首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Serum amyloid A (SAA) is an acute-phase protein in cats likely to be useful for diagnosing and monitoring inflammatory diseases, especially if rapid, reliable and automated assays can be made available. A commercially available automated human SAA turbidimetric immunoassay (SAA-TIA) was evaluated for determination of SAA in cats. Intra-assay and inter-assay imprecisions were in the ranges 2.1–9.9% and 7.0–12.5%, respectively, and without significant inaccuracy. Eighty-eight cats were divided into groups according to (A) the presence or absence of an acute-phase response (APR) (n = 23 and 65, respectively) and (B) clinical diagnosis (clinically healthy cats, cats diagnosed with inflammatory/infectious diseases, endocrine/metabolic diseases, neoplastic diseases, and miscellaneous disorders (n=43, 13, 8, 4 and 20, respectively)). The observed SAA concentrations were, as expected, different for (A) cats with and without an APR and (B) cats with inflammatory/infectious diseases compared to other diagnostic groups, except neoplastic diseases. In conclusion, the SAA concentration in cats could be measured reliably using the commercially available TIA designed for measuring human SAA, which should facilitate implementation of the parameter for routine diagnostic purposes. Hansen, A.E., Schaap, M.K. and Kjelgaard-Hansen, M., 2006. Evaluation of a commercially available human serum amyloid A (SAA) turbidimetric immunoassay for determination of feline SAA concentration. Veterinary Research Communications, 30(8), 863–872  相似文献   

2.
Serum amyloid A (SAA) is considered a major acute phase protein (APP) in horses. Serum amyloid A stall-side assays are commercially available to assess the inflammatory response of patients with various infectious and noninfectious conditions. The objective of this study was to determine the analytical performance of a new point-of-care (POC) assay for the measurement of SAA in whole blood and plasma of horses. One hundred and sixty blood samples were collected from 60 horses at various time points after immunization with an equine core vaccine. Analytical validation of the SAA POC assay included the measurement of SAA in whole blood and plasma, assessment of linearity and precision, and comparison of the SAA POC results with those obtained with a validated turbidimetric immunoassay (TIA). The SAA POC assay yielded similar results in whole blood and plasma (P > .05), and the results were positively correlated with the TIA (R2 = 0.964). The assay displayed solid linearity throughout the detection range of ≤ 20 to 3,000 μg/mL (R2 = 0.984) with inter-assay and intra-assay coefficients of variation ranging from 7.8% to 13.3% and 5.7% to 12.0%, respectively. The new SAA POC assay was able to reliably measure SAA in both whole blood and plasma. Similar to previously validated assays, the new SAA POC assay is a valuable tool to investigate the inflammatory response in various clinical diseases of horses.  相似文献   

3.

Background

An in-clinic assay for equine serum amyloid A (SAA) analysis, Equinostic EVA1, was evaluated for use in a clinical setting. Stability of SAA in serum samples was determined.

Methods

Intra- and inter- assay variation of the in-clinic method was determined. The in-clinic method (EVA1) results were compared to a reference method (Eiken LZ SAA) with 62 patient samples. For samples with SAA concentrations within the assay range of EVA1 (10-270 mg/L), differences between the methods were evaluated in a difference plot. Linearity under dilution was evaluated in two samples. Stability of SAA in three serum pools stored at 4°C and approximately 22°C was evaluated with the reference method day 0, 1, 2, 4, 7, 17 and analysed with a two-way ANOVA.

Results

The imprecision (coefficient of variation, CV) for the in-clinic method was acceptable at higher SAA concentrations with CV values of 7,3-12%, but poor at low SAA concentrations with CV values of 27% and 37% for intra- and inter-assay variation respectively. Recovery after dilution was 50-138%. The in-clinic assay and the reference method identified equally well horses with low (<10 mg/L) and high (>270 mg/L) SAA concentrations. Within the assay range of the in-clinic method, 10-270 mg/L, the difference between the two methods was slightly higher than could be explained by the inherent imprecision of the assays. There were no significant changes of serum SAA concentrations during storage.

Conclusions

The in-clinic assay identified horses with SAA concentrations of <10 mg/L and >270 mg/L in a similar way as the reference method, and provided an estimate of the SAA concentration in the range of 10-270 mg/L. The imprecision of the in-clinic method was acceptable at high SAA concentrations but not at low concentrations. Dilution of samples gave inconsistent results. SAA was stable both at room temperature and refrigerated, and thus samples may be stored before analysis with the reference method.  相似文献   

4.
A non-competitive chemiluminescence enzyme immunoassay for measuring serum amyloid A (SAA) in equine serum was developed. A polyclonal anti-equine-amyloid A antiserum specific for equine SAA was utilized, and the assay was standardized using highly purified equine SAA. An acute phase horse serum was calibrated against the purified SAA and was used as standard when running the assay. Serum SAA concentrations in the range of 3-1210 mg/l could be measured. The reference range of SAA in clinically healthy adult horses was <7 mg/l. The clinical validation of the assay comprised the SAA responses after surgery and experimentally induced aseptic arthritis, and those associated with viral and bacterial infections. The SAA response after surgery (castration) was consistent, with peak concentrations on day 2 and a return to normal SAA concentrations within eight days. The aseptic arthritis produced an SAA response with a pattern similar to that seen after surgery, with peak concentrations of SAA 36-48 h after induction. Seven horses showed a biphasic pattern, with a second rise in SAA concentrations on day 4 and 5. All animals had SAA levels <7 mg/l on day 15. All horses with viral and bacterial infections had SAA concentrations above 7 mg/l. The ranges of SAA concentrations following the different types of inflammation overlap, being consistent with the unspecific nature of the SAA response. This study revealed that SAA is a sensitive and unspecific marker for inflammation, and describes the dynamics of the SAA response after standardized and well defined tissue damage.  相似文献   

5.
The aim of this study was to investigate the reliability of an immunoturbidometric assay for measuring the acute phase protein serum amyloid A (SAA) in horses in clinical practice. The assay was compared to a previously validated assay, and overlap performance was assessed by measuring the concentration of SAA in clinically healthy horses and horses with inflammatory and non-inflammatory diseases. In pools of serum with low and high SAA concentrations the assay's intra-assay coefficients of variation were 11.7 per cent and 4.6 per cent, and its interassay coefficients of variation were 9.1 per cent and 5.6 per cent, respectively. Slight inaccuracies were observed, but they were negligible in comparison with the range of the SAA response. The assay systematically underestimated the concentrations of SAA in comparison with the results of the validated assay. The assay detected the expected difference in SAA concentrations between the healthy and diseased horses.  相似文献   

6.
The acute phase protein serum amyloid A (SAA) has proven potentially useful as an inflammatory marker in the horse, but the knowledge of SAA responses in viral diseases is limited. The aim of this study was to evaluate SAA as a marker for acute equine influenza A2 (H3N8) virus infection. This is a highly contagious, serious condition that inflicts suffering on affected horses and predisposes them to secondary bacterial infections and impaired performance. Seventy horses, suffering from equine influenza, as verified by clinical signs and seroconversion, were sampled in the acute (the first 48 h) and convalescent (days 11-22) stages of the disease, and SAA concentrations were determined. Clinical signs and rectal temperature were recorded. Secondary infections, that could have influenced SAA concentrations, were clinically suspected in 4 horses. SAA concentrations were higher in the acute stage than in the convalescent stage, and there was a statistically positive relationship between acute stage SAA concentrations and clinical signs and between acute stage SAA concentrations and maximal rectal temperature. Horses sampled early in the acute stage had lower SAA concentrations than those sampled later, indicating increasing concentrations during the first 48 h. There was a statistically positive relationship between convalescent SAA concentrations and degree of clinical signs during the disease process. The results of this investigation indicate that equine SAA responds to equine influenza infection by increasing in concentration during the first 48 h of clinical signs and returning to baseline within 11-22 days in uncomplicated cases.  相似文献   

7.
The acute phase protein serum amyloid A (SAA) has been shown to be a useful inflammatory parameter in the horse, but studies showing SAA responses to specific respiratory disease etiologies are limited. The goal of this study was to evaluate SAA responses in horses with infectious and noninfectious respiratory diseases as well as healthy, control horses. Two hundred seven horses were grouped into the following categories: equine influenza virus (EIV), equine herpesvirus-4 (EHV-4), Streptococcus equi subspecies equi (S. equi ss equi), inflammatory airway disease (IAD), and healthy controls. Serum amyloid A concentrations were determined for all horses on serum using a stall-side lateral flow immunoassay test. Serum amyloid A levels were found to be significantly greater for infectious respiratory diseases (EIV, EHV-4, S. equi ss equi) and horses with IAD when compared to control horses. There was a significant difference between viral and bacterial infections and IAD. Although SAA values from horses with S. equi ss equi were significantly greater when compared to horses with viral infections (EIV/EHV-4), the wide range of SAA values precluded accurate classification of the infectious cases. In conclusion, SAA is more reliably elevated with infections of the respiratory tract rather than noninfectious airway conditions. This can facilitate early detection of respiratory infections, help track disease progression, and aid practitioners in making recommendations about proper biosecurity and isolation of potentially contagious horses.  相似文献   

8.
Background: Serum C-reactive protein (CRP) is an acute phase marker in dogs that is useful for the diagnosis and monitoring of inflammatory disease. Rapid, reliable, and automated assays are preferable for routine evaluation of canine serum CRP concentration.
Objective: The aim of this study was to evaluate whether canine serum CRP concentration could be measured reliably using an automated turbidometric immunoassay (TIA) designed for use with human serum.
Methods: A commercially available TIA for human serum CRP (Bayer, Newbury, UK) was used to measure canine serum CRP concentration. Cross-reactivity of antigen was evaluated by the Ouchterlony procedure. Intra-and interassay imprecision was investigated by multiple measurements on canine serum samples and serum pools, respectively. Assay inaccuracy was investigated by linearity under dilution and comparison of methodologies (canine CRP ELISA, Tridelta Development Ltd, Kildare, UK). Then the assay was applied to serum samples from 14 clinically healthy dogs, 11 dogs with neoplasia, 13 with infections, 8 with endocrine or metabolic diseases, and 10 with miscellaneous diseases.
Results: Cross-reactivity between canine serum CRP and the anti-human CRP antibody was found. Intra-and interassay imprecision ranged from 5.2% to 10.8% and 3.0% to 10.2%, respectively. Serum CRP concentration was measured in a linear and proportional manner. There was no significant disagreement and there was linear correlation of the results in the comparison of methodologies, except for a slight proportional discrepancy at low CRP concentrations (<10 μg/mL). Dogs with infections had a significantly higher concentration of serum CRP than did all other dogs, and dogs with neoplasia had a significantly higher concentration of serum CRP than did clinically healthy dogs.
Conclusions: Canine serum CRP concentration can be measured reliably using the commercially available TIA designed for human CRP.  相似文献   

9.
This study aimed to evaluate whether equine serum amyloid A (SAA) concentrations could be reliably measured in plasma with a turbidimetric immunoassay previously validated for equine SAA concentrations in serum. Paired serum and lithium-heparin samples obtained from 40 horses were evaluated. No difference was found in SAA concentrations between serum and plasma using a paired t test (P = 0.48). The correlation between paired samples was 0.97 (Spearman’s rank P < 0.0001; 95% confidence interval 0.95–0.99). Passing-Bablok regression analyses revealed no differences between paired samples. Bland–Altman plots revealed a positive bias in plasma compared to serum but the difference was not considered clinically significant. The results indicate that lithium-heparin plasma samples are suitable for measurement of equine SAA using this method. Use of either serum or plasma allows for greater flexibility when it comes to sample collection although care should be taken when comparing data between measurements from different sample types.  相似文献   

10.
A sensitive and precise immunoassay for equine serum amyloid A protein (SAA) was established and used to determine, for the first time, the circulating concentration of this protein in health and disease. As in other species, equine SAA was present only at trace levels in healthy animals but behaved as an extremely sensitive and rapidly responding acute phase reactant following most forms of tissue injury, infection and inflammation, objectively reflecting the extent and activity of disease. Measurements of SAA should make a significant contribution to diagnosis and management of viral and bacterial infection in horses, and routine serial assays could provide an objective criterion for monitoring prospectively the general health of horses in training and racing.  相似文献   

11.
The serum amyloid A (SAA) protein is a characteristic and sensitive acute phase reactant in all vertebrates investigated. We molecularly cloned the equine cDNA encoding SAA from the liver of a healthy horse by polymerase chain reaction (PCR). The cloned cDNA is 480 bases in length, and contains an open reading frame (ORF) of 387 nucleotides encoding a precursor SAA protein of 128 amino acids. The precursor of horse SAA seems to have an 18-residue signal peptide and differs from the reported amino acid sequences of the horse SAA by substitution of valine at residue 81. It shows high homology with SAA amino acid sequence of other species such as dog (80.6%), mink (77.5%), human (76.9%) and duck (71.9%). An insertion of eight amino acids at residues between 85 and 92, as compared to human SAA, has also been found in horse SAA. The availability of the equine SAA cDNA will provide a useful reagent for studying its role in diseased horses.  相似文献   

12.
This study describes for the first time the development and validation of a sensitive and specific radioimmunoassay (RIA) for equine osteocalcin (OC) quantification using purified equine OC as standard, tracer, and immunogen for antibody formation in rabbits. The assay allowed to measure equine serum OC levels with a sensitivity of 0.2 ng/mL. Immunoreactive serum OC values of clinically normal, different-aged horses ranged from 3.68 to 127.31 ng/mL. Intra- and inter-assay coefficients of variation (CV) were 6.2 and 8.2%, respectively. Serial equine serum sample dilutions were linear. The recovery of equine OC from equine serum samples ranged from 93.88 to 107.9%. There was a tight correlation between OC values measured with the equine-specific OC RIA and two commercially available bovine-specific OC RIA kits. However, highest serum OC values were obtained with the equine-specific OC RIA. In conclusion, our equine-specific OC RIA is sensitive, linear, accurate, precise, and reproducible. The assay allowed to quantify OC in equine serum samples and might, therefore, be used to monitor equine osteoblast activity associated with bone diseases, exercise, therapy forms or diet.  相似文献   

13.
REASONS FOR PERFORMING THE STUDY: Early recognition of excessive inflammation and infectious complications after surgery, leading to early institution of therapy, reduces post operative discomfort and facilitates recovery. Because serum amyloid A (SAA) is a highly sensitive marker of inflammation, measurements of SAA and other acute phase reactants in the equine surgical patient may be valuable in assisting clinical assessment of post operative inflammation. OBJECTIVES: To investigate changes in inflammatory markers after castration and to correlate levels of acute phase reactants with clinical severity of inflammation after castration. METHODS: Leucocyte numbers and blood levels of iron, SAA and fibrinogen were determined before castration and on Days 3 and 8 post operatively in 2 groups of horses; Group 1 (n = 11) had mild post operative inflammation and an uncomplicated recovery and Group 2 (n = 7) had local clinical signs of moderate to severe inflammation. RESULTS: Both groups had elevated serum SAA levels at Day 3 post operatively. In Group 1 concentrations had returned to preoperative levels by Day 8, whereas in Group 2 concentrations remained elevated. Plasma fibrinogen concentrations in serum increased to equal levels in both groups and stayed elevated throughout the study period. Serum iron concentrations of Group 1 did not change in response to castration, whereas concentrations in Group 2 decreased below preoperative levels on Day 8. Leucocyte numbers remained unchanged during the post operative period in both groups. CONCLUSIONS: Serum SAA and iron profiles reflected the course of inflammation and their levels correlated with the clinical severity of inflammation. In contrast, fever and changes in leucocyte numbers, which are usually considered to be hallmarks of inflammation and infection, were not useful for monitoring post operative recovery. POTENTIAL RELEVANCE: Measurements of SAA and iron may improve post operative monitoring. As sustained inflammation may indicate that the surgical wound has become infected, SAA and iron measurements may facilitate early recognition and hence early treatment of infection.  相似文献   

14.
Objectives: To compare postoperative inflammatory responses in horses administered perioperative procaine penicillin and those not administered penicillin using acute phase protein serum amyloid A (SAA) as a marker of inflammation. Study Design: Randomized clinical trial. Animals: Stallions (n=50) castrated under field conditions. Methods: SAA concentrations were determined on days 0, 3, and 8. Six horses were subsequently excluded because of elevated SAA concentrations on day 0. Of the remaining 50 horses, 26 were administered nonsteroidal anti‐inflammatory drug (NSAID) therapy and 24 were administered NSAID and 25,000 U/kg procaine penicillin on day 0, 1, and 2. Results: SAA concentrations increased significantly from preoperative levels in both groups, and on day 8 concentrations were significantly (P<.02) higher in horses administered only NSAID than in those administered procaine penicillin and NSAID. Infectious complications occurred more frequently (P<.01) in horses with preoperatively elevated SAA concentrations (the excluded horses) than in horses with normal preoperative SAA concentrations (the included horses). Conclusions: Perioperative antimicrobial therapy reduced the postoperative SAA response, suggesting that bacteria were present in the surgical wound and contributed to inflammation after castration. Horses with elevated preoperative SAA concentrations developed infectious complications more often than horses with normal preoperative SAA concentrations. Clinical Relevance: Administration of antimicrobials may be important in horses being castrated standing under field conditions. Increased SAA concentrations seem to be an indicator of increased surgical risk in horses and may be useful before elective surgery for planning.  相似文献   

15.
OBJECTIVE: To determine serum amyloid A (SAA) concentrations in serum and synovial fluid from healthy horses and horses with joint disease and assess the effect of repeated arthrocentesis on SAA concentrations in synovial fluid. Animals-10 healthy horses and 21 horses with various types of joint disease. PROCEDURES: Serum and synovial fluid samples were obtained from each horse. In 5 of the 10 healthy horses, arthrocentesis was repeated 9 times. Concentrations of SAA were determined via immunoturbidometry. RESULTS: Serum and synovial fluid SAA concentrations were less than the assay detection limit in healthy horses and did not change in response to repeated arthrocentesis. Synovial fluid SAA concentrations were significantly higher in horses with suspected bacterial joint contamination or infectious arthritis, or tenovaginitis than in healthy controls, and serum concentrations were significantly higher in horses with infectious conditions than in the other groups. Neither serum nor synovial fluid SAA concentrations in horses with low-inflammation joint conditions differed significantly from those in healthy controls. Concentrations of SAA and total protein in synovial fluid were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Synovial fluid SAA concentration was a good marker of infectious arthritis and tenovaginitis and appeared to reflect changes in inflammatory activity. The advantages of use of SAA as a marker include the ease and speed of measurement and the fact that concentrations in synovial fluid were not influenced by repeated arthrocentesis in healthy horses. Further study of the SAA response in osteoarthritic joints to assess its usefulness in diagnosis and monitoring of osteoarthritis is warranted.  相似文献   

16.
Despite the importance of noninfectious joint diseases in equine medicine, little is known about the acute phase response which may be elicited if the local inflammatory process of noninfectious arthritis is sufficiently strong, Therefore the aim of this study was to monitor the systemic inflammatory response during experimentally-induced noninfectious arthritis by studying the dynamics in serum of the acute phase proteins serum amyloid A (SAA), haptoglobin, fibrinogen and alpha2-globulins. Twenty-four Standardbred horses, age 3-7 years, found healthy on thorough clinical, radiological, haematological and serum biochemical examination, were injected aseptically into the right midcarpal joint with amphotericin B. Blood samples were drawn before induction of arthritis (0 h), and at 8, 16, 24, 36 and 48 h postinduction and then on Days 3, 4, 5 and 15 postinduction. All horses developed lameness with joint effusion and joint heat as well as increased respiratory rate, heart rate and body temperature. The lameness started to decline after 24-36 h and, in most animals, systemic signs disappeared on Day 2 postinjection. The concentration of the acute phase proteins increased following induction of arthritis. The SAA concentrations were higher than baseline concentrations from 16 h postinduction and were maximal at 36-48 h (227 times baseline concentration). The haptoglobin concentrations were higher than baseline concentrations from 24 h and were maximal at 48-96 h (1.14 times baseline concentration). The maximal concentrations of fibrinogen were seen between 36-72 h postinjection and increased on average 0.87 times from baseline concentrations. The fibrinogen concentrations were higher than baseline concentrations from 24 h postinjection. Alpha2-globulins concentrations showed a minor increase and increased 0.55 times from baseline concentrations. The markers had returned to baseline concentrations by Day 15. Our results demonstrate that amphotericin B-induced arthritis in a single joint gives rise to a systemic acute phase response measurable as increased concentrations in serum SAA, haptoglobin, fibrinogen and alpha2-globulins during the first 2 weeks of the condition and, thereby, that such an increase need not be indicative of infectious arthritis. Further research should be aimed at determining whether chronic noninfectious arthritis in the horse gives rise to increased acute phase protein concentrations in serum.  相似文献   

17.
Rapid, accurate detection of serum amyloid A (SAA) is needed in equine practice. We validated a patient-side point-of-care (POC) assay (Stablelab; Zoetis) compared to the turbidimetric immunoassays LZ-SAA (TIA-Hum) and VET-SAA (TIA-Vet; both Eiken Chemical). Analytical performance was assessed at 3 different concentration ranges and with interferences. Inter-method comparison using 49 equine serum samples revealed a significant difference between median SAA results (p < 0.0001), with the strongest bias between the POC and TIA-Vet (median 1,093 vs. 578 mg/L). The median SAA value obtained with the TIA-Hum method was 752 mg/L. Correlation between POC/TIA-Hum and between POC/TIA-Vet was fair (rs = 0.77 and 0.69) and excellent between both TIAs (rs = 0.93). Bias between POC/TIA-Hum, POC/TIA-Vet, and TIA-Hum/TIA-Vet was −56.7%, –80.9%, and −28.2%, respectively. POC intra- and inter-assay CVs (16.1–30% and 19.8–35.5%) were higher than TIA CVs (generally <12%). Bilirubin and hemoglobin had a negative bias on POC and TIA-Vet results (−16.6 to −45.6%); addition of intralipid yielded a positive bias (35.9–77.4%). The POC had good linearity of SAA concentrations up to 10,312 mg/L (R2 = 0.92). A hook effect was present at SAA >3,000 mg/L for the POC assay. Equine serum SAA was stable over a median period of 2.5 y when stored at −80°C. Overall, there was excellent-to-moderate correlation between tests, but imprecision and hook effect of the POC, as well as bias between the methods, must be considered.  相似文献   

18.
OBJECTIVE: To determine concentrations of 2 acute-phase proteins (serum amyloid A [SAA] and lipopolysaccharide-binding protein [LBP]) in serum samples obtained from horses with colic and identify relationships among these acute-phase proteins and clinical data. ANIMALS: 765 horses with naturally developing gastrointestinal tract diseases characterized by colic (ie, clinical signs indicative of abdominal pain) and 79 healthy control horses; all horses were examined at 2 university teaching hospitals. PROCEDURE: Serum concentrations of SAA and LBP were determined by immunoturbidometric and dot-blot assays, respectively. RESULTS: SAA and LBP concentrations were determined for 718 and 765 horses with colic, respectively. Concentrations of SAA were significantly higher in nonsurvivors than in survivors, and horses with enteritis or colitis and conditions characterized by chronic inflammation (eg, abdominal abscesses, peritonitis, or rectal tears) had SAA concentrations significantly greater than those for horses with other conditions. Serum concentrations of LBP did not correlate with outcome, disease process, or portion of the gastrointestinal tract affected. CONCLUSIONS AND CLINICAL RELEVANCE: Circulating concentrations of SAA were significantly higher at admission in horses with colic attributable to conditions having a primary inflammatory cause (eg, enteritis, colitis, peritonitis, or abdominal abscesses) and were higher in horses that failed to survive the episode of colic, compared with concentrations in horses that survived. Serum concentrations of LBP did not correlate with survival. Analysis of these findings suggests that evaluation of SAA concentrations may be of use in identifying horses with colic attributable to diseases that have inflammation as a primary component of pathogenesis.  相似文献   

19.
Serum amyloid A (SAA) is the major acute phase protein in horses. It is produced during the acute phase response (APR), a nonspecific systemic reaction to any type of tissue injury. In the blood of healthy horses, SAA concentration is very low, but it increases dramatically with inflammation. Due to the short half-life of SAA, changes in its concentration in blood closely reflect the onset of inflammation and, therefore, measurement of SAA useful in the diagnosis and monitoring of disease and response to treatment. Increases in SAA concentration have been described in equine digestive, reproductive and respiratory diseases and following surgical procedures. Moreover, SAA has proven useful for detection of some subclinical pathologies that can disturb training and competing in equine athletes. Increasing availability of diagnostic tests for both laboratory and field use adds to SAA's applicability as a reliable indicator of horses’ health status. This review article presents the current information on changes in SAA concentrations in the blood of healthy and diseased horses, focussing on clinical application of this biomarker.  相似文献   

20.
Reasons for performing study: More sensitive and specific diagnostic methods for early detection of changes in the joint cartilage are needed. Cartilage‐derived retinoic acid‐sensitive protein (CD‐RAP) is a potential marker of cartilage synthesis and regeneration. This is the first study on equine CD‐RAP. Objectives: To evaluate the ability of a commercially available human sandwich ELISA assay to detect equine CD‐RAP in synovial fluid from healthy and diseased joints. Methods: Synovial fluid was collected from 28 horses with no signs of joint disease and from 5 with induced inflammatory arthritis. CD‐RAP concentrations were measured using a human CD‐RAP ELISA. Intra‐ and interassay imprecision of the assay were evaluated by multiple measurements on pools of equine synovial fluid. Assay inaccuracy was determined by linearity under dilution. Results: The assay showed moderate to large intra‐ and interassay variation when applied to equine synovial fluid. Equine CD‐RAP was detected in synovial fluid from healthy horses ranged at 8.2–52 ng/ml. Repeated arthrocentesis (after injection of isotonic saline), age, joint or gender did not significantly affect CD‐RAP concentrations. Twelve hours after intra‐articular injection of lipopolysaccharide, concentrations of CD‐RAP were significantly lower than after injection of isotonic saline and remained significantly lower until the end of the study at 144 h. Conclusion and potential relevance: The assay is suitable for longitudinal monitoring of CD‐RAP concentration in individual horses. Disease significantly influenced CD‐RAP levels. Similar to previous results obtained in man, CD‐RAP seems to be a marker of cartilage synthesis and/or regeneration in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号