首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
小麦实时控制灌溉的土壤水分含量探头合理埋设深度研究   总被引:2,自引:0,他引:2  
利用室内控制试验研究了根据不同深度土壤水分传感器灌溉处理对冬小麦生物学性状及水分利用率等的影响。结果显示,以10 cm探头控制灌溉最为省水,同时冬小麦生物学性状及水分利用率等最佳。由于试验冬小麦处于生育前期,随着小麦生育期延伸,当根系超过30 cm深度时,根系吸水的深度增加,探头的埋设深度需要田间试验进行更详细的研究。  相似文献   

2.
掌握土壤水分入渗规律对于合理制定灌溉方案、设置灌溉参数和改进灌溉技术有重要意义。为探究微润灌溉条件下土壤水分入渗规律,利用HYDRUS-3D有限元模型对微润灌溉下土壤水分入渗进行了数值模拟,讨论了初始压力水头和土壤质地对土壤水分入渗的影响。数值模拟结果显示:在土壤水分入渗的垂直剖面上湿润体以微润管为中心呈同心圆状向外扩散,扩散速率与初始压力水头呈正相关。模拟试验周期为36h,分3个时间段进行土壤水分扩散速率的计算,0~5h内土壤水分平均入渗速率为1.85cm/h,6~15h内的平均入渗速率为0.79cm/h,16~36h内的平均水分入渗速率为0.59cm/h。土壤含水率最大值出现在微润管周围,向外围呈减小趋势。相同时间内土壤湿润峰运移距离随初始压力水头的增大而增大,微润灌溉下水分入渗速率在3种质地的土壤(砂壤土、壤土、粘壤土)中依次增大,并测得在压力水头为-180cm时整个模拟周期中3种质地土壤的平均水分扩散速率分别为:0.69、0.53、0.46cm/h。研究表明,土壤含水率和水分扩散速率随压力水头的增大而增大,随土壤黏粒含量的增大而减小。  相似文献   

3.
商丘农田土壤水分测定探头埋设位置研究   总被引:1,自引:0,他引:1  
利用在商丘野外生态试验站定点埋设的SWR-2型土壤水分测定探头采集的数据,通过主成分分析和因子分析,对玉米试验区不同土层深度土壤水分试验数据进行了相关分析和检验,研究了农田中不同深度层土壤水分的相互关系,结果表明,地表下30 cm土层与20 cm、40 cm、50 cm处土壤体积含水率线性相关;主要根系区70 cm土层与60 cm、80 cm9、0 cm处土壤体积含水率线性相关;130 cm、140 cm、150 cm土层之间同样存在着线性相关,初步得出本地区土壤水分测定探头合适埋设位置是地表下10 cm、30 cm7、0 cm1、00 cm、140 cm 5个深度。  相似文献   

4.
番茄地下滴灌灌溉制度拟定方法研究   总被引:1,自引:0,他引:1  
为了探寻番茄地下滴灌合理的灌溉计划拟定方法,进行了田间试验,试验布置了-10cm(D1)、-20cm(D2)、-30cm(D3)、-40cm(D4)、-50cm(D5)五个毛管埋设深度,研究了同一土壤基质势控制条件下番茄根系的分布范围及土壤水分的变化规律。结果显示,可以将负压计埋设于滴头横向距离0cm附近、20cm深度处,监测番茄根系层土壤水分状况,制定灌溉计划。  相似文献   

5.
定量研究水分在农田-植物系统中的循环和利用过程,是提出合理化农田水分管理措施的基础。基于HYDRUS-1D模型,对三种典型土壤(砂性壤土,壤土,黏性壤土)的灌溉方式进行数值实验,模拟灌溉后及灌溉24h之后的土壤剖面含水量变化和土壤表面的径流情况。结果表明,砂壤土在不产生径流的情况下,可以接受更大的灌溉速率进行灌溉,可以有更灵活的灌溉方式可供选择,灌溉入水量也比较多;壤土和黏壤土的灌溉方式选择单一;砂壤土中,最大灌溉深度为61cm,壤土、黏壤土的最大灌溉深度分别为34cm和18cm。灌溉后及灌溉24h之后的土壤剖面的湿润锋面变化明显,这就要求在对作物进行灌溉时应该考虑灌溉水在土壤中自身运动。本研究推算的不同类型土壤在不同条件下的需水量,可为不同根深的作物选择合理灌溉方式提供参考。  相似文献   

6.
智能滴灌系统中土壤水分传感器埋设深度研究   总被引:5,自引:0,他引:5  
智能滴灌系统顺应了我国水资源高效利用的要求,实现了作物的精确、适时灌溉,同时也为土壤水分状况的测量提出了更高的要求。土壤水分传感器恰好满足这个要求,其埋设深度是实现智能滴灌控制系统所需解决的最主要问题之一。通过对黄瓜根系分布特征和滴灌条件下黄瓜根区土壤含水率的变化规律的分析,初步给出了传感器在黄瓜根区的2种埋设方案。在垂直方向以地表以下5~10、20~30 cm处为埋设传感器的最佳深度,40~50 cm处为辅助埋设深度。  相似文献   

7.
为了探寻马铃薯地下滴灌合理的灌溉计划拟定方法,进行了田间试验,试验布置了-10(D1)、-20(D2)、-30(D3)、-40(D4)、-50cm(D5)5个滴灌带埋设深度,研究同一土壤基质势控制条件下土壤水分的变化规律。结果显示,滴头横向距离0cm附近、20cm深度处的土壤基质势的变化趋势可以代表距离滴头横向距离0~70cm、深度为0~50cm土层内土壤基质势变化规律。可以将负压计埋设于滴头横向距离0cm附近、20cm深度处,监测马铃薯根系层土壤水分状况,制定灌溉计划。  相似文献   

8.
交替隔沟灌溉下玉米根长密度分布及水分利用   总被引:1,自引:0,他引:1  
为了探明交替隔沟灌溉和常规沟灌条件下玉米根长密度的分布规律及水分利用效率(WUE),研究了2种沟灌方式下玉米根长密度的空间分布和水分利用情况。结果表明,玉米根长密度在根区水平向和垂向呈指数分布。交替隔沟灌溉促进了玉米根系的水平向伸展和下扎深度,常规沟灌在垄位的大密度根系分布集中在20~60cm。交替隔沟灌溉增大了根系下扎深度,有利于根系吸收深层土壤水分,在非充分供水条件下提高了作物的水分利用效率,交替隔沟灌溉水分利用效率较常规沟灌提高5%以上。  相似文献   

9.
垂直线源入渗土壤水分分布特性模拟   总被引:10,自引:2,他引:8  
基于非饱和土壤水动力学理论,利用Hydrus-2D软件分析了垂直线源入渗条件下的土壤水分分布特征。通过试验对比验证,反推出试验土壤的水力参数。结果表明,Hydrus-2D软件可用于垂直线源入渗土壤水分分布特征的模拟,且精度较好。对不同灌水技术要素条件下的垂直线源入渗土壤水分分布特征进行模拟研究,结果表明,垂直线源入渗条件下,不同质地土壤的湿润体形状差别不大,大小有明显的差别:砂壤土和粘壤土的水平湿润半径分别是砂土的0.59和0.24,垂直湿润深度分别是砂土的0.42和0.31;在不同线源埋深情况下,土壤湿润体的形状和大小差别不大,湿润体的位置有显著的差别,当埋深增加5cm,砂土、砂壤土、粘壤土的垂直湿润深度分别增加6%、11.5%、16%;线源长度和直径对土壤水分分布影响较大,其中线源长度主要影响垂直湿润深度,线源直径主要影响水平湿润半径;初始含水率高时,相同断面处的含水率增大;在相同入渗时段内,湿润锋水平运移距离和垂直运移距离随土壤初始含水率的增大而增大。  相似文献   

10.
蓄水坑灌是一种新型的果林节水灌溉方法,为了给合理确定蓄水坑坑深提供依据,在田间进行了不同坑深条件下蓄水坑灌土壤水分运动试验。试验设置2种不同蓄水坑深40cm和60cm,并对灌前和灌后土壤含水率增量在垂向和径向的分布特征进行分析研究。结果表明,在不同蓄水坑深40,60cm条件下,土壤含水率增量在垂向上的变化趋势一致,均是随着深度的增加,呈现先增大后减少的趋势,但随着坑深增大,土壤含水率增量的高值区的范围也越深;不同坑深条件下的土壤含水率增量在径向上的分布无明显的差异,均呈现以蓄水坑为中心,在蓄水坑附近的土壤含水率增量较大,距蓄水坑较远的地方,土壤含水率增量较低。通过对不同坑深条件下蓄水坑灌土壤水分运动的研究,可以为实际应用中,根据不同果树根系的水分吸收环境来选择坑深奠定理论依据。  相似文献   

11.
在广西山区选择沙土、壤土和黏土等3种典型土壤,并开展滴灌在这3种土壤条件下的土壤水分运移规律研究。试验结果表明:1在地埋黏土、壤土和沙土以及0.10 MPa工作压力条件下,滴灌管的单米流量为4.17、5.92和6.10 L/h,为地表自由出流的67.58%、95.05%和98.87%;2滴灌在黏土的水分运移形状基本为圆形,在沙土和壤土的湿润形状为上小下大的椭圆形;3同等条件下,水分在沙土的水平和垂直向下运移速率最大,壤土次之,黏土最小;4在土箱相同位置,黏土的土壤含水率最大,壤土次之,沙土最小;5根据滴灌的土壤水分运移规律,提出滴灌管在广西山区沙土、壤土和黏土的适宜埋深分别为10、15和20 cm;6滴灌应用在山区条播作物时,在黏土、壤土、沙土的适宜滴孔间距应为35、30和25 cm。  相似文献   

12.
为了探究施氮对不同质地滴灌棉田硝态氮分布及产量的影响,采用温室土柱模拟的方法,研究了滴灌条件下不同质地土壤硝态氮分布迁移特征,分析了施氮对NO_3-N和棉花产量的影响。结果表明,在灌水量一定的条件下,在砂土、壤土中施氮量分别为256.00、287.34 kg/hm~2时,相应的氮素积累量最大,皮棉产量最高,土壤硝态氮主要集中分布在30~40 cm土层,有利于棉花根系的吸收,且分别比不施氮增产43.87%和44.92%。一定施氮量下,壤土硝态氮分布的均匀性优于砂土,并且根层20~40 cm土层硝态氮量高于砂土,且比砂土平均增产6.16%。砂土、壤土中硝态氮量在各生育期总体呈现"降-增-降"的变化趋势,并且收获前期施纯氮340 kg/hm~2处理60cm土层砂土硝态氮量的第二个峰值较壤土提高15.98%,在生育期末端砂土在深层的氮素积累高于壤土,存在继续向下淋失的风险。  相似文献   

13.
A mathematical model which describes water flow under subsurface drip lines taking into account root water uptake, evaporation of soil water from the soil surface and hysteresis in the soil water characteristic curve θ(H) is presented. The model performance in simulating soil water dynamics was evaluated by comparing the predicted soil water content values with both those of Hydrus 2D model and those of an analytical solution for a buried single strip source. Soil water distribution patterns for three soils (loamy sand, silt, silty clay loam) and two discharge rates (2 and 4 l m−1 h−1) at four different times are presented. The numerical results showed that the soil wetting pattern mainly depends on soil hydraulic properties; that at a time equal to irrigation duration decreasing the discharge rate of the line sources but maintaining the applied irrigation depth, the vertical and horizontal components of the wetting front were increased; that at a time equal to the total simulation time the discharge rate has no effect on the actual transpiration and actual soil evaporation and a small effect on deep percolation. Also the numerical results showed that when the soil evaporation is neglected the soil water is more easily taken up by the plant roots.  相似文献   

14.
为了研究滴灌和微润灌在广西山区主要土壤的水分运移规律,在广西山区选择砂土、壤土和黏土等三种典型土壤,在室内建立并开展土壤水分运移规律试验。试验结果表明:1在地埋黏土、壤土和砂土以及0.10 MPa工作压力条件下,微润管的单米流量分别为0.24、0.31和0.43L/h,为地表出流量的67.6%~98.8%,滴灌管的单米流量为4.17、5.92和6.10L/h,为地表出流量的38.1%~68.2%;2在3种土壤中,滴灌和微润灌的水分运移形状初期为圆形,后期为椭圆形,但砂土的湿润范围最大、壤土次之、黏土最小;3在土箱相同位置,黏土的土壤含水率最大,壤土次之,砂土最小;4根据滴灌和微润灌的土壤水分运移规律,提出滴灌管和微润管在砂土、壤土的适宜埋深为20cm,在黏土的适宜埋深为10cm。  相似文献   

15.
为探索解决地下滴灌玉米出苗难的问题,通过土箱试验,对内蒙古自治区具有典型代表性的3种土壤,开展了毛管铺设参数(滴头流量、埋深)和灌水定额对地下滴灌湿润半径的影响规律试验,结合玉米播种深度、水分向上及向下运移的距离及种子周围土壤含水量,研究了玉米适宜出苗灌水定额,以提高出苗率,指导实际生产.结果表明:按显著性水平0.05检验,土壤类型和灌水定额均对土壤湿润半径影响具有统计学意义,而滴头流量和埋深对湿润半径影响不具有统计学意义.在黏壤土中,玉米出苗灌水定额37.5~52.5 mm基本可满足毛管埋深25~35 cm的出苗要求;在壤土中,玉米出苗灌水定额37.5 mm左右基本可满足毛管埋深25~30 cm的出苗要求,灌水定额52.5 mm左右基本可满足埋深30~35 cm的出苗要求;在砂壤土中,灌水定额22.5~37.5 mm基本可满足毛管埋深约25 cm的玉米出苗要求,灌水定额52.5 mm基本可满足毛管埋深25~35 cm的玉米出苗要求.  相似文献   

16.
Summary Rapid drying of surface layers of coarse-textured soils early in the growth season increases soil strength and restricts root growth. This constraint on root growth may be countered by deep tillage and/or early irrigation. We investigated tillage and irrigation effects on root growth, water use, dry matter and grain yield of wheat on loamy sand and sandy loam soils for three years. Treatments included all combinations of two tillage systems i) conventional tillage (CT) — stirring the soil to 10 cm depth, ii) deep tillage (DT) — subsoiling with a single-tine chisel down to 35–40 cm, 40 cm apart followed by CT; and four irrigation regimes, i) I0 — no post-seeding irrigation, ii) I1 — 50 mm irrigation 30 days after seeding (DAS), iii) I2 — 50 mm irrigation 30 DAS and subsequent irrigations of 75 mm each when net evaporation from USWB class A open pan (PAN-E) since previous irrigation accumulated to 82 mm, and iv) I3 — same as in I2 but irrigation applied when PAN-E accumulated to 62 mm. The crop of wheat (Triticum aestivum L. HD 2329) was fertilized with 20kg P, 10kg K and 5kg Zn ha–1 at seeding. The rate of nitrogen fertilization was 60 kg ha–1 in the unirrigated and 120 kg ha–1 in the irrigated treatments. Tillage decreased soil strength and so did the early post-seeding irrigation. Both deep tillage and early irrigation shortened the time needed for the root system to reach a specified depth. Subsequent wetting through rain/irrigation reduced the rate of root penetration down the profile and also negated deep tillage effects on rooting depth. However, tillage/irrigation increased root length density in the rooted profile even in a wet year. Better rooting resulted in greater profile water depletion, more favourable plant water status and higher dry matter and grain yields. In a dry year, the wheat in the DT plots used 46 mm more water, remained 3.3 °C cooler at grain-fill and yielded 68% more grain than in CT when unirrigated and grown in the loamy sand. Early irrigation also increased profile water depletion, more so in CT than DT. Averaged over three years, grain yield in DT was 12 and 9% higher than in CT on loamy sand and sandy loam, respectively. Benefits of DT decreased with increase in rainfall and irrigation. Irrigation significantly increased grain yield on both soils, but the response was greatly influenced by soil type, tillage system and year. The study shows that soil related constraints on root growth may be alleviated through deep tillage and/or early irrigation.  相似文献   

17.
毛细节水灌溉作为一种类似滴灌的新型灌溉技术逐渐得到关注。在室内模拟了毛细管水分在蔗区沙土、壤土和黏土中的运移情况。通过室内试验和HYDRUS-3D建模分析表明:土壤类型对土壤各方向入渗有明显的影响,水分运移速度和土壤各方向湿润范围顺序为:沙土壤土黏土;3种土壤含水率等值线变化规律基本一致,同样湿润位置土壤含水率顺序为:黏土壤土沙土。根据毛细管的水分在沙土、壤土和黏土运移规律,提出毛细管在蔗区沙土、壤土和黏土的合理埋深应为40、30和20cm。  相似文献   

18.
冬小麦不同深度灌水条件下土壤水分运动数值模拟   总被引:2,自引:0,他引:2  
冬小麦深度灌水可以促进根系深扎,提高水分利用率。为了定量计算深度灌水条件下土壤水分动态,根据冬小麦不同深度灌水试验,用土壤水分运动方程的源项模拟不同深度灌水,建立了冬小麦不同深度灌水条件下土壤水分运动模型,采用有限差分法求解。利用不同深度灌水冬小麦试验数据对模型进行验证,结果表明模型计算的土壤含水率与实测土壤含水率的动态变化趋势一致,二者显著相关,相关系数在0.90以上,模型平均绝对误差最大值为0.023 cm3/cm3,平均相对误差最大值为8.22%,均方根误差最大值为0.03 cm3/cm3。所建模型具有较高的模拟精度,可用于模拟不同深度灌水条件下冬小麦土壤水分分布与动态变化。  相似文献   

19.
Root distribution of field grown potatoes (cv. Folva) was studied in 4.32 m2 lysimeters and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation strategies. Drip irrigation was applied for all irrigations. Irrigations were run in three different soils: coarse sand, loamy sand, and sandy loam. Irrigation treatments started after tuber bulking and lasted until final harvest with PRD and DI receiving 65% of FI. Potatoes irrigated with water-saving irrigation techniques (PRD and DI) did not show statistically different dry root mass and root length density (RLD, cm root per cm3 soil) compared with root development in fully irrigated (FI) potatoes. Highest RLD existed in the top 30-40 cm of the ridge below which it decreased sharply. The RLD was distributed homogenously along the ridge and furrow but heterogeneously across the ridge and furrow with highest root density in the furrow. Most roots accumulated in the surface layers of coarse sand as compared to the other soil types. In the deep soil profile (30-70 cm) a higher root density was found in loamy sand compared with the sandy loam and coarse sand. Approximately twice the amounts of roots were found below the furrows compared with the corresponding layers below the ridges. The RLD values in the soil profile of the ridges and the furrows followed the Gerwitz and Page model: RLD = α × exp(−β × z). The highest value of surface root density (α) and rate of change in density (β) was found in coarse sand while the lowest values of α and β were found in the sandy loam and loamy sand. The model estimated the effective rooting depth in coarse sand and sandy loam quite well but did slightly overestimate it in the loamy sand. Statistical analysis showed that one α and β value can be used for each soil irrespective of the irrigation treatment. Thus, the effective rooting depths corresponding to root length densities of 0.1 and 0.25 cm cm−3 for sandy loam, loamy sand, and coarse sand soils were 99, 141, and 94 cm, and 80, 115, and 78 cm, respectively, calculated from top of the ridge. The findings of this study can be used in practice for efficient use of water and nutrients in the field.  相似文献   

20.
The infiltration and redistribution of soil moisture under surface drip irrigation considering hysteresis were investigated in two soils (loamy sand and silt loam) of different texture. The effect of continuous versus intermittent application of 1, 2 and 4 l/h to the soils was evaluated in terms of wetting front advance patterns and deep percolation under the root zone. For this purpose, a cylindrical flow model incorporating hysteresis in the soil water retention characteristic curve, evaporation from the soil surface, and water extraction by roots was used. The results show that, compared with continuous irrigation, pulse irrigation slightly reduces the water losses under the root zone in both cases (with and without hysteresis). Also, at the total simulation time, in both types of irrigation, hysteresis reduces significantly the water losses under the root zone. Finally, the effect of hysteresis was found to be greater at higher discharge rate (4 l/h) and consequently at higher water content at the soil surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号