首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
基于随机森林算法的自然光照条件下绿色苹果识别   总被引:6,自引:0,他引:6  
果实识别是自动化采摘系统中的重要环节,能否快速、准确地识别出果实直接影响采摘机器人的实时性和可靠性。为了实现自然光照条件下绿色苹果的识别,本文采集了果实生长期苹果树图像,并利用随机森林算法实现了绿色苹果果实的分类和识别。针对果树背景颜色和纹理特征的复杂性,尤其是绿色果实和叶片在很多特征上的相似性,论文基于RGB颜色空间进行了Otsu阈值分割和滤波处理,去除枝干等背景,得到仅剩果实和叶片的图像。然后,分别提取叶片和苹果的灰度及纹理特征构成训练集合,建立了绿色苹果随机森林识别模型,并使用像素模板验证数据集,对模型进行预测试验,正确率为90%。最后,选择10幅自然光照条件下不同的果树图像作为检测对象,使用该模型进行果实识别并使用霍夫变换绘制果实轮廓,平均识别正确率为88%。结果表明,该方法具有较高的鲁棒性、稳定性、准确性,能够用于自然光照条件下绿色果实的快速识别。  相似文献   

2.
黄瓜蚜虫的图像识别与计数方法   总被引:4,自引:0,他引:4  
通过分析蚜虫区域、绿色背景和蚜叶区的G分量特点,建立G分量阈值确定原则,并采用G分量阈值将蚜虫区域和非蚜虫区域分离开。针对蚜虫的粘连重叠问题,利用扩展极小值阈值变换的方法对输入图像进行标记,对标记后的图像进行距离变换和分水岭分割,以去除粘连。试验结果表明:算法能有效地分割粘连重叠的蚜虫,过分割率与欠分割率之和为3.14%。计数准确率达到96.2%,高于直接计数的  相似文献   

3.
为了解决近色背景果实识别困难问题,针对果实近球形的形态特性,提出了一种利用深度图像从果实形态角度进行果实识别定位的算法。该算法使用深度摄像头获取果树的深度图像,通过深度图像计算出各像素点的梯度向量,将梯度向量看作运动矢量场,并计算出矢量场的散度,根据散度最大原则,从矢量场中搜索出辐散中心点;然后利用果实和叶片等深图像的差异从辐散中心点中筛选出果实中心点,以果实中心点为起点采用八方向搜索方法搜索出果实边界点,将果实边界点依次连接后形成的封闭区域内的果实图像导入点云;最后根据果实图像部分点云利用RANSAC算法求出目标果实的拟合球形,进而得出果实的尺寸以及三维空间位置。该算法无需传统算法需要利用的颜色特征,而仅利用了深度图像中的深度信息进行果实识别定位,能够克服传统算法受色彩、光照等因素影响的弊端,并且由于该算法完全没有利用到彩色图像信息,因此不仅可以实现绿色果实的识别定位,还可以实现采摘机器人在夜间环境下正常工作,为复杂环境下的果实识别定位算法研究提供了技术支撑。  相似文献   

4.
基于K均值聚类的绿色苹果识别技   总被引:11,自引:1,他引:10  
司永胜  刘刚  高瑞 《农业机械学报》2009,40(Z1):100-104
针对颜色和背景相近的绿色苹果,提出了一种基于K-均值聚类的苹果图像识别算法.该算法以8×8像素的正方形区域为分割单位.选择颜色差R-B作为颜色特征,选择灰度均值m,标准偏差σ和熵e作为纹理特征,形成特征向量空间.采用间隙统计法确定苹果图像的最佳聚类数. 将特征向量空间和最佳聚类数作为输入,运用本文算法对苹果图像进行聚类和分割.对200幅图像识别实验结果表明,在顺光和逆光情况下,算法均能实现果实与背景的有效分割,果实识别的正确率高于81%.  相似文献   

5.
为实现对SAR遥感图像中农田种植区域的精确识别与检测,利用特征提取、多种分类器、图像融合、相关判决等方法,实现对SAR遥感图像中农田种植区域的精确识别与检测。通过分析合成雷达孔径背景,介绍合成孔径雷达图像农田种植区域的特征提取及识别检测方法,结合PCA融合方式证明SAR图像能有效实现对农田区域的精确识别与检测。最后提出一种基于多分类器集成学习的SAR图像农田区域识别与检测方法,试验验证了该方法的有效性。  相似文献   

6.
为提高在近色背景下果实识别的准确性,减少非结构化因素对识别的影响,提出了基于近红外像机和可见光像机组合捕获多源图像进行融合的方法。首先对已配准的多源图像分别进行非下采样轮廓波变换(NSCT),得到高频系数与低频系数;对高频系数采用压缩融合,并通过CoSaMp恢复融合的高频系数;对低频系数进行小波分解,对分解的高频子带采用绝对值最大法进行融合;低频子带则采用基于几何距离和能量距离加权的融合方法,再通过小波逆变换得到融合的低频系数;最后对融合后的高、低频系数进行NSCT重构得到融合图像。试验结果表明,所设计方法有效地保留了图像的边缘轮廓,突出了图像的细节信息,在客观定量评价指标上均优于其他传统方法,其中与小波变换-非下采样轮廓波变换(DWT-NSCT)方法相比,最大提升达到15.59%。  相似文献   

7.
基于机器视觉的苹果识别和形状特征提取   总被引:15,自引:1,他引:14  
提出了利用色差R-G和色差比(R-G)/(G-B)相结合的苹果识别方法.在顺光、逆光等不同情况下对拍摄的苹果图像进行了识别,并对识别后的图像进行消除噪声、区域填充等预处理,获得苹果的轮廓图像.针对轮廓图像,采用遗传算法进行形状特征提取.采取多次运行遗传算法,并依次转换目标轮廓点为背景点的方法,处理果实图像邻接、重叠问题.实验结果表明:苹果识别方法在一定程度上消除了阴影、逆光、土壤等影响,识别率达97%.基于遗传算法的形状特征提取方法,可对邻接、重叠图像进行有效分割,快速、准确地实现苹果图像圆心坐标和半径的提取.  相似文献   

8.
提出了利用色差R—G和色差比(R—G)/(G—B)相结合的苹果识别方法。在顺光、逆光等不同情况下对拍摄的苹果图像进行了识别,并对识别后的图像进行消除噪声、区域填充等预处理,获得苹果的轮廓图像。针对轮廓图像,采用遗传算法进行形状特征提取。采取多次运行遗传算法,并依次转换目标轮廓点为背景点的方法,处理果实图像邻接、重叠问题。实验结果表明:苹果识别方法在一定程度上消除了阴影、逆光、土壤等影响,识别率达97%。基于遗传算法的形状特征提取方法,可对邻接、重叠图像进行有效分割,快速、准确地实现苹果图像圆心坐标和半径的提取。  相似文献   

9.
苹果采摘机器人果实识别与定位方法   总被引:17,自引:3,他引:14  
提出了利用归一化的红绿色差(R-G)/(R+G)分割苹果的方法.对不同光照情况下拍摄的苹果图像进行了识别,并对识别后的图像进行预处理后,获得苹果的轮廓图像.对轮廓图像采用随机圆环法进行果实圆心、半径提取.通过建立基于面积特征与极线几何相结合的匹配策略实现双目视觉下的果实定位,对于搜索区域内面积相似的果实,通过计算垂直投影的互相关函数最大值的方法,得到排序基准线,然后根据顺序一致性原则进行匹配.实验结果表明:识别算法可以较好地消除阴影、裸露土壤等影响,识别率达到92%.采用随机圆环法,可以准确地提取果实的圆心、半径.在60~150 cm的距离范围内,测量误差小于2 cm.  相似文献   

10.
提出了利用归一化的红绿色差(R-G)/(R+G)分割苹果的方法。对不同光照情况下拍摄的苹果图像进行了识别,并对识别后的图像进行预处理后,获得苹果的轮廓图像。对轮廓图像采用随机圆环法进行果实圆心、半径提取。通过建立基于面积特征与极线几何相结合的匹配策略实现双目视觉下的果实定位,对于搜索区域内面积相似的果实,通过计算垂直投影的互相关函数最大值的方法,得到排序基准线,然后根据顺序一致性原则进行匹配。实验结果表明:识别算法可以较好地消除阴影、裸露土壤等影响,识别率达到92%。采用随机圆环法,可以准确地提取果实的圆心、半径。在60~150cm的距离范围内,测量误差小于  相似文献   

11.
苹果采摘机器人夜间识别方法   总被引:5,自引:0,他引:5  
提出了一种适用于苹果采摘机器人夜间识别的方法。在图像采集阶段,通过对比不同光源的照明效果,选用白炽灯作为照明光源并采用2盏白炽灯从不同角度照明的方式削弱图像中的阴影。在图像分割阶段,对比白天图像的分割方法,提出改进R-G色差分割法。此外针对夜间图像中的高亮反光区,采用二次分割的方法提取出水果表面的高亮反光区以此对分割后的图像进行修补,以得到完整的分割结果。经统计不考虑果实的遮挡和粘连,夜间苹果正确识别率达到83.7%。  相似文献   

12.
对苦痘病进行持续、准确、量化的无损检测,以及育种专家对新品种苹果的抗苦痘病表型研究,都需要苦痘病准确识别技术的支持。针对磕碰伤对苦痘病识别产生干扰,降低了识别准确率问题,基于苹果CT图像,提出了一种苹果苦痘病和磕碰伤识别方法。首先,采用最大类间方差法、区域标记、中值滤波等方法,对337帧苹果CT图像进行图像分割和伤病区域定位;其次,对伤病区域进行特征提取,提取其形状特征、纹理特征和位置特征共18种特征信息;然后,利用多元逐步回归和类距离可分离性判据2种方法分别选取特征信息,将2种方法选出的相同特征作为本文的选用特征信息;最后,分别使用遗传算法优化的支持向量机和默认参数的支持向量机,对苹果苦痘病和磕碰伤进行识别。识别结果表明,经过遗传算法优化的支持向量机的总体识别准确率高于93%,默认参数的支持向量机算法的总体识别准确率高于84%。遗传算法优化后的支持向量机的识别准确率明显优于默认参数的支持向量机的识别准确率。  相似文献   

13.
基于最小外接圆法的苹果直径检测技术   总被引:1,自引:0,他引:1  
水果大小是水果机器视觉自动分选的重要依据。以苹果为研究对象,提出了一种利用最小外接圆检测苹果直径的方法。苹果样本为12枚,共计144幅苹果图像,经过图像处理后,获取每个苹果的12个近似圆度,选取最小近似圆度对应的外接圆像素直径作为该苹果的像素直径。通过对8组苹果像素直径和近似圆度与实测直径进行二元拟合,得到拟合方程,其相关系数为0.988。利用此方法估测苹果直径的绝对误差在±1.8 mm以内,同时能够确定果梗-花萼轴线与摄像机的光轴接近重合的那幅图像。该方法为利用图像中的水果姿态进行检测直径提供了新的思路。  相似文献   

14.
基于机器视觉和信息融合的邻接苹果分割算   总被引:4,自引:3,他引:1  
提出了利用亮度和颜色的信息融合来分割邻接苹果的方法.首先使用Lab模型对苹果图像进行分割.然后计算分割后每个区域的面积,并判断其是否为邻接苹果区域.接着在邻接区域内计算亮度信息,利用亮度产生的亮斑对邻接苹果进行分割.这样,在邻接区域以外的部分,亮度信息产生的噪声被Lab模型的信息屏蔽,而邻接区域以内的部分,具有惟一性的亮度信息可以较好分割经Lab模型处理后的邻接苹果.实验表明,此算法对邻接苹果识别非常有效,识别率大于92.89%,而且算法简单快速,平均每幅图片识别时间小于0.5 s.  相似文献   

15.
针对采摘机器人对重叠果实无法识别采摘问题,提出了一种基于极值的重叠苹果识别定位方法。首先,利用色差法对图像进行分割;然后采用OTSU分割和孔洞填充提取轮廓;最后利用一种快速计算圆内的点到边缘最小距离的算法找到局部极大值,从而确定圆心和半径。实验表明:这种方法对提取的苹果轮廓较完整的情况定位效果较好,且实时性高,具有较强的实用性。  相似文献   

16.
针对苹果园害虫识别过程中的粘连问题,提出了一种基于形色筛选的害虫粘连图像分割方法。首先,采集苹果园害虫图像,聚焦于羽化害虫。害虫在羽化过程中已完成大部分生长发育,其外部形态、颜色、纹理更为稳定显著。因此,基于不同种类害虫的形色特征信息分析,来获取害虫HSV分割阈值和模板轮廓。其次,利用形状因子判定分割粘连区域,通过颜色分割法和轮廓定位分割法来实现非种间与种间粘连害虫的分割。最后,对采集的苹果园害虫图像进行了试验分析,采用基于形色筛选的分割法对单个害虫进行分割,结果表明,本文方法的平均分割率、平均分割错误率和平均分割有效率分别为101%、3.14%和96.86%,分割效果优于传统图像分割方法。此外,通过预定义的颜色阈值,本文方法实现了棉铃虫、桃蛀螟与玉米螟的精准分类,平均分类准确率分别为97.77%、96.75%与96.83%。同时,以Mask R-CNN模型作为识别模型,平均识别精度作为评价指标,分别对已用本文方法和未用本文方法分割的害虫图像进行识别试验。结果表明,已用本文方法分割的棉铃虫、桃蛀螟和玉米螟害虫图像平均识别精度分别为96.55%、94.80%与95.51%,平均识别精度分别提高16.42、16.59、16.46个百分点。这表明该方法可为果园害虫精准识别提供理论和方法基础。  相似文献   

17.
苹果分级机输送与翻转机构设   总被引:2,自引:0,他引:2  
阐述了苹果定位和翻转的实现方法与原理.设计了一种苹果专用输送机构,该机构在输送苹果的过程中完成苹果的定位,并实现不同直径苹果以近似相同的角速度均匀翻转,以便苹果分级机进行图像采集和处理.实验表明,该机构能够完成苹果的定位和翻转,图像采集结果能够满足分级要求.  相似文献   

18.
苹果从采摘到销售过程中易发生机械损伤,需要及时剔除以避免腐烂变质。然而机械损伤早期苹果外观颜色变化不明显,通常表现为隐性损伤,检测比较困难。提出了一种基于结构光反射成像(SIRI)和卷积神经网络(CNN)的苹果隐性损伤检测方法。通过搭建SIRI系统,采集待测苹果调制的结构光图像,再利用三相位解调法提取交流分量,增强苹果隐性损伤对比度;然后利用交流分量图像制作苹果隐性损伤数据集,并使用基于CNN的语义分割网络FCN、UNet、HRNet、PSPNet、DeepLabv3+、LRASPP和SegNet训练损伤检测模型,多组试验结果表明上述模型均能有效地检测出不同情况下的苹果隐性损伤。其中HRNet模型精确率、召回率、F1值和平均交并比较高,分别为97.96%、97.52%、97.74%和97.58%,但检测速度仅为60 f/s; PSPNet模型检测速度较快,可达到217 f/s,但其检测精度略低,精确率、召回率、F1值和平均交并比分别为97.10%、94.57%、95.82%和95.90%。  相似文献   

19.
基于激光视觉的智能识别苹果采摘机器人设计   总被引:1,自引:0,他引:1  
为了提高苹果采摘视觉识别系统的精度,增强视觉系统的抗干扰能力和自适应能力,设计了一种新的苹果采摘机器人激光视觉识别系统,可以直接获得层次关系的深度图像,实现了果园非结构化环境中果实的识别与定位。为了测试激光识别系统苹果采摘机器人的采摘效果,在果园中对其采摘性能进行了测试:首先采用高清相机完成了对果实图像的采集,通过图像处理准确地实现了苹果的识别,在遮挡率低于50%时其识别率达到了90%以上;然后利用激光测距方法对苹果进行距离测量,成功定位了果实位置,其响应时间仅为3.58s,动作效率快,实现了苹果的高效率、高精度采摘功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号