济产量和水分利用效率。  相似文献   

15.
In the North China Plain (NCP), while irrigation using groundwater has maintained a high-level crop productivity of the wheat-maize double cropping systems, it has resulted in rapid depletion of groundwater table. For more efficient and sustainable utilization of the limited water resources, improved understanding of how crop productivity and water balance components respond to climate variations and irrigation is essential. This paper investigates such responses using a modelling approach. The farming systems model APSIM (Agricultural Production Systems Simulator) was first calibrated and validated using 3 years of experimental data. The validated model was then applied to simulate crop yield and field water balance of the wheat-maize rotation in the NCP. Simulated dryland crop yield ranged from 0 to 4.5 t ha−1 for wheat and 0 to 5.0 t ha−1 for maize. Increasing irrigation amount led to increased crop yield, but irrigation required to obtain maximum water productivity (WP) was much less than that required to obtain maximum crop yield. To meet crop water demand, a wide range of irrigation water supply would be needed due to the inter-annual climate variations. The range was simulated to be 140-420 mm for wheat, and 0-170 mm for maize. Such levels of irrigation applications could potentially lead to about 1.5 m year−1 decline in groundwater table when other sources of groundwater recharge were not considered. To achieve maximum WP, one, two and three irrigations (i.e., 70, 150 and 200 mm season−1) were recommended for wheat in wet, medium and dry seasons, respectively. For maize, one irrigation and two irrigations (i.e., 60 and 110 mm season−1) were recommended in medium and dry seasons, while no irrigation was needed in wet season.  相似文献   

16.
Continuous cropping of winter wheat and summer maize is the main cropping pattern in North China Plain lying in a seasonal frost area. Irrigation scheduling of one crop will influence soil water regime and irrigation scheduling of the subsequent crop. Therefore, irrigation scheduling of winter wheat and maize should be studied as a whole. Considering the meteorological and crop characteristics of the area lying in a seasonal frost area, a cropping year is divided into crop growing period and frost period. Model of simultaneous moisture and heat transfer (SMHT) for the frost period and model of soil water transfer (SWT) for the crop growing period were developed, and used jointly for the simulation of soil water dynamics and irrigation scheduling for a whole cropping year. The model was calibrated and validated with field experiment of winter wheat and maize in Beijing, China. Then the model was applied to the simulation of water dynamics and irrigation scheduling with different precipitation and irrigation treatments. From the simulation results, precipitation can meet the crop water requirement of maize to a great extent, and irrigation at the seeding stage may be necessary. Precipitation and irrigation had no significant influence on evaporation and transpiration of maize. On the other hand, irrigation scheduling of winter wheat mainly depends on irrigation standard. Irrigation at the seeding stage and before soil freezing is usually necessary. For high irrigation standard, four times of irrigation are required after greening. While for medium irrigation, only once (rainy year) or twice (medium and dry years) of irrigation is required after greening. Transpiration of winter wheat is very close for high and medium irrigation, but it decreases significantly for low irrigation and will result in a reduction of crop yield. Irrigation with proper time and amount is necessary for winter wheat. Considering irrigation quota and crop transpiration comprehensively, medium irrigation is recommended for the irrigation of winter wheat in the studying area, which can reduce the irrigation quota of over 150 mm with little water stress for crop growth.  相似文献   

17.
基于多年降雨资料的作物灌溉制度多目标优化   总被引:2,自引:0,他引:2  
在非充分灌溉制度条件下,基于农田水量平衡模拟模型和作物产量计算模型并考虑随机降雨的影响,以灌溉日期和灌溉水量为决策变量,将多年作物相对产量均值最大、多年作物相对产量方差最小以及作物全生育期的总灌溉水量最小作为优化目标,建立了能够同时对灌溉日期和灌溉水量进行优化的多目标优化模型.以玉米的非充分灌溉制度优化为例用上述模型及算法进行了计算分析,并与典型年法得到的优化结果进行了对比,结果表明:基于多年降雨资料的优化灌溉制度具有较强的适应性和鲁棒性,可以避免由于灌溉日期安排不合理而导致的减产或绝收问题.  相似文献   

18.
Limited precipitation restricts crop yield in the North China Plain, where high level of production depends largely on irrigation. Establishing the optimal irrigation scheduling according to the crop water requirement (CWR) and precipitation is the key factor to achieve rational water use. Precipitation data collected for about 40 years were employed to analyze the long-term trend, and weather data from 1984 to 2005 were used to estimate the CWR and irrigation water requirements (IWR). Field experiments were performed at the Luancheng Station from 1997 to 2005 to calculate the soil water consumption and water use efficiency (WUE). The results showed the CWR for winter wheat and summer maize were similar and about 430 mm, while the IWR ranged from 247 to 370 mm and 0 to 336 mm at the 25% and 75% precipitation exceedance probabilities for winter wheat and summer maize, respectively. The irrigation applied varied in the different rainfall years and the optimal irrigation amount was about 186, 161 and 99 mm for winter wheat and 134, 88 and 0 mm for summer maize in the dry, normal and wet seasons, respectively. However, as precipitation reduces over time especially during the maize growing periods, development of water-saving management practices for sustainable agriculture into the future is imperative.  相似文献   

19.
The North China Plain (NCP) is one of the main productive regions for winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) in China. However, water-saving irrigation technologies (WSITs), such as sprinkler irrigation technology and improved surface irrigation technology, and water management practices, such as irrigation scheduling have been adopted to improve field-level water use efficiency especially in winter wheat growing season, due to the water scarcity and continuous increase of water in industry and domestic life in the NCP. As one of the WSITs, sprinkler irrigation has been increasingly used in the NCP during the past 20 years. In this paper, a three-year field experiment was conducted to investigate the responses of volumetric soil water content (SWC), winter wheat yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) to sprinkler irrigation regimes based on the evaporation from an uncovered, 20-cm diameter pan located 0-5 cm above the crop canopy in order to develop an appropriate sprinkler irrigation scheduling for winter wheat in the NCP. Results indicated that the temporal variations in SWC for irrigation treatments in the 0-60-cm soil layer were considerably larger than what occurred at deeper depths, whereas temporal variations in SWC for non-irrigation treatments were large throughout the 0-120-cm soil layer. Crop leaf area index, dry biomass, 1000-grains weight and yield were negatively affected by water stress for those treatments with irrigation depth less than 0.50E, where E is the net evaporation (which includes rainfall) from the 20-cm diameter pan. While irrigation with a depth over 1.0E also had negative effect on 1000-grains weight and yield. The seasonal ET of winter wheat was in a range of 206-499 mm during the three years experiments. Relatively high yield, WUE and IWUE were found for the irrigation depth of 0.63E. Therefore, for winter wheat in the NCP the recommended amount of irrigation to apply for each event is the total 0.63E that occurred after the previous irrigation provided total E is in a range of 30-40 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号