首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
黑龙江省1980—2005年森林火灾时空特征   总被引:4,自引:0,他引:4  
森林火灾是林火失去人为控制,在森林内自然蔓延和扩展,对生态系统和人类带来一定危害和损失的森林起火。森林火灾属世界性、跨国性的重大自然灾害,进入20世纪80—90年代以来,全球气候变暖导致森林火灾有上升的趋势,虽然各国的森林防火费用不断增加,但森林火灾发生的面积并未相  相似文献   

2.
3.
Understanding both historic and current fire regimes is indispensable to sustainable forest landscape management. In this paper, we use a spatially explicit landscape simulation model, LANDIS, to simulate historic and current fire regimes in the Great Xing’an Mountains, in northeastern China. We analyzed fire frequency, fire size, fire intensity, and spatial pattern of burnt patches. Our simulated results show that fire frequency under the current fire scenario is lower than under the historic fire scenario; total area burnt is larger with lower fire intensity under the historic fire scenario, and smaller with higher fire intensity under the current fire scenario. We also found most areas were burned by high intensity fires under the current fire scenario, but by low to moderate fires under the historic fire scenario. Burnt patches exhibit a different pattern between the two simulation scenarios. Large patches burnt by high intensity class fires dominate the landscape under the current fire scenario, and under historic fire scenario, patches burnt by low to moderate fire intensity fires have relatively larger size than those burnt by high intensity fires. Based on these simulated results, we suggest that prescribed burning or coarse woody debris reduction should be incorporated into forest management plans in this region, especially on north-facing slopes. Tree planting may be a better management option on these severely burned areas whereas prescribed burning after small area selective cutting, retaining dispersed seed trees, may be a sound forest management alternative in areas except for the severely burned patches.  相似文献   

4.
Each year, forest fires destroy about 500,000 ha of vegetation in Europe, predominantly in the Mediterranean region. Many large fires are linked to the land transformations that have taken place in the Mediterranean region in recent decades that have increased the risk of forest fires. On the one hand, agricultural fallows and orchards are slowly being colonized by vegetation, and on the other hand, the forest is not sufficiently used, both of which result in increased accumulation of fuel. In addition, urbanization combined with forest extension results in new spatial configurations called “wildland-urban interfaces” (WUI). WUI are commonly defined as “areas where urban areas meet and interact with rural lands, wildland vegetation and forests”. Spatial analyses were performed using a WUI typology based on two intertwined elements, the spatial organization of homes and the structure of fuel vegetation. The organization of the land cover in terms of representativeness, complexity or road density was evaluated for each type of WUI. Results showed that there were significant differences between the types of WUI in the study area. Three indicators (i) “fire ignition density”, derived from the distribution of fire ignition points, (ii) “wildfire density”, derived from the distribution of wildfire area and (iii) “burned area ratio”, derived from the proportion of the burned area to the total study area were then compared with each type of WUI. Assuming that the three indicators correspond to important aspects of fire risk, we showed that, at least in the south of France, WUI are at high risk of wildfire, and that of the different types of wildland-urban interfaces, isolated and scattered WUI were the most at risk. Their main land cover characteristics, i.e. low housing and road densities but a high density of country roads, and the availability of burnable vegetation such as forested stands and shrubland (garrigue) explain the high fire risk. Improving our knowledge of relationships between WUI environments and fire risk should increase the efficiency of wildfire prevention: to this end, suitable prevention actions and communication campaigns targeting the types of WUI at the highest risk are recommended.  相似文献   

5.
Forest fires caused by natural forces or human activities are one of the major natural risks in Northeast China. The incidence and spatial distribution of these fires vary over time and across the forested areas in Jilin Province, Northeast China. In this study, the incidence and distribution of 6519 forest fires from 1969 to 2013 in the province were investigated. The results indicated that the spatiotemporal distribution of the burnt forest area and the fire frequency varied significantly by month, year, and region. Fire occurrence displayed notable temporal patterns in the years after forest fire prevention measures were strictly implemented by the provincial government. Generally, forest fires in Jilin occurred in months when stubble and straw were burned and human activities were intense during traditional Chinese festivals. Baishan city, Jilin city, and Yanbian were defined as fire-prone regions for their high fire frequency. Yanbian had the highest frequency, and the fires tended to be large with the highest burned area per fire. Yanbian should thus be listed as the key target area by the fire management agency in Jilin Province for better fire prevention.  相似文献   

6.
For efficient forest fire management, special precautions are required in dry and strong-wind seasons vulnerable to severe forest fires. To extract the seasonal characteristics of forest fires in South Korea, the statistics over the past 16 years, 1991 through 2005, were investigated. The daily records of the number of fire occurrences, the total area burned and the average burned area per occurrence were examined to identify the seasonal patterns of forest fires using cluster analysis and principal component analysis; the risk of daily fires was also assessed using the ordered logit model. As a result, the fire patterns were classified into five clusters and a general danger index for forest fires was derived from the first principal component, showing relatively large-scaled fire regimes in spring, and frequent small-scaled fire regimes in autumn and winter. In connection with the ordered logit model, the probability for the five ranks of forest fire risk was calculated and the threshold for high-risk fires was detected. As an implementation of the results above, the proper forest fire precautionary period in South Korea was estimated, and consequently October 21 through May 17 was recognized as a dry season at a high risk of forest fires. This period began 10 days earlier in autumn and extended into midwinter (late December and January) as opposed to the existing precautionary period, indicating the need of more cautious forest fire management earlier in autumn and continuing through midwinter.  相似文献   

7.
Forest fires are influenced by several factors,including forest location, species type, age and density,date of fire occurrence, temperatures, and wind speeds,among others. This study investigates the quantitative effects of these factors on the degree of forest fire disaster using nonparametric statistical methods to provide a theoretical basis and data support for forest fire management.Data on forest fire damage from 1969 to 2013 was analyzed. The results indicate that different forest locations and types, fire occurrence dates, temperatures, and wind speeds were statistically significant. The eastern regions of the study area experienced the highest fire occurrence,accounting for 85.0% of the total number of fires as well as the largest average forested area burned. April, May, and October had more frequent fires than other months,accounting for 78.9%, while September had the most extensive forested area burned(63.08 ha) and burnt area(106.34 ha). Hardwood mixed forest and oak forest had more frequent fires, accounting for 31.9% and 26.0%,respectively. Hardwood-conifer mixed forest had the most forested area burned(50.18 ha) and burnt area(65.09 ha).Temperatures, wind speeds, and their interaction had significant impacts on forested area burned and area burnt.  相似文献   

8.
The Santa Fe municipal watershed provides up to 40% of the city's water and is at high risk of a stand-replacing fire that could threaten the water resource and cause severe ecological damage. Restoration and crown fire hazard reduction in the ponderosa pine (PP) forest is in progress, but the historic role of crown fire in the mixed-conifer/aspen (MC) and spruce-dominated forests is unknown but necessary to guide management here and in similar forests throughout the southwestern United States. The objective of our study was to use dendroecological techniques to reconstruct fire history and fire–climate relationships along an elevation, forest type, and fire regime gradient in the Santa Fe River watershed and provide historical ecological data to guide management. We combined systematic (gridded) sampling of forest age structure with targeted sampling of fire scars, tree-ring growth changes/injuries, and death dates to reconstruct fire occurrence and severity in the 7016 ha study area (elevation 2330–3650 m). Fire scars from 141 trees (at 41 plots) and age structure of 438 trees (from 26 transects) were used to reconstruct 110 unique fire years (1296–2008). The majority (79.0%) of fires burned during the late spring/early summer. Widespread fires that scarred more than 25% of the recording trees were more frequent in PP (mean fire interval (MFI)25% = 20.8 years) compared to the MC forest (31.6 years). Only 24% of the fires in PP were recorded in the MC forest, but these accounted for a large percent of all MC fires (69%). Fire occurrence was associated with anomalously wet (and usually El Niño) years preceding anomalously dry (and usually La Niña) years both in PP and in the MC forest. Fire in the MC occurred during more severe drought (mean summer Palmer Drought Severity Index; PDSI = −2.59), compared to the adjacent PP forest (PDSI = −1.03). The last fire in the spruce forest (1685) was largely stand-replacing (1200 ha, 93% of sampled area), recorded as fire scars at 68% of plots throughout the MC and PP forests, and burned during a severe, regional drought (PDSI = −6.92). The drought–fire relationship reconstructed in all forest types suggests that if droughts become more frequent and severe, as predicted, the probability of large, severe fire occurrence will increase.  相似文献   

9.
基于2003—2018年的中国森林火灾统计数据,全面分析了森林火灾发生的时空分布格局,定量分析了其统计学规律,旨在为森林火灾预测、管理和风险决策提供基础支撑.分析结果表明,森林火灾的发生具有极强的随机性和离散性,通过森林火灾总次数、火场面积和受害森林面积的平均数来反映森林火灾发生风险将会导致评估结果偏高.森林火灾发生次...  相似文献   

10.
黑龙江省林火规律研究Ⅱ.林火动态与格局影响因素的分析   总被引:19,自引:0,他引:19  
胡海清  金森 《林业科学》2002,38(2):98-102
本文对在大尺度 (5 0 0km2 以上 )上影响黑龙江省林火的因素及其影响途径进行了分析。结果表明 ,年林火次数 (人为火次数 )与林业人口正相关 ,林火面积与人口无关。干燥度的空间差异对林火燃烧率格局有正向影响。林火特征与气候因子之间没有线性关系。黑龙江省林火次数和面积对年均温和降水量的响应可归纳为旋转的单叶双曲面和双叶抛物面两种模式。林火特征的周期与年均温、年降水量的周期关系很大。黑龙江省森林类型对林火次数、面积的影响在省级区划尺度上不显著的。较高的管理水平显著减少林火。林火次数、面积与了望塔数量、消防车数量及通讯覆盖率等无线性关系  相似文献   

11.
Successful management of forest fire risk in the Northeastern China boreal forest ecosystem often involves trade-offs between fire dynamics, fire hazard reduction, and fiscal input. We used the LANDIS model to study the effects of alternative fuel reduction strategies on fire dynamics and analyzed cost effectiveness for each fuel reduction strategy based on cost–benefit theory. Five levels of fuel treatment area (2, 4, 6, 8, and 10% for each decade) and two fuel treatment types (prescribed burning [PB] and mechanical treatments in combination with prescribed fire [PR]) under current fire suppression simulated by LANDIS were compared in a 5 × 2 factorial design over a 300-year period. The results showed that PR scenarios are more effective at reducing the occurrence and burn area of catastrophic fires than PB scenarios. In addition, area burned by high intensity fire can be tremendously reduced by increasing low intensity fires with a higher level of treatment area under the various PR scenarios. The cost effectiveness of alternative fuel reduction strategies is strongly dependent on treatment area. In general, PB scenarios will be more cost effective in larger treatment areas and PR scenarios in smaller. We recommend mechanical treatments in combination with prescribed fire, with 4% of landscape treated in each decade (PR04) to be the optimal fuel reduction strategy in the study area based on risk control and cost efficiency analysis. However, the most challenging work in China is to make local forest policy makers and land managers accept the ecological function of fire on forest ecosystems.  相似文献   

12.
In the majority of US political settings wildland fire is still discussed as a negative force. Lacking from current wildfire discussions are estimates of the spatial extent of fire and their resultant emissions before the influences of Euro-American settlement and this is the focus of this work. We summarize the literature on fire history (fire rotation and fire return intervals) and past Native American burning practices to estimate past fire occurrence by vegetation type. Once past fire intervals were established they were divided into the area of each corresponding vegetation type to arrive at estimates of area burned annually. Finally, the First Order Fire Effects Model was used to estimate emissions. Approximately 1.8 million ha burned annually in California prehistorically (pre 1800). Our estimate of prehistoric annual area burned in California is 88% of the total annual wildfire area in the entire US during a decade (1994–2004) characterized as “extreme” regarding wildfires. The idea that US wildfire area of approximately two million ha annually is extreme is certainly a 20th or 21st century perspective. Skies were likely smoky much of the summer and fall in California during the prehistoric period. Increasing the spatial extent of fire in California is an important management objective. The best methods to significantly increase the area burned is to increase the use of wildland fire use (WFU) and appropriate management response (AMR) suppression fire in remote areas. Political support for increased use of WFU and AMR needs to occur at local, state, and federal levels because increasing the spatial scale of fire will increase smoke and inevitability, a few WFU or AMR fires will escape their predefined boundaries.  相似文献   

13.
China is not rich in natural forest sources. Owing to natural and historical factors, forest fires have long been frequenting China. Forest fire prevention is the most important of all. Forest fire prevention and controlling have long been held as a very important factor in our ecological plans. Taking china 's special geographical location, topography, climate and the distribution of forest sources into consideration, we have every reason to believe that forest fires in China have their own special environment and occurrence. China suffers forest fire hazards heavily. Forest fires arise occasionally from thunderstruck or self-burning of peat. However, most fires are due to man's fault while inappropriately using fires in production and daily life. Since China is located in the Northern Hemisphere with a vast territory, there is a striking difference in the climate between South China and North China.  相似文献   

14.
The paper described the natural conditions and forest types in Northwestern Region of China. Most forests in the region are distributed in subalpine areas. It is important to protect the existent forests in the region for maintaining ecological balance. According to the statistics results of 1991~2000, the paper analyzes the forest fires distribution and fire severity. Annually the numbers of forest fires range from 52 to 240. The incidence rate of forest fires in Northwestern Region is under 0.33 per ten thousand ha. There are 0.67-64.4 ha burned area per ten thousand ha forest. The main reasons for forest fires lie in the dry weather conditions, many firebrands, and high fuel loading. The strategies of fire management in the region are to stress the fire education in forest regions, strength the firebrands' management, emphasize the fuel management, and improve the fire monitoring and fire control ability.  相似文献   

15.
以湖南省为研究区域,分析冰雪后短期内(3月份)卫星热点的空间分布特征、与受害程度的空间关系,森林火灾发生的特点和扑火人员伤亡情况,以及气象因素对火发生的影响.结果表明:处于受害区确认为森林火灾的卫星热点占总数的61.00%.2008年3月份火灾次数和过火面积异常增高,共发生火灾3 097起,过火面积23 227.68 hm2,火灾次数超过1999-2007年3月份火灾次数的总和,且是1999-2007年3月份火灾次数总和的120.65%,3月份平均火灾次数的10.86倍.过火面积是1999-2007年3月份总和的88.40%,3月份平均过火面积的4.69倍.人员伤亡40人,是1999-2007年3月份人员伤亡总和的72.73%,平均伤亡人数的6.56倍.冰雪灾害后,2008年3月火灾次数、过火面积和人员伤亡人数的异常增高已经超出了气温和降水对火发生正常影响的范围.  相似文献   

16.
A key challenge in modern wildfire mitigation and forest management is accurate mapping of forest fuels in order to determine spatial fire hazard, plan mitigation efforts, and manage active fires. This study quantified forest fuels of the montane zone of Boulder County, CO, USA in an effort to aid wildfire mitigation planning and provide a metric by which LANDFIRE national fuel maps may be compared. Using data from 196 randomly stratified field plots, pre-existing vegetation maps, and derived variables, predictive classification and regression tree models were created for four fuel parameters necessary for spatial fire simulation with FARSITE (surface fuel model, canopy bulk density, canopy base height, and stand height). These predictive models accounted for 56–62% of the variability in forest fuels and produced fuel maps that predicted 91.4% and 88.2% of the burned area of two historic fires simulated in the FARSITE model. Simulations of areas burned based on LANDFIRE national fuel maps were less accurate, burning 77.7% and 40.3% of the historic fire areas. Our results indicate that fuel mapping efforts that utilize local area information and biotic as well as abiotic predictors will more accurately simulate fire spread rates and reflect the inherent variability of forested environments than do current LANDFIRE data products.  相似文献   

17.
Most forest fires in the Margalla Hills are related to human activities and socioeconomic factors are essential to assess their likelihood of occurrence.This study consid-ers both environmental (altitude,precipitation,forest type,terrain and humidity index) and socioeconomic (popula-tion density,distance from roads and urban areas) factors to analyze how human behavior affects the risk of forest fires.Maximum entropy (Maxent) modelling and random forest (RF) machine learning methods were used to predict the probability and spatial diffusion patterns of forest fires in the Margalla Hills.The receiver operating characteristic(ROC) curve and the area under the ROC curve (AUC) were used to compare the models.We studied the fire history from 1990 to 2019 to establish the relationship between the prob-ability of forest fire and environmental and socioeconomic changes.Using Maxent,the AUC fire probability values for the 1999s,2009s,and 2019s were 0.532,0.569,and 0.518,respectively;using RF,they were 0.782,0.825,and 0.789,respectively.Fires were mainly distributed in urban areas and their probability of occurrence was related to acces-sibility and human behaviour/activity.AUC principles for validation were greater in the random forest models than in the Maxent models.Our results can be used to establish preventive measures to reduce risks of forest fires by consid-ering socio-economic and environmental conditions.  相似文献   

18.
【目的】通过地理加权回归(GWR)模型估算非干扰林龄,利用遥感数据和林火发生历史数据,获取过火区域信息,进而对林火烈度分级,讨论林火烈度与森林类型的交互作用,估算干扰林龄,最终获得黑龙江省森林年龄的空间分布。【方法】以黑龙江森林为研究区域,基于研究区域的多光谱数据结合地面森林资源清查数据,通过逐步回归方法提取了包括遥感因子绿度指数(Greeness)、湿度指数(Wetness)、林分平均胸径(ADBH)、林分平均树高(ASH)及海拔(Altitude)在内的5个显著因子作为自变量,采用GWR模型建立非干扰林龄估算模型。采用全局Moran I来描述模型残差的空间自相关性。绘制研究区非干扰林龄空间分布图并探究林龄的空间分布状态。[JP+1]结合林火位置与面积记录对多光谱数据目视解译提取过火区域,根据dNBR将过火区域火烈度分级。将火烈度图与植被类型图叠加分析,讨论不同森林类型在不同火烈度下的演替情况。定义干扰林龄时,未发生树种更替的森林林龄不变,树种发生更替的森林在林火发生年将其林龄归为0,并在新的优势树种萌发时从1开始累加,以此类推干扰后森林的林龄。【结果】黑龙江省非干扰森林平均林龄为48年,标准差为16年。GWR模型的 Radj^2 为0.68,RMSE为16.171 7。使用Moran I来检验模型的残差,发现GWR模型可很好地消除残差的空间自相关性。研究区林龄整体空间分布状态不均匀,大兴安岭地区林龄普遍高于黑龙江林区。黑龙江省2000―2010年林火主要发生在大兴安岭及小兴安岭地区,根据dNBR将已提取的过火区域林火烈度分为:未过火、轻度过火、中度过火和重度过火4类,总过火面积为527 932 hm^2,其中重度29 157 hm^2、中度180 268 hm^2、轻度318 507 hm^2。兴安落叶松林和蒙古栎林在整个研究区中过火面积最大,分别占总过火面积的28.63%和47.23%。根据不同森林类型在不同火烈度下的演替情况,估算干扰森林的林龄并绘制干扰林龄空间分布图。【结论】 GWR模型能较有效地估算黑龙江省非干扰林龄,成功地降低了残差的空间自相关性。在估算林龄的过程中加入林火干扰因素,以获取更真实的林龄空间分布数据,可为黑龙江地区森林NPP、NEP以及森林碳储量、森林生物量等相关研究提供数据支持。  相似文献   

19.
Understanding the spatial pattern of fire is essential for Mediterranean vegetation management. Fire-risk maps are typically constructed at coarse resolutions using vegetation maps with limited capacity for prescribing prevention activities. This paper describes and evaluates a novel approach for fire risk assessment that may produce a decision support system for actual fire management at fine scales. FARSITE, a two-dimensional fire growth and behavior model was activated, using ArcView VBA code, to generate Monte Carlo simulations of fire spread. The study area was 300 km2 of Mt. Carmel, Israel. FARSITE fuel models were adjusted for Mediterranean conditions. The simulation session consisted of 500 runs. For each simulation run, a calendar date, fire length, ignition location, climatic data and other parameters were selected randomly from known distributions of these parameters. Distance from road served as a proxy for the probability of ignition. The resulting 500 maps of fire distribution (the entire area burnt in a specific fire) were overlaid to produce a map of ‘hotspots’ and ‘cold spots’ of fire frequency. The results revealed a clear pattern of fires, with high frequency areas concentrated in the northwestern part. The spatial pattern of the fire frequency map bears partial resemblance to the fuel map, but seems to be affected by several other factors as well, including the location of urban areas, microclimate, topography and the distribution of ignition locations (which is affected by road pattern). These results demonstrate the complexities of fire behavior, showing a very clear pattern of risk level even at fine scales, where neighboring areas have different risk levels due to combinations of vegetation cover, topography, microclimate and other factors.  相似文献   

20.
【目的】通过地理加权回归(GWR)模型估算非干扰林龄,利用遥感数据和林火发生历史数据,获取过火区域信息,进而对林火烈度分级,讨论林火烈度与森林类型的交互作用,估算干扰林龄,最终获得黑龙江省森林年龄的空间分布。【方法】以黑龙江森林为研究区域,基于研究区域的多光谱数据结合地面森林资源清查数据,通过逐步回归方法提取了包括遥感因子绿度指数(Greeness)、湿度指数(Wetness)、林分平均胸径(ADBH)、林分平均树高(ASH)及海拔(Altitude)在内的5个显著因子作为自变量,采用GWR模型建立非干扰林龄估算模型。采用全局Moran I来描述模型残差的空间自相关性。绘制研究区非干扰林龄空间分布图并探究林龄的空间分布状态。[JP+1]结合林火位置与面积记录对多光谱数据目视解译提取过火区域,根据dNBR将过火区域火烈度分级。将火烈度图与植被类型图叠加分析,讨论不同森林类型在不同火烈度下的演替情况。定义干扰林龄时,未发生树种更替的森林林龄不变,树种发生更替的森林在林火发生年将其林龄归为0,并在新的优势树种萌发时从1开始累加,以此类推干扰后森林的林龄。【结果】黑龙江省非干扰森林平均林龄为48年,标准差为16年。GWR模型的 Radj^2 为0.68,RMSE为16.171 7。使用Moran I来检验模型的残差,发现GWR模型可很好地消除残差的空间自相关性。研究区林龄整体空间分布状态不均匀,大兴安岭地区林龄普遍高于黑龙江林区。黑龙江省2000―2010年林火主要发生在大兴安岭及小兴安岭地区,根据dNBR将已提取的过火区域林火烈度分为:未过火、轻度过火、中度过火和重度过火4类,总过火面积为527 932 hm^2,其中重度29 157 hm^2、中度180 268 hm^2、轻度318 507 hm^2。兴安落叶松林和蒙古栎林在整个研究区中过火面积最大,分别占总过火面积的28.63%和47.23%。根据不同森林类型在不同火烈度下的演替情况,估算干扰森林的林龄并绘制干扰林龄空间分布图。【结论】 GWR模型能较有效地估算黑龙江省非干扰林龄,成功地降低了残差的空间自相关性。在估算林龄的过程中加入林火干扰因素,以获取更真实的林龄空间分布数据,可为黑龙江地区森林NPP、NEP以及森林碳储量、森林生物量等相关研究提供数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号