首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional agroforestry parkland systems in Burkina Faso are under threat due to human pressure and climate variability and change, requiring a better understanding for planning of adaptation. Field experiments were conducted in three climatic zones to assess Sorghum bicolor (L.) Moench (Sorghum) biomass, grain yield and harvest index in parklands under different rainfall pattern and compared to simulations of sorghum biomass and grain yield with the Water, Nutrient and Light Capture in Agroforestry Systems (WaNuLCAS) model for calibration and parametrisation. For planning adaptation, the model was then used to evaluate the effects of different management options under current and future climates on sorghum biomass and grain yield. Management options studied included tree densities, tree leaf pruning, mulching and changes in tree root patterns affecting hydraulic redistribution. The results revealed that sorghum biomass and grain yield was more negatively affected by Parkia biglobosa (Jacq.) Benth. (néré) compared to Vitellaria paradoxa C. F Gaertn (karité) and Adansonia digitata L. (baobab), the three main tree species of the agroforestry parkland system. Sorghum biomass and grain yield in different influence zones (sub-canopy, outside edge of canopy, open field) was affected by the amount of precipitation but also by tree canopy density, the latter depending itself on the ecological zone. The harvest index (grain as part of total biomass) was highest under the tree canopy and in the zone furthest from the tree, an effect that according to the model reflects relative absence of stress factors in the later part of the growing season. While simulating the effects of different management options under current and future climates still requires further empirical corroboration and model improvement, the options of tree canopy pruning to reduce shading while maintaining tree root functions probably is key to parkland adaptation to a changing climate.  相似文献   

2.
As a tree management tool, three treatments of crown pruning (total-pruning, half-pruning and no-pruning) were applied to Vitellaria paradoxa (karité) and Parkia biglobosa (néré) in agroforestry parkland systems in Burkina Faso. The area under each tree was divided into four concentric tree influence zones (Zones A: up to 2 m from the tree trunk, B: up to half of the radius of the tree crown, C: up to the edge of the tree crown and D: up to 2 m away from the edge of the tree crown). Millet production under these zones and outside was assessed during two cropping seasons over the study period of three years and the results showed that tree crown pruning had significant effect on millet production and the highest millet grain yield and total dry matter were produced under total-pruned trees (507 ± 49 and 2033 ± 236 kg ha−1 year−1, respectively). Light transmission, transpiration and soil nutrient status under the trees were also analysed in relation to millet production. The results of the analysis showed that total-pruned trees gave the highest millet production due to the reduction by crown pruning of the effects of large tree crowns on PAR transmission below crowns and rates of transpiration by trees. Soil was more fertile closer to the tree trunks than outside tree crowns. This may also be one of the reasons why millet overall performed better under Zone B than outside tree crowns. The higher production of millet under Zone B than under Zone A, the zone closer to the tree trunk, may be due to lower light intensity and more intense competition for water between trees and crops under Zone A. It was concluded that at least in the short term millet production could be improved by crown pruning of both karité and néré, but long term effects may depend on the ability of the trees to maintain the amelioration of soil fertility and on how quickly the trees recover from pruning. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The effects of crown pruning of mature indigenous fruit trees of Vitellaria paradoxa C. F Gaertn (commonly known as karité) and Parkia biglobosa (Jacq.) R. Br. ex G. Don (commonly known as néré) on recovery of crown size and fruit yield were assessed during 6 years in an agroforestry parkland system in Burkina Faso. Three treatments of crown pruning (total-pruning, half-pruning and a control of no-pruning) were applied to karité and néré. Each treatment comprised ten individuals of each species or a total of 60 trees of both species. Six years after pruning, higher recovery (81%) of crown diameter was achieved in total-pruned trees of néré as opposed to karité which recovered by only 73%. On the contrary, fruit production in total-pruned trees of karité recovered by 83% 5 years after pruning and fully (100%) 6 years after pruning as opposed to néré which recovered by only 57% 5 years after pruning but declined to 16% on the sixth year probably due to interannual variability. Fruit yields did not differ significantly between unpruned and half-pruned trees of both species throughout the experiment period. Total pruning may, therefore, be recommended to farmers to rejuvenate old trees of karité in parklands on the basis of fast recovery of fruit and slow recovery of crown in the species. Slow recovery of crown in pruned trees is the most desirable characteristic in parklands in order to avoid the negative effect of tree shade on adjacent crop.  相似文献   

4.
On-farm trials were conducted to assess the effects of four branch pruning levels on maize grain yield, tree growth and stem shape. The experimental plots consisted of Gmelina (Gmelina arborea R.Br.) trees planted at 1 × 10 m with maize intercropped in the 10 m-wide alleys between lines of trees. Pruning levels consisted of retaining a live crown ratio of 60–70% (T 1), 40–50% (T 2); 30–40% (T 3) and of 20–30% (T 4). At the end of the experiment, the total maize grain yield was highest under the high pruning intensity (T 4) (18.06 t ha−1) and lowest under T 1 (14.48 t ha−1). Maize grain yield under the pruning regime T 2 and T 3 were 16.08 and 17.21 t ha−1, respectively. Mean annual increment (MAI) in tree diameter was greater (5.0 cm year−1) under T 1 than those at T 4 (4.1 cm year−1). Pruning regimes T 2 and T 3 resulted in a MAI of 4.7 and 4.5 cm year−1, respectively. Financial analysis showed that maize-tree systems under T 4 were more profitable than under T 1 as long as the reduction of the average dbh at harvest were not greater than 1 cm. Pruning trees intensively also generated greater returns from labour than moderate pruning, as the greater maize grain yields under T 4 compensated for the cost of pruning and the lower timber yield. In the context of resource-poor farmers, intensive branch pruning was a practice that prolonged the period of profitable intercropping and was compatible with commercial timber production.  相似文献   

5.
Besides aboveground interactions, pruning of trees may also modify their rooting pattern for which a better understanding is needed for the optimisation of agroforestry systems. Thus, variation in fine root (d 2 mm) distribution of pruned trees and crops were assessed during three cropping seasons by sampling soil layers at 10 cm intervals up to 50 cm and at four distances from tree trunk. Three crown pruning treatments (totally-pruning, half-pruning and no-pruning) were applied to karité (Vitellaria paradoxa) and néré (Parkia biglobosa). In 1999, 59% (0.477 cm cm–3) and 69% (0.447 cm cm–3) of fine roots for karité and néré respectively occurred in the upper 20 cm with a significant decrease in root length density with soil depth. However, in 2000, totally-pruned trees of néré and karité showed 32% (0.051 cm cm–3) and 34% (0.078 cm cm–3) of their density in the upper 20 cm whereas root distribution in 2001 was similar to that of 1999. Thus, pruning to reduce belowground competition for the benefit of associated crops can be recommended in the light of the temporary reduction of root density in crop rooting zone and consequently the increase in crop production.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
Green manure of multipurpose trees is known to be a good source of nutrients to crop. However, most agroforestry species do not have adequate phosphorus (P) in their leaves. Supplementing green manure with moderate dose of P is a beneficial strategy to improve food security in Rwanda. This study examines the effects of Calliandra calothyrsus Meissner, Tithonia diversifolia Hensley A.Gray and Tephrosia vogelii Hook.f. green manure applied independently or in combination with triple super phosphate (TSP) and lime on maize yield and P uptake in the Oxic Tropudalf of Rubona, Rwanda. The treatments were the control, lime at 2.5 t ha−1, TSP at 25 and 50 kg P ha−1, leaf of C. calothyrsus, T. diversifolia, and T. vogelii each at 25 and 50 kg P ha−1, respectively. Leaf shrubs biomass, TSP and lime were applied for four consecutive seasons (2001–2004). The results showed that the combination of green manure with TSP at a rate of 50 kg P ha−1 significantly increased maize yield from 24 to 508% when compared to the control and T. divesifolia combined with TSP was leading (508%). Equally, the same treatments as indicated above showed higher P uptake (15.6–18. 6 kg P ha−1) than the control (5 kg P ha−1) and 65% of maize yields variation was explained by total P uptake. The plant residues quality such as C:N ratio, total plant N, and P significantly influenced the variability of maize grain yields.  相似文献   

7.
This study aimed to identify pruning intensity and frequency that can be applied to eucalypt without imposing growth reduction, in an agroforestry system in Brazil (17°36’ S and 46°42’ W). Pruning treatments included removal of 0, 1/4 and 1/3 of the live crown height (LCH) with or without the removal of some thick branches above this height (TBA), in three or four lifts, which started at 9 months. There was no effect of pruning on tree height. Diameter (dbh) and volume per tree decreased (P ≤ 0.05) only with the removal of 1/3 of the LCH + TBA, of all trees of the stand, in three lifts, up to 36 months. The Weibull diameter distribution curves showed a higher proportion of trees in the greatest diameter classes with the removal of 1/4 or 1/3 of the LCH + TBA of selected trees, in four lifts, at the age of 36 months. The time required for applying pruning to a height of 6 m did not differ among treatments (P > 0.05). Pruning up to 1/3 of the LCH + TBA of selected trees, in 4 lifts (6-month intervals) is recommended because there was a higher proportion of trees in the greatest diameter classes and the dbh at the time of the last pruning was smaller than for the other treatments, which implies in reduced knotty core. The production of trees with larger diameter and reduced knotty core may increase farmers’ income and reduce the pressure on native forests.  相似文献   

8.
We tested the hypothesis that shallow-rooted crops and deep-rooted trees will share the available water in a complementary manner, when grown together, in a field trail in the Turkana district of northern Kenya during 1994 to 1996. Such studies have been few in dryland agroforestry. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop) on total biomass production and their interactions were tested. In 1996 Sorghum bicolor (L.) Moench was used during the first vegetation period and Vigna unguiculata (L.) Walp. during the second. We used naturally generated runoff water for irrigation to supplement low rainfall amounts typical for the area. High biomass production (> 13 t ha–1 over a two year period) was observed irrespective of intercropping of pruned trees or sole tree stands. Although the pruning treatment reduced total tree biomass yields by a quarter, the introduction of annual intercrops after the pruning of trees outweighed this loss. The yields of the intercrops in the pruned tree treatments were similar to their yields when grown as monocrops. The calculation of land equivalent ratios showed overyielding for intercropped, pruned systems. The high values for LER (1.36 at low and 1.47 at high density of trees) indicate that there is complementarity in resource use between the different species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Water is the most limiting factor for plant production in arid to semiarid regions. In order to overcome this limitation surface runoff water can be used to supplement seasonal rainfall. During 1996 we conducted a runoff irrigated agroforestry field trial in the Turkana district of Northern Kenya. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop: Sorghum bicolor (L.) Moench during the first season and Vigna unguiculata (L.) Walp. during the second season) on water use were investigated. The annual crops were also grown as monocrops. Water consumption ranged from 585 to 840 mm during the first season (only treatments including trees). During the second season, which was shorter and the plants relied solely on stored water in the soil profile, water consumption was less than half of that during the first season. Highest water consumptions were found for non-pruned trees at high density and the lowest were found for the annual crops grown as monocrops. Tree pruning decreased water uptake compared to non-pruned trees but soil moisture depletion pattern showed complementarity in water uptake between pruned trees and annual intercrops. The highest values of water use efficiency for an individual treatment were achieved when the pruned trees at high density were intercropped with sorghum (1.59 kg m–3) and cowpea (1.21 kg m–3). Intercropping and high tree density increased water use efficiency in our runoff agroforestry trial. We ascribe the observed improvement in water use efficiency to the reduction of unproductive water loss from the bare soil.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
Three browse species, Afzelia africana Sm., Khaya senegalensis (Desv.) A. Juss., and Pterocarpus erinaceus Poir. were investigated as agroforestry system components in a subhumid zone of West Africa. The foliation, flowering and fruiting of ten trees per species were recorded every 15 days for 2 years. The total foliage biomass at maximum availability was determined by complete pruning of 75 trees. The chemical composition of the foliage and the proportion of trees pruned on the pasture were determined. The phenological phases of the species began in the dry season and ended at the end of the rainy season. Afzelia africana and Pterocarpus erinaceus were totally defoliated during 2–6 weeks while K. senegalensis replaced the foliage progressively and earlier. The crude protein content was significantly different (123 g, 102 g and 92 g kg−1 dry matter (DM) for Afzelia africana, Pterocarpus erinaceus and K. senegalensis, respectively). The foliage biomass per tree of K. senegalensis, Pterocarpus erinaceus and Afzelia africana differed significantly (41 kg, 30 kg and 21 kg DM ha−1, respectively) while Pterocarpus erinaceus had the highest available foliage biomass per ha. The trees of Afzelia africana were intensively pruned. There was a significant relationship found between foliage biomass and circumference of the crown for Afzelia africana (R 2 = 82%) and Pterocarpus erinaceus (R 2 = 81%). Relationships were also found between circumference of the branches and foliage biomass. In conclusion, the trees are important potential fodder and nitrogen sources for animals in the agrosilvopastoral system and the phenological differences make the fodder available during a long period of time.  相似文献   

11.
This study investigated the occurrence and diversity of hemi-parasitic plants, vertebrate and insect pest species of Parkia biglobosa (Keay), and Vitellaria paradoxa (Gaertn.) as well as the strategies for their control in the parklands of the Nigerian humid savanna. Results indicated that of the two major hemi-parasitic plants encountered, Tapinanthus globiferus was the more widespread with wider host range than T. dodonifolius. Mechanical control by cutback of infested branches was ineffective for both species. The major vertebrate pests consist of 6 avian species from 3 families: Nectaridae, Plocidae and Cuculidae; a fruit bat, Epomops frangueti and an unidentified squirrel. The species fed on both the fruits of the trees and the seeds of the hemi-parasitic plants. Twenty insect species from 14 families were encountered on P. biglobosa compared to 33 species from 17 families on V. paradoxa in all the ecological zones covered in the study. Species diversity was comparatively higher in the fallow than in the cultivated land. The majority of the insects encountered was of little significance and may not warrant application of control. Cirina forda (Saturnidae:lepidoptera) was a major pest causing 60%–90% defoliation of mature trees of V. paradoxa. All larval stages were destructive but control at this stage is not advised because it provides incidental source of food to locals. Control after pupation using a slow-release insecticide with a soil penetration depth of 15–20 cm is suggested.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
The traditional Acacia senegal bush-fallow in North Kordofan, Sudan, was disrupted and the traditional rotational fallow cultivation cycle has been shortened or completely abandoned, causing decline in soil fertility and crop and gum yields. An agroforestry system may give reasonable crop and gum yields, and be more appealing to farmers. We studied the effect of tree density (266 or 433 trees ha−1) on two traditional crops; sorghum (Sorghum bicolor) early maturing variety and karkadeh (Hibiscus sabdariffa), with regard to physiological interactions, yields and soil water depletion. There was little evidence of complementarity of resource sharing between trees and crops, since both trees and field crops competed for soil water from the same depth. Intercropping significantly affected the soil water status, photosynthesis and stomatal conductance in trees and crops. Gum production per unit area increased when sorghum was intercropped with trees in low or high density. However, karkadeh reduced the gum yield significantly at high tree density. Yields of sorghum and karkadeh planted within trees of high density diminished by 44 and 55% compared to sole crops, respectively. Intercropping increased the rain use efficiency significantly compared to trees and field crops grown solely. Karkadeh appears to be more appropriate for intercropping with A. senegal than sorghum and particularly recommendable in combination with low tree density. Modification of tree density can be used as a management tool to mitigate competitive interaction in the intercropping system.  相似文献   

13.
The effect of shoot pruning on leaf phenology, stem wood anatomy and sap flow was investigated on Senna spectabilis (DC.) Irwin and Barneby in Machakos, Kenya. Unpruned trees (single stem) were compared to hedges (two to four stems), pruned 4 times a year during two rainy seasons (April–June, 1997 and November, 1997–January, 1998) separated by a dry season (July–October 1997). Trees attained peak leaf area of 55 m2 plant−1 during the rainy seasons, and shed all their leaves naturally during the dry season. Maximum hedge leaf area was 4 m2 plant−1 between pruning events and 5.2 m2 plant−1 during the dry season. Pruning induced multiple stems and narrow xylem vessels with low hydraulic conductivity. Average cross sectional area of conducting wood per plant was at least 1.8 times greater in trees than in hedges. Xylem lumen diameter at 5 mm depth below the cambium was significantly (P < 0.001) larger in trees (53.6 ± 6.21 μm) than that in hedges (36.2 ± 8.21 μm). Maximum sap flow occurred in the wet season for trees (4800 g d−1 plant−1) and in the dry season for hedges (1400 g d−1 plant−1). Wet season pruning suppressed crown expansion and modified the natural phenology of senna, reducing transpiration rate and therefore soil water depletion, causing crowns to grow. This enhanced the ecological combining ability of senna managed as hedges with annual crops.  相似文献   

14.
Taiwania (Taiwania cryptomerioides Hay) is an important timber species in Taiwan. Growth in generally improved trees under intense silvicultural practice is so rapid that rotations or the practice of thinning trees may be as short as 20–30 years. Thus, the wood properties of young plantation trees need to be characterized to effectively use this resource. The effects of different thinning and pruning methods on the compressive strength parallel to grain of young Taiwania trees were explored. Average compressive strengths with various thinning treatments revealed the trend of no thinning > medium thinning > heavy thinning and in the pruning treatments showed the trend of medium pruning > no pruning > heavy pruning. However, most results showed no statistically significant differences among thinning and pruning treatments.  相似文献   

15.
Nitrogen inputs from biological nitrogen fixation contribute to productivity and sustainability of agroforestry systems but they need to be able to offset export of N when trees are harvested. This study assessed magnitudes of biological nitrogen fixation (natural 15N abundance) and N balance of Acacia mangium woodlots grown in farmer’s fields, and determined if N2 fixation capacity was affected by tree age. Tree biomass, standing litter, understory vegetation and soil samplings were conducted in 15 farmer’s fields growing A. mangium as a form of sequential agroforestry in Claveria, Misamis Oriental, Philippines. The trees corresponded to ages of 4, 6, 8, 10 and 12 years, and were replicated three times. Samples from different plant parts and soils (0–100 cm) were collected and analyzed for δ15N and nutrients. The B-value, needed as a reference of isotopic discrimination when fully reliant on atmospheric N, was generated by growing A. mangium in an N2-free sand culture in the glasshouse. Isotopic discrimination occurring during N2 fixation and metabolic processes indicated variation of δ15N values in the order of nodules > old leaves > young leaves > stems > litterfall and roots of the trees grown in the field, with values ranging from −0.8 to 3.5‰ except nodules which were enriched and significantly different from other plant parts (P < 0.0001). Isotopic discrimination was not affected by tree age (P > 0.05). Plants grown in N free sand culture exhibited the same pattern of isotopic discrimination as plants grown in the field. The estimated B-value for the whole plant of A. mangium was −0.86‰. Mature tree stands of 12 years accumulated up to 1994 kg N ha−1 in aboveground biomass. Average proportion of N derived from N2 fixation of A. mangium was 54% (±22) and was not affected by age (P > 0.05). Average yearly quantities of N2 fixed were 128 kg N ha−1 in above-ground biomass amounting to 1208 kg N fixed ha−1 over 12 years. Harvest of 12-year old trees removed approximately 91% of standing aboveground biomass from the site as timber and fuel wood. The resulting net N balance was +151 kg N ha−1 derived from remaining leaves, twigs, standing litter, and +562 kg N ha−1 when tree roots were included in the calculation. The fast growing A. mangium appears to be a viable fallow option for managing N in these systems. However, other nutrients have to be replaced by using part of the timber and fuel wood sales to compensate for large amounts of nutrient removed in order for the system to be sustainable.  相似文献   

16.
This study was conducted near Hyderabad, India during 1991–1994 to quantify the effects of shoot pruning, fertilization, and root barriers around Leucaena leucocephala trees on intercropped sorghum(Sorghum bicolor) or cowpea (Vigna unguiculata) crop production under rainfed conditions. Crop plants grown with pruned trees attained higher dry matter and leaf area index than did those with unpruned trees. Two-year mean grain yields of sorghum with no root barriers were76% and 39% of pure crop yield (1553 kg ha–1)for pruned and unpruned trees, respectively. Corresponding values for cowpea were 49% and 26% of pure crop yield (1075 kgha–1). Sorghum or cowpea intercropped with trees responded to fertilizer application more strongly than did their respective pure crops, suggesting an increased need for fertilizer application in this agrisilviculture system over that currently used for pure crops. Impact of root barriers was small on either crop. Irrespective of root barriers, a high response to tree pruning suggested above ground competition for light dominated tree/crop interactions in this agrisilviculture system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.

Faidherbia albida is one of the scattered trees commonly intercropped with most cereals in Ethiopia due to its positive impacts. The tree is pruned for various purposes including for fencing and fuelwood. In this study, the impact of pruning on water relations of F. albida and on understorey wheat productivity was investigated. The on-farm study was conducted in Ejerssa Joro, semi-arid Ethiopia. Six mature trees were selected; three were fully pruned and three were left unpruned. Sap flow and leaf water potential were measured on these trees. Crop gas exchange, aboveground biomass and grain yield were measured under and outside tree canopies. The highest and the lowest sap volumes, recorded from unpruned F. albida, during the dry period, were 153 L day?1 and 20 L day?1, respectively. The highest and the lowest sap volumes were 13.4 L day?1 and 0.04 L day?1 recorded during the wet period. Wheat CO2 assimilation was highest (7.8 µmolm?2 s?1) at 1 m distance and declined away from the tree trunk under unpruned trees. Aboveground biomass and grain yield under unpruned treatments were significantly (P?<?0.05) higher than outside of canopy of same tree and outside canopies of pruned trees. Pruning reduced aboveground biomass and grain yield by 30% and 27%, respectively; despite the higher water uptake by unpruned trees. We recommend that intensive pruning of F. albida be discouraged and propose further studies on optimal pruning for increased food production and provision of tree products to meet farmers’ needs.

  相似文献   

18.
The effect of two tree species, karité (Vitellaria paradoxa) and néré (Parkia biglobosa) on soil condition, development and production of cotton, sorghum and pearl millet, main crops in South Mali, has been investigated.The soil under the trees is slightly richer (organic matter content and several cations) compared to adjacent tree-less sites. Also tree-specific effects exist.Soil enrichment, however, is mainly a matter of redistribution of locally available nutrient resources.Of the six associations studied, only karité-cotton shows no tree-induced reduction in crop production. All other associations suffer greatly from reduced crop outputs caused by the trees, usually in the order of 60%.There are at least two reasons that explain tree-induced yield reduction. Because of increased humidity in the immediate surroundings of trees, in both soil and air, lower numbers of crop plants survive up to maturity, presumably because plants are attacked by fungi. Secondly, crop plants that mature show reduced output because of inter-specific competition for light and nutrients.In case of néré, in order to minimize the trees' negative influence lopping is advised. Such practice, however, is less suitable in case of karité, because of its assumed lower potential to regenerate, as compared to néré.  相似文献   

19.
In alley cropping systems, fast growing leguminous trees are pruned to reduce competition with crops for light and to provide organic inputs for crop nutrition. Tree regrowth depends on non-structural carbohydrate reserves in the remaining tree parts. In this study, the dynamics of starch and soluble carbohydrates in roots and stems of completely pruned (all shoots removed), partially pruned (one branch retained on the pruned stump) and unpruned Erythrina poeppigiana (Walp.) O.F. Cook and Gliricidia sepium (Jacq.) Kunth ex Walp. trees were studied under humid tropical conditions in Turrialba, Costa Rica. Measurements on starch and soluble carbohydrates in roots and stems were made at 0, 2, 6 and 12 weeks after pruning during both a “rainy” and a “dry” season. In general, the dynamics of non-structural carbohydrates in roots and stems of pruned E. poeppigiana and G. sepium trees were similar. Starch concentration was highest in unpruned trees and higher in roots than in stems of pruned trees. The effect of pruning intensity was first observed in stems, and starch reserves were more depleted in stems than in roots, an effect more evident during the “dry” season. The critical tree regrowth stage for starch mobilisation was that of vigorous sprout development at six or four weeks after pruning particularly in completely pruned trees. At this time, fine root biomass and length and nodule biomass in pruned trees decreased. Survival of fine roots and nodules was greater in partially pruned than in completely pruned trees. Starch accumulation in roots recommenced at 12 weeks after pruning in G. sepium, and later than 12 weeks after pruning in E. poeppigiana roots. This study showed that E. poeppigiana responded better to pruning regimes than G. sepium. Recovery of trees after pruning is better when trees are partially pruned than when completely pruned.  相似文献   

20.
Sorghum (Sorghum bicolor L. Moench) production in 15 transect blocks, each with a karité (Vitellaria paradoxa C. F. Gaertn.) tree at each end, was evaluated on-farm in a village of southern Burkina Faso in a season of below-average rainfall. Under tree crowns, plant height and grain yield were significantly lower, by a factor of 16% for grain yield, than elsewhere in transects. In addition, mean plant height, and mean biomass and grain production per area as well as per plant were higher at the outside edge of tree crowns than in the middle of the field. Soil moisture content decreased significantly with increasing distance from the tree in the 0–20 cm soil layer. Top soils were also richer in organic carbon and potassium around tree crowns than in the middle of blocks. Sorghum performance in the zone under and around canopies was projected at field scale and compared to central transect controls. Grain production in karité parklands was higher with trees of mean crown radii of 225 to 275 cm, average densities of 12 and 31 trees/ha than in areas without trees. Therefore, farmers do not improve cereal production by reducing parkland tree densities below these levels. When nut production is included in the analysis, maintaining trees in fields can be economically advantageous at all densities.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号