首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the centrally acting α-adrenoceptor agonist, clonidine, on plasma LH and FSH was studied in oestradiol-primed and unprimed ewes and in oestrous ewes. In unprimed anoestrous ewes, clonidine stimulated LH and FSH release after a lag period of 18 h, and noradrenaline intracarotid injection or i.v. infusions immediately stimulated LH release. In oestradiol-infused anoestrous ewes, clonidine produced either a delay or inhibition of the gonadotrophin surge and noradrenaline i.v. infusion advanced the LH surge. In oestrous ewes treated with clonidine, there was marked delay in the LH surge, but the magnitude of the LH and FSH surges were unaffected. Intravenous administration of α-adrenoceptor blockers, phentolamine and phenoxybenzamine, blocked the oestradiol-induced gondotrophin surge in anoestrous ewes. The effect of phenoxybenzamine on gonadotrophin surge was dose dependent in oestrous ewes. Small doses (4 mg/kg i.v.) of phenoxybenzamine delayed the synchronous LH and FSH surges. There was complete blockade of the LH surge and partial blockade of FSH surges in ewes given phenoxybenzamine (8 mg/kg i.v.) before the expected synchronous gonadotrophin surges. After this experiment, the initial rise of plasma progesterone concentrations did not occur until day 6 of oestrous cycle. Administration of phenoxybenzamine before the expected second FSH surge had no effect on the second FSH surge. Gonadotrophin release induced by gonadotrophin-releasing hormone was attenuated by phenoxybenzamine, but not by clonidine. The results suggest that the LH surge is under α-adrenergic control and the first FSH surge is under partial α-adrenergic control, but the second FSH surge is not under α-adrenergic control. The results also suggest oestradiol modulation of α-adrenergic receptor action.  相似文献   

2.
The role of endogenous opioids in controlling luteinizing hormone (LH) secretion was studied by injecting the opioid antagonist naloxone into intact and ovariectomized ewes that were treated with estradiol-17 beta (E2) and progesterone (P4). The existence of a naloxone-reversible inhibition of LH release was examined in five experiments using a total of 52 mature ewes. Naloxone at a dosage of 1 mg/kg disinhibited release of LH and abruptly increased serum concentrations of LH in a variety of experimental models. This naloxone-reversible inhibition of LH secretion was apparent in all experimental models that involved P4-induced inhibition of basal LH secretion but not in one model in which P4 inhibited the LH surge. Specific effects of E2 on naloxone-reversible inhibition of LH varied among experimental models. When prolonged administration of P4 alone appeared to lose its LH-inhibitory potency, E2 restored inhibition of LH as well as the naloxone-reversible state. Whenever E2 acted synergistically to suppress basal LH secretion in models involving brief (5 d) exposure to P4, E2 appeared to antagonize the naloxone-reversible state. In summary, P4-induced suppression of LH secretion appeared to be mediated by endogenous opioids, but the apparent interaction of E2 and opioids in LH suppression varied among experiments.  相似文献   

3.
We have previously demonstrated that a constant intravenous infusion of kisspeptin (Kp) for 48 h in anestrous ewes induces a preovulatory luteinizing hormone (LH) surge followed by ovulation in approximately 75% of animals. The mechanisms underlying this effect are unknown. In this study, we investigated whether Kp-induced preovulatory LH surges in anestrous ewes were the result of the general activation of the whole gonadotropic axis or of the direct activation of central GnRH neurons required for the GnRH/LH surge. In the first experiment, a constant iv infusion of ovine kisspeptin 10 (Kp; 15.2 nmol/h) was given to 11 seasonally acyclic ewes over 43 h. Blood samples were taken every 10 min for 15 h, starting 5 h before the infusion, and then hourly until the end of the infusion. We found that the infusion of Kp induced a well-synchronized LH surge (around 22 h after the start of the Kp infusion) in 82% of the animals. In all ewes with an LH surge, there was an immediate but transient increase in the plasma concentrations of LH, follicle-stimulating hormone (FSH), and growth hormone (GH) at the start of the Kp infusion. Mean (± SEM) concentrations for the 5-h periods preceding and following the start of the Kp infusion were, respectively, 0.33 ± 0.09 vs 2.83 ± 0.49 ng/mL (P = 0.004) for LH, 0.43 ± 0.05 vs 0.55 ± 0.03 ng/mL (P = 0.015) for FSH, and 9.34 ± 1.01 vs 11.51 ± 0.92 ng/mL (P = 0.004) for GH. In the first experiment, surges of LH were observed only in ewes that also had a sustained rise in plasma concentrations of estradiol (E2) in response to Kp. Therefore, a second experiment was undertaken to determine the minimum duration of Kp infusion necessary to induce such a pronounced and prolonged increase in plasma E2 concentration. Kisspeptin (15.2 nmol/h) was infused for 6, 12, or 24 h in seasonally acyclic ewes (N = 8), and blood samples were collected hourly for 28 h (beginning 5 h before the start of infusion), then every 2 h for the following 22 h. Kisspeptin infused for 24 h induced LH surges in 75% of animals, and this percentage decreased with the duration of the infusion (12 h = 50%; 6 h = 12.5%). The plasma concentration of E2 was greater in ewes with an LH surge compared to those without LH surges; mean (± SEM) concentrations for the 5-h period following the Kp infusion were, respectively, 2.23 ± 0.16 vs 1.27 ± 0.13 pg/mL (P < 0.001). Collectively, our results strongly suggest that the systemic delivery of Kp induced LH surges by activating E2-positive feedback on gonadotropin secretion in acyclic ewes.  相似文献   

4.
The effect of GnRH administration on superovulatory response of ewes treated with equine chorionic gonadotrophin (eCG) in breeding and nonbreeding seasons and the contribution of laparoscopic insemination to the improvement of fertilization and embryo recovery were investigated. Twenty-four nonpregnant Awassi ewes of 3–4 years of age were randomly allocated into two groups (n = 12). Each ewe was treated with a progesterone impregnated intravaginal sponge for 12 days. The following superovulation treatment was used: ewes of group 1 received 1,200 IU of eCG once as an intramuscular injection 48 h prior to sponge withdrawal; ewes of group 2 also received 1,200 IU of eCG once as an intramuscular injection, 48 h prior to sponge withdrawal and after 24 h of sponge removal. Ewes were injected with 80 μg of GnRH. Ewes of groups 1 and 2 were further subdivided into four equal groups (n = 6). Subgroups A and C (superovulated with eCG and eCG plus GnRH, respectively) were mated naturally at least two times with Awassi rams of proven fertility at 8-h intervals. Subgroups B and D (same as A and C) had intrauterine insemination at 44–46 h after sponge removal, under laparoscopic visualization of uterine horns, depositing 1 ml of diluted semen containing 100 × 106 motile sperm in the distal portion of each uterine horn. Ovarian response was assessed by determining the number of corpora lutea by laparoscopy at day 6 after mating. Embryo recovery was performed by using a semi-laparoscopic flushing procedure in both uterine horns. Results of the present study showed that ewes treated in breeding season with eCG plus GnRH has a higher number (P < 0.05) of corpora lutea than eCG alone as 7.33 ± 0.54 and 4.33 ± 0.39, respectively. There was no significant difference in the number of corpora lutea in nonbreeding season when ewes treated with eCG and eCG plus GnRH. The number of unovulated follicles was significantly higher (P < 0.05) in eCG treated ewes than in ewes treated with eCG plus GnRH, both in the breeding and nonbreeding seasons. The number of recovered embryos from ewes treated with eCG plus GnRH and eCG differ significantly (P < 0.05) as 4.32 ± 0.56 and 1.06 ± 0.26, respectively, in the breeding seasons. No significant difference was observed when these hormones used for superovulation in the nonbreeding season. A higher number of unfertilized ova (P < 0.05) was observed in ewes when naturally inseminated than in ewes inseminated using the intrauterine laparoscopic technique. Higher rate of embryo recovery (P < 0.05) was achieved when ewes were inseminated via intrauterine (4.66 ± 0.66) compared with ewes naturally mated (2.16 ± 0.74). The fertilization rate in ewes inseminated intrauterine using laparoscopic techniques and naturally mated were 91.5% and 44.8%, respectively. Fertilization failure in ewes inseminated intrauterine using laparoscopic techniques and naturally mated were 8.4% and 55.2%, respectively. It could be concluded that administration of GnRH 24 h after sponge removal increased ovulation rate of Awassi ewes treated with eCG for superovulation in the breeding season. The use of eCG to induce superovulation in Awassi ewes combined with laparoscopic intrauterine insemination increases the fertilization rate.  相似文献   

5.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

6.
Changes in metabolism of serotonin (5-HT) might mediate the reduced tonic luteinizing hormone (LH) and increased pituitary responsiveness to luteinizing hormone releasing hormone (LHRH) caused by estradiol-17β (estradiol). Two experiments were conducted to determine effects of estradiol, para-chlorophenylalanine (PCPA), an inhibitor of synthesis of 5-HT, and quipazine, an agonist of 5-HT, on tonic and LHRH-induced secretion of LH in ovariectomized ewes during the summer. Tonic levels of LH were reduced, the interval from LHRH to peak of the induced surge was longer and the magnitude of release of LH was greater in ovariectomized ewes treated with estradiol than in controls. Neither PCPA nor quipazine affected tonic secretion of LH. In ovariectomized ewes not receiving estradiol, PCPA and quipazine increased the magnitude of the LHRH-induced release of LH. However, PCPA reduced pituitary sensitivity to LHRH when administered concomitantly with estradiol; treatment with quipazine attenuated this effect of PCPA. The interval to the peak of the induced surge of LH was not affected by PCPA or quipazine in estradiol-treated or control ovariectomized ewes. Based on these results it appears that 5-HT mediates or is required for estradiol to increase pituitary responsiveness to LHRH.  相似文献   

7.
The amount of messenger RNA (mRNA) for luteinizing hormone beta-subunit (LH beta), follicle-stimulating hormone beta-subunit (FSH beta) and alpha-subunit was measured during estradiol-17 beta (E) positive feedback in ovariectomized (OVX) ewes. During the anestrous season, OVX ewes were given an i.m. injection of E (25 micrograms: n = 5) or oil (control; n = 4) and hourly blood samples were collected for 16 hr. After blood collection, ewes were killed and anterior pituitary glands were removed for analysis of hormone and mRNA content. Preovulatory-like increases in serum concentrations of LH and FSH were measured in E-treated OVX ewes. In two E-treated OVX ewes the serum concentrations of LH and FSH were still increasing, whereas in the remaining three E-treated OVX ewes, serum concentrations of LH were on the decreasing portion of the E-induced preovulatory-like surge. Pituitary content of LH was lower (P less than .10) in E-treated OVX ewes when serum concentrations of LH were decreasing than that measured in control ewes or E-treated OVX ewes in which serum concentrations were still increasing. Pituitary content of FSH and prolactin were similar (P greater than .05) among all groups. The amount of mRNA for LH beta-subunit was similar (P greater than .05) in ewes in which serum concentrations of LH were increasing and in control ewes, but was lower (P less than .05) in ewes with decreasing levels of LH. The amount of mRNA for FSH beta-subunit was lower (P less than .05) in all E-treated OVX ewes (independent of whether serum concentrations of FSH were increasing or decreasing) than that measured in control ewes. There was no difference (P greater than .05) in the amount of mRNA for alpha-subunit among any groups. Thus, amounts of mRNA for the beta-subunits of gonadotropins are reduced, while amounts of mRNA for alpha-subunit are unchanged during estradiol positive feedback in OVX ewes.  相似文献   

8.
Inhalt Bei 4 trächtigen und 4 nicht trächtigen Schafen wärden während der zyklischen und anöstrischen Phasen vom 14.11.83—24.8.84 die beta-Endorphinkonzentrationen im Plasma bestimmt. Die beta-Endorphinwerte der beiden Tiergrupppen wurden in 12 Zeitperioden mit je 40 Proben eingeteilt. Das beta-Endorphin (beta-End) zeigt saisonale Schwankungen mit höheren Werten im Spätherbst (Nov—Jan.), minimale Werte während der Anöstrie (Feb.—Juli) und maximale Konzentrationen im Frühherbst (Juli—Aug.). Zwischen graviden und nicht trächtigen Tieren bestehen keine signifikanten Unterschiede in den ersten 3 Zeitperioden (Nov.— Jan.), danach unterscheiden sich die Gruppen in den übrigen Perioden (P <.01), mit Ausnahme der 6. (Feb.— März) und 10. Zeitperiode (Juni—Juli). Die beta-End-Werte der Mutterschafe liegen während der Gravidität und Laktation tiefer (P ≤.01). Während der Laktation sind Prolaktin und Cortisol erhöht, wobei das Cortisol möglicherweise die beta-End-Sekretion direkt oder indirekt hemmt. Es bestehen signifikante Korrelationen zwischen beta-End: LH, beta-End: Cortisol und LH: Cortisol, die mit der Trächtigkeit, Laktation und derPhotoperiodik im Zusammen-hang stehen. 2 weitere Schafe wurden im November 1983 kastriert. Bei diesen Tizren wurden ebenfalls 12 Zeitperioden zu je 10 Proben gewählt. Beide Schafe zeigen photoperiodische beta-End-Schwankungen ähnlich wie bei intakten Tieren. In den ersten beiden Perioden im November und Dezember liegt das beta-End beim Schaf 28 sehr hoch und fällt danach kontinuierlich ab bis zum Ende der anöstrischen Phase im Juni. In der zyklischen Phase im Juli und August liegt der beta-End-Spiegel höher. Nach der Kastration steigt das LH bis zum Beginn der Anöstrie (Feb.–März) und liegt etwas tiefer in der 7. und 8. Periode im März–Mai. Danach erfolgt eine geringe Zunahme des LH-Gehalts bei Versuchsende im August. Beim Schaf 864 sind die Progesteronwerte während 42 Tagen nach Kastration ≤ 0.2 ng/ml. Danach beg'nnt das Progesteron anzusteigen und zeigt saisonale Schwankungen sowie einen photoperiodi-schen LH-Verlauf Zwischen beta-End und Progesteron besteht eine inverse Beziehung (3-.19, P ≤.05), was darauf hinweist, daß das Progesteron von der Nebenniere stammen könnte. Contents: Beta-endorphin during reproductive and anestrous season in the ewes The beta-end-concentration of each 4 pregnant and non pregnant ewes were measured during the breeding and anestrous sesons from 14.11.83—24.8.84 organized into 12 time groups of 40 values each. Hormone concentrations were increased during the breeding season (Nov.–Dec.), dropped to low levels in anoestrus (Feb.–July) and were high again during the reproductive period in July and August. In the first three time groups (Nov.–Jan.) there were no differences in beta-end-concentration between pregnant and non pregnant ewes. Thereafter the pregnant group had lower hormone levels during the remainder peirods (P <.01), except of time groups 6 (Feb.–March) and 10 (June–Luly). During lactation the level of prolactin and crotisol are increased. High coritsol concentration could depress beta-end-secretion. There are significant correlations between beta-end: LH, beta-end: cortisol which are related to pregnancy, lactation and photoperiods. Two sheep had been ovariectomized in November 1983. For the beta-end-concentrations we had choosen 12 time groups of 10 values each. Both animals experienced photoperiodic fluctuations in beta-end-levels during the breeding and non breeding seasons. Sheep 28 had high beta-end values in November and December. Thereafter the hormone concentration dropped and reached a minimum at the end of anoestrus (June—July). The beta-end increased again in July and August. The beta-end increased again in July and August. The LH started increasingin December and reached a maximum at the start of anoestrus (June—July). After a small drop of the LH concentration, LH increased again until August. In ewe 864, after a period of low progesterone levels (< 0.2 ng/ml) during the first 42 days post castration, progesterone increased during the breeding season and exhibited thereafter seasonal patterns for progesterone and LH concentrations. At the end of blood sampling in August HL increased to high levels during the reproductive season while progesterone was again elevated. Between beta-end and progesterone exists a negative correlation (r-.19, P ≤ 0.05) which may indicate that progesterone in these ovariectomized animals might be of adrenal origin.  相似文献   

9.
Experiments were conducted to determine the effect of additional gonadotropic support on induced corpora lutea of anestrous ewes. In one series of experiments, ewes were superovulated and half the ewes received an i.v. injection of 500 IU human chorionic gonadotropin (hCG) on day 5 after ovulation. Corpora lutea were collected from both groups on day 10 after ovulation. Dissociated corpora lutea collected from ewes which received additional hCG contained proportionately more large luteal cells than did those from control ewes (P<.05). In neither cell type was content of receptors for luteinizing hormone (LH) or secretion of progesterone in response to LH affected by an additional injection of hCG. Large cells from anestrous ewes produced more progesterone in response to LH (P<.05) than did large cells from similarly treated ewes during the breeding season. Small cells collected during either season responded similarly to LH. In another series of experiments, anestrous ewes were induced to ovulate and were exposed to fertile rams. Half the ewes received an i.v. injection of 500 IU hCG on day 5 after ovulation. Serum content of progesterone was higher on day 10 in ewes which received hCG 5 days earlier than in control ewes, although progesterone levels declined to generally nondetectable levels in nonpregnant ewes of both groups by day 16. Pregnancy rates in the two groups were not different. We concluded that additional gonadotropic support affects the morphology and function of corpora lutea from anestrous ewes and may be useful for enhancing fertility during the nonbreeding season.  相似文献   

10.
The effects of anthelmintics treatments in controlling gastrointestinal nematodes in breeding ewes in a semi-arid area of Kenya were determined. The study carried out during two breeding seasons, between June 2000 and December 2001 where albendazole was administered to groups of ewes, 2 weeks before mating, 3 weeks to lambing and mid lactation indicated significantly lower nematode egg counts in treated than untreated groups of ewes. In the first breeding season, reduced rainfall resulted in pasture scarcity and weight loss in both groups of ewes through out the gestation period, but losses were higher for the untreated group. In the second season, both groups of ewes showed a steady increase in weight gain during the gestation period and post-partum, but weight gains were higher in the treated group. In lambs, weight gains at 6 weeks were higher for treated ewes than control groups, in both breeding seasons. The results of this trial indicate that anthelmintic treatments in breeding ewes in the study area are beneficial in reducing gastrointestinal nematode infections and improving performance of the ewes and their lambs. In addition to the treatments, breeding ewes should be given feed supplementation particularly during periods of pasture scarcity.  相似文献   

11.
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an 1-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50 μg) was injected (i.m.) and Doxazosin (100 nmol/h) or vehicle was infused into the third ventricle 2–26 h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-β-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.  相似文献   

12.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4-6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17beta were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17beta concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17beta, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17beta levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17beta concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

13.
The effect of selective immunosuppression of endogenous inhibin in goats on FSH, LH, progesterone and estradiol-17β profiles was studied during the breeding and nonbreeding seasons. Eighteen adult female Boer goats were immunized against the recombinant human inhibin α-subunit (hINH-α). With the exception of estradiol, which was determined by radio-immunoassay (RIA), all plasma hormone concentrations were determined by ELISA. The ELISA for FSH presented in this paper was established in the authors' laboratory, based on an existing RIA. Mean basal concentrations of FSH were not affected by immunosuppression of endogenous inhibin, nor was there a difference in the amplitude of the pre-ovulatory FSH surge. Immunization against inhibin appears to eliminate the slight secondary rise of FSH occurring 12–20 h after the major surge associated with ovulation. The LH profiles of the immunized goats were characterized by lower basal concentrations both before and after the pre-ovulatory LH surge which itself was reduced by 50% in immunized does. By contrast, concentrations of circulating estradiol were significantly elevated after inhibin-immunization. Progesterone profiles were not affected. Extending immunization into the anoestrous season by a booster injection of hINH-α, implicating oestrus induction with a progestagen and eCG, produced no discernible differences in FSH and LH profiles in comparison with nonimmunized control goats. The findings suggest that in goats, paracrine factors may play a more significant role in controlling follicular activity than a feedback mechanism acting via the pituitary.  相似文献   

14.
Normal reproductive function is dependent upon availability of glucose and insulin‐induced hypoglycaemia is a metabolic stressor known to disrupt the ovine oestrous cycle. We have recently shown that IIH has the ability to delay the LH surge of intact ewes. In the present study, we examined brain tissue to determine: (i) which hypothalamic regions are activated with respect to IIH and (ii) the effect of IIH on kisspeptin cell activation and CRFR type 2 immunoreactivity, all of which may be involved in disruptive mechanisms. Follicular phases were synchronized with progesterone vaginal pessaries and at 28 h after progesterone withdrawal (PW), animals received saline (n = 6) or insulin (4 IU/kg; n = 5) and were subsequently killed at 31 h after PW (i.e., 3 h after insulin administration). Peripheral hormone concentrations were evaluated, and hypothalamic sections were immunostained for either kisspeptin and c‐Fos (a marker of neuronal activation) or CRFR type 2. Within 3 h of treatment, cortisol concentrations had increased whereas plasma oestradiol concentrations decreased in peripheral plasma (p < 0.05 for both). In the arcuate nucleus (ARC), insulin‐treated ewes had an increased expression of c‐Fos. Furthermore, the percentage of kisspeptin cells co‐expressing c‐Fos increased in the ARC (from 11 to 51%; p < 0.05), but there was no change in the medial pre‐optic area (mPOA; 14 vs 19%). CRFR type 2 expression in the lower part of the ARC and the median eminence was not altered by insulin treatment. Thus, disruption of the LH surge after IIH in the follicular phase is not associated with decreased kisspeptin cell activation or an increase in CRFR type 2 in the ARC but may involve other cell types located in the ARC nucleus which are activated in response to IIH.  相似文献   

15.
小尾寒羊高繁殖力和常年发情内分泌机理的研究   总被引:27,自引:3,他引:24  
本研究对5只小尾寒羊成年母羊以及相同条件下的5只细毛羊成年母羊用导管法采血,用放射免疫分析法测定血浆中FSH和LH浓度.试情公羊爬跨法鉴定结果表明,小尾寒羊具有显著的非季节性发情特性.小尾寒羊各月份、4个季节和全年的血浆FSH和LH浓度均极显著高于(P<0.0001)低繁殖力和季节性发情的细毛羊.小尾寒羊发情期血浆FSH和LH的基础浓度、峰值、谷值、排卵前峰值均显著高于(P<0.05~P<0.0001)细毛羊的.发情期间小尾寒羊和细毛羊FSH分泌呈现2个明显的峰,第一个峰与排卵前LH峰并存,第二个FSH峰出现在发情后1d.小尾寒羊FSH二次峰均值极显著高于(P<0.01)细毛羊的.本研究结果提示FSH和LH基因可作为小尾寒羊高繁殖力的候选基因来加以研究.  相似文献   

16.
The aim of the present study was to compare three methods of estrus synchronization in ewes during the non-breeding season. Forty-two ewes were randomly grouped for three treatments with different intravaginal devices for 12 days: Group A) CIDR, Group B) Self-made P sponge, Group C) MAP (medroxyprogesterone acetate) cream sponge. Furthermore, all groups were divided into two treatments with (R) or without ram presence to examine the "ram effect". Blood was collected from all treated ewes, and progesterone (P(4)), estradiol 17-beta (E(2)) and luteinizing hormone (LH) concentrations were measured by enzyme-immunoassay. All ewes showed estrus behavior between Day 0 to 3 after device removal, and the mean onset times of their estrus were 23.0, 33.0 and 21.0 h for Groups AR, BR and CR, respectively. On Day 5 as examined by laparoscopy, the ovulation rates (and number of ovulated ewes) were 1.45 (11/11), 1.25 (12/14) and 1.21 (14/14) for Groups A, B and C, respectively. In Group C, the time to LH surge was significantly (P<0.05) later (32.4 h) than those in Groups A (27.0 h) and B (25.5 h). Ram presence did not affect the number of ovulated ewes, ovulation rate or time to LH surge. The ram introduction group had significantly (P<0.05) lower E(2) concentrations during the period from 0 h to 36 h than the groups without ram presence. These results suggest that the self-made P sponge or MAP cream sponge was effective as well as CIDR, and ram introduction was not necessary, for induction of estrus and ovulation during the non-breeding season.  相似文献   

17.
Sheep are seasonal breeders, experiencing an annual period of reproductive quiescence in response to increased photoperiod during the late-winter into spring and renaissance during the late summer. The nonbreeding (anestrous) season is characterized by a reduction in the pulsatile secretion of GnRH from the brain, in part because of an increase in negative feedback activity of estrogen. Neuronal populations in the hypothalamus that produce kisspeptin and gonadotropin-inhibitory hormone (GnIH) appear to be important for the seasonal shift in reproductive activity, and the former are also mandatory for puberty onset. Kisspeptin cells in the arcuate nucleus (ARC) and preoptic area appear to regulate GnRH neurons and transmit sex-steroid feedback signals to these neurons. Moreover, kisspeptin expression in the ARC is markedly up-regulated at the onset of the breeding season, as too are the number of kisspeptin fibers in close apposition to GnRH neurons. The lower levels of kisspeptin seen during the nonbreeding season can be "corrected" by infusion of kisspeptin, which causes ovulation in seasonally acyclic females. The role of GnIH is less clear, but mounting evidence supports a role for this neuropeptide in the inhibitory regulation of both GnRH secretion and gonadotropin release from the pituitary gland. Contrary to kisspeptin, GnIH expression is markedly reduced at the onset of the breeding season. In addition, the number of GnIH fibers in close apposition to GnRH neurons also decreases during this time. Importantly, exogenous GnIH treatment can block both the pulsatile release of LH and the preovulatory LH surge during the breeding season. In summary, it is most likely the integrated function of both these neuropeptide systems that modulate the annual shift in photoperiod to a physiological change in fertility.  相似文献   

18.
The efficacy of eight combinations of fluorogestone acetate (FGA, 20 or 40 mg as intravaginal device during 11 days), equine chorionic gonadotropin (eCG, 300 or 500 UI injected 48 hr before FGA removal) and prostaglandin F (cloprostenol, 0 or 50 μg injected 48 hr before FGA removal) aiming at induction and synchronization of oestrus and ovulation was evaluated during the anoestrus season in spring and during the breeding season in autumn in adult Beni Arouss goats. Oestrous behaviour was recorded between 12 and 60 hr after FGA removal. Blood samplings allowing to assess onset of the pre‐ovulatory LH surge and increase of progesterone as sign of an active corpus luteum were performed, respectively, between 20 and 60 hr and 3, 5, 8 and 15 days after FGA removal. No season‐related differences (spring vs. autumn) were observed for oestrous response (95% vs. 93%), pre‐ovulatory LH surge (94% vs. 84%) and luteal response after 3–8 and 11–15 days post‐treatment (respectively 92% vs. 66% and 92% vs. 98%). The onset of oestrus (21 [13–53] vs. 32 [12–54] hr) and LH surge (26 [20–60] vs. 38 [22–60] hr) occurred significantly later in autumn. FGA (40 vs. 20 mg) in autumn significantly delayed the onset of oestrus (36 [16–54] vs. 23 [12–47] hr) and LH surge (44 [26–58] vs. 33 [22–60] hr). Significant treatment‐related differences were recorded for onset of LH surge (earliest for 20 mg FGA, 300 IU eCG, 50 μg PGF) and onset of luteal phase (latest for 40 mg FGA, 300 IU eCG, 50 μg PGF). In conclusion, the hormone combinations tested appeared equally effective in terms of oestrous and ovulation rates. Season has influenced significantly the onset of oestrus and LH surge, and the high dose regimen of FGA delayed the ovarian response in autumn.  相似文献   

19.
The working hypothesis was that the amount of increase in secretion of luteinizing hormone (LH) that results from positive feedback of 17 beta-estradiol (E2) is dependent on season of the year in mature bovine females. Seven beef cows, ovariectomized approximately 2 mo before the initiation of the experiment, were used in the initial year (1983) of the study. Three of the ovariectomized cows (OVX-E2) received an sc E2 implant, which provided low circulating levels of E2. The remaining four cows (OVX) were not implanted. Blood samples were collected serially (at 10-min intervals for 6 h) at each spring and fall equinox and at each summer and winter solstice. This protocol was replicated with a different group of cows in 1985 (OVX-E2, n = 4; OVX, n = 6). Concentration of LH in blood serum was quantified in all samples. Concentration of E2 in blood serum was measured in pools of samples from each serial blood collection. Concentrations of E2 were higher (P less than .05) in the implanted cows. Mean concentration of LH and amplitude of pulses of LH were higher (P less than .05) at each season of the year in cows that were ovariectomized and implanted with E2 than in cows that were ovariectomized and did not receive E2. An effect of season of the year on mean concentration of LH was detected (P less than .01). No influence of season or E2 was detected for frequency of pulses of LH. There was no significant treatment X season interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Experiments were conducted to characterize the ability of the antiestrogen enclomiphene (ENC) to block the effects of estradiol on secretion of LH in ovariectomized ewes. To determine whether ENC could block an estradiol-induced LH surge, ewes (n = 4/group) were administered 10 to 250 mg ENC followed 30 min later by 25 micrograms estradiol. Ten or 25 mg ENC suppressed the estradiol-induced LH surge in one of four ewes, whereas 100- or 250-mg doses suppressed the LH surge in three and four of four ewes, respectively. In ewes that received a single treatment of 100 mg ENC plus 25 micrograms estradiol, serum concentrations of LH remained below 1 ng/ml for 3 wk. Compared with untreated ewes, the number of pituitary GnRH receptors was elevated (P less than .05) at 12 d and 28 d, but pituitary content of LH had decreased (P less than .05) by 28 d in ewes treated with 100 mg ENC. To determine whether ENC could block the inhibitory effects of estradiol on serum concentrations of LH, ewes received injections of .03, .1, 1 or 10 mg ENC every 4 d. Half the ewes treated with each dose also received estradiol implants. Injection of .03, .1 or 1 mg ENC alone did not affect serum concentrations of LH, whereas the 10-mg dose decreased serum concentrations of LH below 1 ng/ml by wk 1 of treatment. No dose prevented the inhibition of serum concentrations of LH caused by estradiol implants. In ovariectomized ewes, ENC was antagonistic to estradiol; it prevented the positive effects of estradiol required to induce an LH surge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号