首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water dynamics of cropping systems containing mixtures of Gliricidia sepium (Jacq.) Walp trees with maize (Zea mays L.) and/or pigeonpea (Cajanus cajan L.) were examined during three consecutive cropping seasons. The trees were pruned before and during each cropping season, but were left unpruned after harvesting the maize; prunings were returned to the cropping area in all agroforestry systems to provide green leaf manure. The hypothesis was that regular severe pruning of the trees would minimise competition with crops for soil moisture and enhance their growth by providing additional nutrients. Neutron probe measurements were used to determine spatial and temporal changes in soil moisture content during the 1997/98, 1998/99 and 1999/00 cropping seasons for various cropping systems. These included gliricidia intercropped with maize, with and without pigeonpea, a maize + pigeonpea intercrop, sole maize, sole pigeonpea and sole gliricidia. Soil water content was measured to a depth of 150 cm in all treatments at 4–6 week intervals during the main cropping season and less frequently at other times. Competition for water was apparently not a critical factor in determining crop performance as rainfall exceeded potential evaporation during the cropping season in all years. The distribution of water in the soil profile was generally comparable in all cropping systems, implying there was no spatial complementarity in water abstraction by tree and crop roots. However, available soil water content at the beginning of the cropping season was generally lower in the tree-based systems, suggesting that the trees continued to deplete available soil water during the dry season. The results show that, under rainfall conditions typical of southern Malawi, the soil profile contains sufficient stored water during the dry season (ca. 75–125 mm) to support the growth of gliricidia and pigeonpea, and that gliricidia trees pruned before and during the cropping season did not deleteriously compete for water with associated crops. Water use efficiency also appeared to be higher in the tree-based systems than in the sole maize and maize + pigeonpea treatments, subject to the proviso that the calculations were based on changes in soil water content rather than absolute measurements of water uptake by the trees and crops.  相似文献   

2.
This study examined the effect of alley cropping of Leucaena leucocephala and Faidherbia albida on wood biomass, maize grain yield and soil nitrogen status. The treatments were: trees planted alone at 1 × 5 m spacing; trees intercropped with maize and a sole maize crop. Mulch biomass averaged 6.18 and 0.97 t ha−1 for L. leucocephala and F. albida, respectively. Corresponding wood production was 1.71 and 1.11 t ha−1. Both total N and inorganic N (NO 3 –N plus 4 + –N) were higher under F. albida and lowest under L. leucocephala. Similarly, foliar N concentration in maize was higher in plots intercropped with F. albida and least in L. leucocephala intercropping. Maize grain yield was little affected by the tree intercrop as competition for resources was reduced through periodic pruning and clean weeding. There was no gain in maize grain yield due to the presence of L. leucocephala and F. albida. These results suggest that alley cropping in Gario is justified for wood production but not for increasing maize grain yield. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Understanding the belowground interactions between trees and crops is critical to successful management of agroforestry systems. In a study of competition for water in an alley cropping system consisting of pecan (Carya illinoensis) and cotton (Gossypium hirsutum) in a sandy loam soil (Rhodic Paleudult) in Jay, Florida, root systems of the two species were separated by trenching to 120 cm depth. A polyethylene barrier was installed in half of the plots. Spatial and temporal variations in soil water content, root distribution and water uptake by both species, and leaf area development and height of cotton were measured. Interspecific competition for water was greater in the non-barrier treatment near tree rows than at the alley center. Competition became evident 3 to 4 weeks after emergence of cotton and increased during the following 7 to 8 weeks. Compared with the non-barrier treatment, the barrier treatment had higher soil water content and better growth of cotton (height, leaf area, and fine root biomass). Cotton lint yield in the barrier treatment (677 kg ha–1) was similar to that in a sole-crop stand, but higher than in the non-barrier (502 kg ha–1) treatment. Lint production efficiency of plants was higher in the interior rows in the non-barrier treatment (0.197 kg lint per square meter of leaf area, compared to 0.117 kg in the barrier treatment). The results suggest that trenching or even deep disking parallel to the tree row may reduce competition for water, but the impact on tree growth cannot be established from this study. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
An on-farm trial was conducted to determine dry matter production of four fodder tree species and their effect on soil water and maize production. The trees were planted in rows intercropped with maize. The four tree species selected were Acacia karroo Hayne (indigenous fodder tree), Leucaena leucocephala (Lam.) De Wit (nitrogen fixing), Morus alba L. (fodder and fruit), and Gleditsia triacanthos L. (fodder and fuel). Volumetric soil water was measured in the upper 0.3 m of soil in each row of the trial using the time domain reflectometry technique. The neutron probe technique was used for monitoring the water content deeper in the soil. Geostatistical methods were used to analyse treatment differences in the upper 0.3 m of soil. The soil water content did not differ significantly between the maize and tree rows indicating that competition for water in the upper horizon was not the reason for lower maize yields. However, at greater soil depths (75–125 cm) trees in the wide spacing used less water than those in the narrow spacing. Light interception was an important factor in reducing maize yields in the row nearest to the trees. High soil water values recorded during summer indicated that in the current cycle of good rainfall the plants in the agroforestry trial were not stressed. Thus the trees do not compete with the crops for soil moisture in good rainfall seasons. However, this study would need further evaluation for the competition for water for the low rainfall years. Since the trees have access to water at greater depths, they are likely to be more productive into the dry season than shallow rooted crops.  相似文献   

5.
In order to study the effect of tree crop intercropping on a young plantation of Populus tomentosa in the plains along the Yellow River, field experiments were conducted by observing the growth of the plantation, the nutrient content in leaves, the nutrient and water content in the soil, and the output of crops. The relationship between forest growth and nutrient content in the tree leaves and the soil were analyzed. Results show that tree crop intercropping in young plantations can not only improve soil water content, but also enhance the contents of organic matter and the available nitrogen, phosphorus and potassium in soil resulting in the vigorous growth of the individual trees. Diameter at breast height (DBH) was positively related to the contents of organic matter in the soil, and the contents of N, P and K in the tree leaves had correlation coefficients of 0.967, 0.955, 0.988 and 0.972, respectively. Whole tree leaf area, crown width, number of branches and the mean length of branches in the intercropped plantation (intercropped with watermelon and vegetables, peanut and winter wheat, and soybean) were, respectively, 1.70–3.0 times, 2.22–2.47 times, 1.0–1.41 times and 1.70–2.32 times of those of CK (without intercropping). Diameter at breast height (DBH) and tree height in the intercropped plantation were 50.5%–136.7% and 27%–59.5% higher than those of the CK, respectively. The study also showed that intercropping with watermelon and vegetables proved to have the highest economic return among the treatments adopted. Tree crop intercropping in young plantations is an effective measure to increase forest growth and economic benefit. __________ Translated from Journal of Beijing Forestry University, 2006, 28(3): 81–85 [译自: 北京林业大学学报]  相似文献   

6.
Little information is available on soil respiration and microbial biomass in soils under agroforestry systems. We measured soil respiration rate and microbial biomass under two age classes (young and old) of a pecan (Carya illinoinensis) — cotton (Gossypium hirsutum) alley cropping system, two age classes of pecan orchards, and a cotton monoculture on a well-drained, Redbay sandy loam (a fine-loamy, siliceous, thermic Rhodic Paleudult) in southern USA. Soil respiration was quantified monthly during the growing season from May to November 2001 using the soda-lime technique and was corrected based on infrared gas analyzer (IRGA) measurements. The overall soil respiration rates ranged from 177 to 776 mg CO2 m–2 h–1. During the growing season, soil respiration was higher in the old alley cropping system than in the young alley cropping system, the old pecan orchard, the young pecan orchard, and the monoculture. Microbial biomass C was higher in the old alley cropping system (375 mg C kg–1) and in the old pecan orchard (376 mg C kg–1) compared to the young alley cropping system (118 mg C kg–1), young pecan orchard (88 mg C kg–1), and the cotton monoculture (163 mg C kg–1). Soil respiration was correlated positively with soil temperature, microbial biomass, organic matter, and fine root biomass. The effect of alley cropping on soil properties during the brief history of alley cropping was not significant except in the old systems, where there was a trend of increasing soil respiration with short-term alley cropping. Over time, different land use and management practices influenced soil properties such as soil temperature, moisture, microbial biomass, organic matter, and fine root biomass, which in turn affected the magnitude of soil respiration. Our results suggest that trees in agroforestry systems have the potential to enhance soil fertility and sustainability of farmlands by improving soil microbial activity and accreting residual soil carbon.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

7.
Lack of empirical data on the effects of the taungya system on establishment and early growth of softwood plantations have partly contributed to controversial decisions regarding the continued suitability of the system for plantation establishment in Kenya. This study examined effectiveness of taungya systems of forest plantation establishment using Cupressus lusitanica and Pinus patula trees with Zea mays (maize) as a test intercrop on two contrasting site types (deep and shallow soils) in Mt. Elgon forest, western Kenya . Four treatments were evaluated in each site: trees with or without weed control, trees intercropped with maize, and sole maize. Results showed that tree survival, growth and nutrient uptake, and maize growth and yield were higher in the deep soil site than the shallow site. The t aungya system improved tree survival and growth, effects being greater in the deep than the shallow soil site. Both Cupressus lusitanica and Pinus patula trees had the same effects on maize growth and yield, reducing maize growth by 41–48% in the deep soil sites, and by 16–26% in the shallow site. Vector nutrient analysis and vector competition analysis of the treatment effects on growth and nutrient uptake of the trees and the maize crop suggested competition for N on the deep soils, but competition for K and P on the shallow soils. The study has demonstrated the applicability of graphical vector competition analysis in diagnosing tree–crop interactions in agroforestry.  相似文献   

8.
Alley cropping would be acceptable to farmers in West Africa, if the amount of tree-crop competition could be reduced and crop yields increased and stabilized. The importance of overall tree-crop competition in alley cropping was therefore quantified at three locations in the Republic of Bénin, by comparing the performance of a maize-cassava intercrop and mixed hedges of Gliricidia sepium and Flemingia macrophylla in an alley cropping system, where the tree-crop interaction was high, and in a cut and carry system with block plantings, where the interface was restricted to one face. The establishment and productivity of trees in both agroforestry systems depended strongly on the natural soil fertility of the site, K and Ca being critical for both species. Alley hedges produced progressively more cut dry matter with higher leaf proportions than tree blocks and hence yielded significantly higher nutrient masses. Overall, the cut dry matter from five cuttings per cropping season ranged among locations from 855 to 1651 kg ha–1 yr–1 for alley hedges and from 777 to 869 kg ha–1 yr–1 for tree blocks. Differences in yields of maize and cassava between both systems were insignificant in all three environments and all cropping years under observation. The results of this study suggest that the overall effect of tree-crop competition was unimportant, but that tree-tree competition was the decisive factor in determining the total system productivity.  相似文献   

9.
A major constrait to alley cropping is the competition of tree or shrub roots with those of companion food crops for available water and nutrients in the topsoil. Root distribution patterns of Acioa barteri, Alchornea cordifolia, Cassia siamea and Gmelina arborea grown on an acid Ultisol at Onne in the humid forest zone of southeastern Nigeria were examined to a depth of 120 cm and laterally to 200 cm from the tree trunk to study the suitability of the species for alley cropping. The four woody species have roots throughout the soil profile examined but differ in the concentration of roots both laterally and vertically. Alchornea cordifolia, Cassia siamea and Gmelina arborea, in spite of higher underground biomass production, most of their fine roots (<2 mm diameter) were in the top 20 cm of the soil. This soil layer had 73%, 76%, and 74% of the total Alchornea cordifolia, Cassia siamea, and Gmelina arborea fine roots in the profile examined, respectively. Such root systems would compete with food crops for nutrients and moisture in the surface soil. Alchornea cordifolia and Gmelina arborea have many large woody roots in the surface soil which will make any tillage operation or seedbed preparation difficult. Acioa barteri in contrast, has the desirable rooting system with fewer fine roots in the surface soil (49%), and roots that are concentrated close to tree trunk and decrease markedly away from the tree base. In addition, Acioa barteri roots penetrate deeper soil horizons and can result in more efficient nutrient cycling from these layers, and reduced competition with shallow-rooted food crops. The rooting distribution patterns of Acioa barteri indicated that the species is a promising alley shrub in acid soils of the humid forest ecology. Therefore, consideration of rooting characteristics of potential tree/shrub species is recommended for the development of agroforestry systems such as alley cropping.IITA Journal Paper No: 91:/JA/24.  相似文献   

10.
In order to improve the management of temperate alley cropping, it is important to study the growth and physiological responses of plants arising from competition across the crop-tree interface. Maize (Zea mays L.) was established between rows of seven-year-old silver maple (Acer saccharinum L.) trees in north-central Missouri, USA with four imposed treatments: (1) an unmodified control with a standard rate of N fertilization (179.2 kg N (as NH4NO3) ha−1), (2) trenching with root barrier installed, (3) supplemental fertilization treatment (standard N + 89.6 kg ha−1 N), and (4) a combination of trenching with root barrier and supplemental fertilization. Whereas soil N status had little effect on maize physiology and yield at the interface, competition for soil water was substantial in both years. Without a root barrier, soil water content, predawn and midday water potential, and midday net photosynthesis of maize plants adjacent to the tree row were reduced compared with those of plants in the alley center, but no differences across the maize crop were evident in the presence of a barrier. Grain yield of border row maize plants lacking an adjacent barrier was depressed compared with that for maize plants with a root barrier present (8.42 vs. 6.59 Mg ha−1 in 1997; 5.38 vs. 3.91 Mg ha−1 in 1998). However, the barrier did not completely restore yield to that in the alley center, suggesting that reductions in light near the tree row also limited production. Top ear height showed a similar pattern of response to the presence of a root barrier. Silver maple trees responded to root barrier installation with reduced annual diameter growth and reduced water status on some sample days. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The objective of this study was to determine crop and tree productivity in several alley cropping planting patterns. The four- year study was conducted in western Oregon, United States and involved irrigated sweet corn (Zea mays) intercropped between hedgerows of red alder (Alnus rubra) and black locust (Robina pseudoacacia). Three alley cropping planting patterns with variable plant populations and tree-crop proximity were tested with each tree species in a randomized block design. Space available to trees and crops determined yield of both plant components. High crop yield coincided with low pruning yield, and vice versa. Compared to monocropping, yield reductions in traditional alley cropping planting patterns with widely spaced, double tree rows ranged from 5% to 15%. A. rubra and R. pseudoacacia coppiced readily and produced 0.9 to 4.7 tons of dry matter pruning biomass per growing season, depending on planting pattern and year. A. rubra yield continually increased during the trial, while the ability of R. pseudoacacia to produce green manure after frequent coppicing appeared to weaken. After four years, soil organic matter was 4 to 7% higher in the topsoil of an alley cropping system compared to a monocropping system. However, continuous growing of sweet corn resulted in decreased soil organic matter levels in both cropping systems compared to original levels. Crop yield reductions and the need for additional management inputs constrain the implementation of alley cropping in temperate climates. Only if benefits other than minor soil fertility improvements are realized is alley cropping a feasible alternative in temperate climate regions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.  相似文献   

13.
G. Singh 《林业研究》2009,20(2):144-150
Tree-crop interactions were monitored by measuring tree growth characters of Prosopis cineraria L. and Tecomella undulata L. and yields of Vigna radiata (L) in agroforestry systems in degraded lands of Indian Desert. Potential competition for resource between the trees and associated crop was analyzed by measuring soil water contents, soil organic matters and NH4-N at different depths of soil layers i.e., 0–25 cm, 25–50 cm and 50–75 cm in the experimental plots. The plots size were 16 m × 18 m (D1), 20 m × 18 m (D2) and 32 m × 18 m (D3) with tree densities of 208, 138 and 104 trees·ha−1 after June 2002, respectively. Results showed that tree height increased by 3% to 7% during June 2002 to June 2004. Collar diameter increased by 30% and 11% in D1, 23% and 19% in D2 and 18% and 36% in D3 plots, respectively, in P. cineraria and T. undulata in two years period. The increase in crown diameter was 9% to 18% in P. cineraria and 11% to 16% in T. undulata. Tree growth was relatively greater in 2002 than in 2003. Yield of V. radiata increased linearly from D1 to D3 plots. Lowest soil water content at 1 m distance from tree base indicated greater utilization of soil water within the tree rooting zone. Concentrations of soil organic matters and NH4-N were the highest (p<0.05) in 0–25 cm soil layer. P. cineraria was more beneficial than T. undulata in improving soil conditions and increasing crop yield by 11.1% and thus more suitable for its integration in agricultural land. The yield of agricultural crop increased when density of tree species was appropriate (i.e., optimum tree density), though it varied with tree size and depended upon resource availability. The result indicated bio-economic benefits of optimum density of P. cineraria and T. undulata over traditional practices of maintaining random trees in farming system in arid zones. Biography: G. Singh (1961– ), male, Scientist E and Head, Division of Forest Ecology, Arid Forest Research Institute, New Pali Road, Jodhpur-342005, India.  相似文献   

14.
Although crucial for assessing the functioning of alley cropping systems, quantitative information related to the hedgerow tree root distribution remains scarce. Soil mapping and destructive soil sampling was used to assess the impact of soil profile features on selected root characteristics of Senna siamea hedgerows, growing in alley cropping systems in three sites (Glidji, Amoutchou, and Sarakawa) representative for the derived savanna of Togo, West Africa. While the soil profiles in Glidji and Sarakawa contained a clay accumulation horizon, the Amoutchou profile was sandy up to 1 m. The number of small roots (diameter < 2 mm), quantified on a soil profile wall, decreased with depth in all sites. For most soil depths, the abundance of small roots tended to be higher near the tree base, e.g., ranging from 5.3 dm−2 in Amoutchou to 21.4 dm−2 in Glidji for the 0–20 cm layer, than in the middle of the alley, e.g., ranging from 3.1 dm−2 in Amoutchou to 13.8 dm−2 in Glidji for the 0–20 cm layer. Root length density (RLD) of the 0–10 cm and 10–20 cm layers was significantly higher in Glidji than in Amoutchou (P < 0.05) and in Sarakawa (P = 0.08). Differences in RLD between sites were not significant for layers below 30 cm. For each layer, root weight densities (RWD) were similar in all sites, e.g., ranging from 0.44 mg cm−3 in Amoutchou to 0.64 mg cm−3 in Glidji in the 0–10 cm layer, indicating that the roots in the Glidji topsoil had a smaller overall diameter than in Amoutchou. In Amoutchou, the relative RLD was lower than in Glidji or Sarakawa for the top 40 cm of soil, while the inverse was observed for the layers between 50 and 100 cm deep and this was related to the sandy soil profile in Amoutchou. Another consequence of the sandy profile was the larger tap root diameter below 50 cm in Amoutchou compared to Sarakawa. For all sites, significant (P < 0.001) linear regressions were observedbetween RLD's, RWD's, and the abundance of small roots, although the variation explained by the regression equations was highest for the relationship between RLD and RWD. The potential of the hedgerows to recover nutrients leached beyond the reach of food crops or the safety-net efficiency was evaluated for the tree sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
This study assessed the use of agroforestry to improve soil nutrient properties in plantations containing Ilex paraguariensis St. Hilaire (yerba mate). Intercropping within tree plantation systems is widely practiced by farmers around the World, but the influence of different species combinations on system performance still requires further investigation. I. paraguariensis is a major South American crop commonly cultivated in intensive monocultures on low activity clay soils, which are highly prone to nutrient deficiencies. Study plots were established in 20 plantations in Misiones, Argentina. These involved two species combinations (I. paraguariensis monoculture and I. paraguariensis intercropped with the native tree species Araucaria angustifolia) and two age classes (30 and 50 years old). Chemical soil samples were analysed to determine Ca, Mg, K, P, N, C and Al concentrations, effective CEC (eCEC) and pH at two soil depths (0–5 cm and 5–10 cm). In the younger plantations, the agroforestry sites had lower nutrient levels than I. paraguariensis monoculture sites. However, the monoculture plantations were more susceptible than agroforestry sites to a decline in soil nutrient status over time, particularly with respect to Ca, eCEC, N and C for both soil depths. P concentrations were below detection limits for all sites, potentially reflecting the high P-fixing capacity of the kaolinic soils of this region. While agroforestry systems may be better at maintaining soil quality over time, significant growth increase of I. paraguariensis was apparent only for the monoculture sites.  相似文献   

16.
The moist savanna of West-Africa is characterized by a wide range of climates and soil types. The impact of the biophysical environment on hedgerow N uptake, wood production and maize grain yield was assessed for three years in three alley cropping trials with a selected number of hedgerow species in Glidji (Southern Togo), Amoutchou (Central Togo), and Sarakawa (Northern Togo). Senna siamea hedgerows accumulated significantly more N in the first pruning in Glidji (129−138 kg N ha−1) and Sarakawa (102−185 kg N ha−1) than in Amoutchou (17–26 kg N ha−1). This difference in N uptake was attributed to the infertile subsoil in Amoutchou, which was sandy up to 1 m and had a shallow groundwater-table. The amount of N accumulated in the Gliricidia sepium biomass varied between 38 kg N ha−1 in Glidji and 142 kg N ha−1 in Amoutchou. Averaged over all species and sites, 9 to 29% and 9 to 39% of the annual N accumulation in the hedgerow biomass is incorporated in the second, respectively third pruning. The Gliricidia trees produced between 12 and 26 ton fresh matter ha−1 of wood and the Senna trees between 4 and 38 ton fresh matter ha−1. Maize grain yield in Glidji was not affected by treatments (3196 kg ha−1, on average). In Amoutchou, the highest grain production was observed in the Gliricidia treatment (2774 kg ha−1 vs 1007 kg ha−1 in the control), while in Sarakawa, the Gliricidia (3786 kg ha−1) and Senna (3842 kg ha−1) plots produced a greater grain yield than the control plots (2123 kg ha−1). Maize yield increase in the alley cropping systems relative to the control plots was related to the soil total N content. Top and sub-soil characteristics were shown to be an important modifier of the functioning of alley cropping systems and should be taken into account when deciding on whether to use alley cropping and when selecting the hedgerow species. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Soil physical and chemical properties in the crop alleys and tree rows in alley cropping systems vary greatly due to differences in litter quality and microclimate under trees compared to the alleys. Variations in soil properties influence microbial diversity and function, and thus, in alley cropping systems, bacterial diversity could be different between soils in tree rows and crop alleys. The objective of this study was to compare and contrast soil bacterial diversity in the crop alleys and tree rows in a 21-year-old alley cropping system in Northeast Missouri, USA. Soil samples were taken in three parallel transects to a depth of 10 cm in the tree row and at the middle of the alley in a silver maple (Acer saccharinum) alley cropping system with a companion maize (Zea mays)—soybean (Glycine max) rotation. Soil bulk density, C and N concentrations were similar between the different transects while minor differences were observed between crop alleys and tree rows. No significant difference in bacterial diversity was observed between the tree rows and alley soil based the denaturing gradient gel electrophoresis profiles, band richness (19.6 and 22.8 for tree row and alley, respectively) and Shannon–Weiner diversity (2.958 and 3.099 for tree row and alley, respectively). Identification of bacterial genera revealed dominance of gram +ve as well as gram ?ve bacteria in both soil types. Ordination plot revealed no clustering effect based on location (transect) or on the cropping system in the different samples. Bacterial diversity in crop alleys most likely was influenced not only by the maize-soybean rotation, but also by the tree rows contributing both above and belowground litter for the past 21 years.  相似文献   

18.
This study tested the hypothesis that incorporation of green leaf manure (GLM) from leguminous trees into agroforestry systems may provide a substitute for inorganic N fertilisers to enhance crop growth and yield. Temporal and spatial changes in soil nitrogen availability and use were monitored for various cropping systems in southern Malawi. These included Gliricidia sepium (Jacq.) Walp. trees intercropped with maize (Zea mays L.), with and without pigeonpea (Cajanus cajan L.), sole maize, sole pigeonpea, sole gliricidia and a maize + pigeonpea intercrop. Soil mineral N was determined before and during the 1997/1998, 1998/1999 and 1999/2000 cropping seasons. Total soil mineral N content (NO3 + NH4+) was greatest in the agroforestry systems (p<0.01). Pre-season soil mineral N content in the 0–20 cm horizon was greater in treatments containing trees (≤85 kg N ha−1) than in those without (<60 kg ha−1; p<0.01); however, soil mineral N content declined rapidly during the cropping season. Uptake of N was substantially greater in the agroforestry systems (200–270 kg N ha−1) than in the maize + pigeonpea and sole maize treatments (40–95 kg N ha−1; p<001). Accumulation of N by maize was greater in the agroforestry systems than in sole maize and maize + pigeonpea (p<0.01); grain accounted for 55% of N uptake by maize in the agroforestry systems, compared to 41–47% in sole maize and maize + pigeonpea. The agroforestry systems enhanced soil fertility because mineralisation of the applied GLM increased pre-season soil mineral N content. However, this could not be fully utilised as soil N declined rapidly at a time when maize was too small to act as a major sink for N. Methods for reducing losses of mineral N released from GLM are therefore required to enhance N availability during the later stages of the season when crop requirements are greatest. Soil mineral N levels and maize yields were similar in the gliricidia + maize and gliricidia + maize + pigeonpea treatments, implying that addition of pigeonpea to the tree-based system provided no additional improvement in soil fertility.  相似文献   

19.

Integrating trees in agricultural landscapes is a promising option to sustainably provide goods for society while increasing biodiversity, securing animal welfare, and generating profits for stakeholders. The choice of the species and knowing how timber quality is affected when trees are integrated to crop and/or livestock enterprises can provide additional insights into the usefulness of timber after harvest, and wood density is one of the most important properties in this regard. The present study aimed to evaluate how Eucalyptus benthamii growth and wood density are affected in integrated crop-livestock systems when compared to monoculture forestry 74 months after planting in subtropical environments. The integrated systems were in an alley cropping design where crop and/or grazed pasture were temporally rotated in between tree lines (14?×?2 m trees spacing), and those systems were compared to monoculture forestry (3?×?2 m spacing). Tree trunks (n?=?60) were sampled in five diameter classes of each treatment by cutting disks in six positions of the trunk (0.1 m, 1.30 m, 25%, 50%, 75% and 90% of the total height) (n?=?360). Trees growing in integrated systems increased trunk diameter at breast height by 24.7%, increased wood fiber production per tree by 17.9%, and produced wood 9.0% less dense than in the monoculture forestry system. Monoculture forestry increased tree height, and there was no difference of trunk volume among the production systems. The results suggest that integrated systems can produce timber with lower wood density, but faster individual tree growth than in forestry monocultures. Such a system can promote sustainable intensification of agricultural production, and enhance provision of complementary ecosystem services.

  相似文献   

20.
Nitrogen fixing and non-N2 fixing legumes such as Gliricidia speium and Senna siamea have been used in alley cropping systems for soil improvement and source of N for food crops. However their establishments could be limited by P and moisture deficiencies in degraded soils. Vesicular-arbuscular mycorrhizal fungi can help to overcome these deficiencies. We examined the effects of a vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus deserticola, on the performance of sole hedgerow trees of Gliricidia sepium and Senna siamea and their mixtures (interplanted) in a fallowed alley cropping experiment on a degraded Alfisol in southwestern Nigeria. Percentage root infection by VAM fungi was higher in inoculated plants than in uninoculated ones irrespective of whether they were interplanted or non-interplanted. Inoculation with G. deserticola increased dry matter accumulation and nutrient uptake (N. P, Mg and K) but there was no significant interaction between mycorrhizal inoculation and interplanting for growth and nutrient uptake except for the uptake of P, Mg and K in G. sepium. Inoculation with G. deserticola reduced leaf shedding of G. sepium by 50% but did not have the same effect for S. siamea. For both tree species inoculated plants extracted more water from 0–30 cm depth than the uninoculated ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号