首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Assessment of laryngeal relaxation and ease of intubation in cats was made after preanesthetic medication with acepromazine/meperidine/atropine (IM) and induction of anesthesia 20 minutes later by thiopental administration (IV). Healthy cats (n = 32) scheduled for elective surgery were randomly assigned to 1 of 4 treatment groups to be provided with laryngeal desensitization: group 1, 2% lidocaine HCl (2 mg/kg of body weight) given IV 30 seconds before thiopental induction; group 2, 2% lidocaine HCl (2 mg/kg) topically applied to the larynx; group 3, 10% lidocaine HCl (10 mg) as a topical aerosol; and group 4, no treatment before intubation. A significant (P less than 0.05; ANOVA) difference between groups in the reaction to intubation attempts was apparent. Cats receiving 2% lidocaine IV or no treatment for desensitization had a greater response to intubation than did those receiving 2% or 10% lidocaine topically. The number of attempts required to intubate cats was significantly (P less than 0.05) greater in cats with no treatment than in cats treated topically with 2% or 10% lidocaine. Response to IV administration of 2% lidocaine HCl was not significantly different from the response to other treatments, indicating little advantage over no laryngeal desensitization. It was concluded that topical application of 2% lidocaine (2 mg/kg) or 10% lidocaine aerosol 1 1/2 minutes before intubation provides effective laryngeal desensitization in the cat.  相似文献   

2.
The effects of diazepam or lidocaine on the propofol induction dose and certain cardiovascular parameters were documented in this randomized, blinded study. Dogs received 0.9% saline (0.1 mL/kg intravenously [i.v.]), lidocaine (2 mg/kg i.v.), or diazepam (0.25 mg/kg i.v.) prior to propofol i.v. until loss of jaw tone was achieved (up to a maximum of 8 mg/kg). Propofol was followed by 0.3 mg/kg atracurium i.v. Direct arterial blood pressures and heart rates were recorded before premedication, induction, and intubation. No statistically significant differences were found among the groups for cardiovascular measurements or for the propofol dose required for intubation.  相似文献   

3.
This crossover study tested the hypothesis that both diazepam and microdose medetomidine would comparably reduce the amount of propofol required to induce sedation. Four different medications, namely high-dose diazepam (0.4 mg/kg intravenously [IV]), low-dose diazepam (0.2 mg/kg IV), medetomidine (1 mug/kg IV), and placebo (0.5 mL physiological saline IV) were followed by propofol (8 mg/kg IV) titrated to a point where intubation could be performed. The effects of medetomidine were comparable to the effects of high-dose diazepam and significantly better than the effects of low-dose diazepam or placebo. Dogs in all treatment groups had transient hypoxemia, and induction and recovery qualities were similar.  相似文献   

4.
OBJECTIVE: To evaluate the effects of ketamine, diazepam, and the combination of ketamine and diazepam on intraocular pressures (IOPs) in clinically normal dogs in which premedication was not administered. ANIMALS: 50 dogs. PROCEDURES: Dogs were randomly allocated to 1 of 5 groups. Dogs received ketamine alone (5 mg/kg [KET5] or 10 mg/kg [KET10], IV), ketamine (10 mg/kg) with diazepam (0.5 mg/kg, IV; KETVAL), diazepam alone (0.5 mg/kg, IV; VAL), or saline (0.9% NaCl) solution (0.1 mL/kg, IV; SAL). Intraocular pressures were measured immediately before and after injection and at 5, 10, 15, and 20 minutes after injection. RESULTS: IOP was increased over baseline values immediately after injection and at 5 and 10 minutes in the KET5 group and immediately after injection in the KETVAL group. Compared with the SAL group, the mean change in IOP was greater immediately after injection and at 5 and 10 minutes in the KET5 group. The mean IOP increased to 5.7, 3.2, 3.1, 0.8, and 0.8 mm Hg over mean baseline values in the KET5, KET10, KETVAL, SAL, and VAL groups, respectively. All dogs in the KET5 and most dogs in the KETVAL and KET10 groups had an overall increase in IOP over baseline values. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with baseline values and values obtained from dogs in the SAL group, ketamine administered at a dose of 5 mg/kg, IV, caused a significant and clinically important increase in IOP in dogs in which premedication was not administered. Ketamine should not be used in dogs with corneal trauma or glaucoma or in those undergoing intraocular surgery.  相似文献   

5.
The cardiopulmonary effects and tendencies to produce ventricular arrhythmias were evaluated in 13 dogs given a surgical plane of anesthesia by thiopental (IV) or a combination of thiopental and lidocaine (IV). Thiopental (22 mg/kg of body weight) was compared with a combination of thiopental (11 mg/kg) and lidocaine (8.8 mg/kg). Preanesthetic agents were not given. Both methods for IV anesthesia provided a smooth induction suitable for easy intubation. The thiopental/lidocaine combination had a shorter duration, produced no arrhythmias, and resulted in less cardiopulmonary depression than did thiopental alone. Bigeminy developed after intubation during 19 of 20 thiopental inductions as compared with that in 0 of 22 thiopental/lidocaine inductions. The bigeminies were preceded by systemic hypertension and tachycardia which developed as the trachea was being intubated. The increase in aortic pressure and heart rate was minimal after intubation during the thiopental/lidocaine inductions. Five minutes after administration of thiopental alone, increases in heart rate, aortic pressure, total peripheral vascular resistance, and left ventricular systolic and end-diastolic pressures were observed. When these increases in rate, preload, and afterload were considered in relation to a stabile maximum positive first derivative of left ventricular pressure, left ventricular contractility was considered to be decreased. Mild respiratory acidosis and hypoxemia were present at 5 and 10 minutes after thiopental induction. Because the combination of thiopental/lidocaine had less cardiopulmonary depressive effects and protected against arrhythmias, it would appear to be a good method for anesthetic induction of the patient with cardiopulmonary disease. In the patient with normal cardiopulmonary function, thiopental produces only a moderate and reversible depression.  相似文献   

6.
The thiamylal- and halothane-sparing effect of diazepam was studied in two experiments using 32 conditioned dogs. Twenty-four dogs received 0.05, 0.1 or 0.2 ml/kg diazepam or 0.9% saline (placebo) prior to the administration of thiamylal sodium i.v. Eight dogs received 0.1 or 0.2 mg/kg diazepam i.v. or placebo prior to or during halothane anesthesia. All three doses of diazepam significantly decreased the amount of thiamylal required to allow orotracheal intubation. The 0.2 mg/kg i.v. dose of diazepam produced the most significant effects. Premedication of dogs with diazepam did not reduce the concentration of halothane required to maintain anesthesia. The administration of 0.1 and 0.2 mg/kg diazepam i.v. during halothane anesthesia decreased the concentration of halothane required to maintain anesthesia. These studies demonstrate that diazepam reduces the amount of thiamylal required for orotracheal intubation, and when given intra-operatively reduces the concentration of halothane required to maintain anesthesia.  相似文献   

7.
OBJECTIVE: To evaluate the effect of intravenous lidocaine on coughing and variations in heart rate (HR) and systolic arterial pressure (SAP) at endotracheal intubation in propofol-anaesthetized dogs. STUDY DESIGN: Prospective, randomized, blinded clinical study. ANIMALS: Eighty dogs, ASA grades I/II. METHODS: Dogs were randomly assigned to one of two treatments, with dogs in the lidocaine group receiving 1 mg kg(-1) lidocaine intravenously and those in the saline group receiving 0.05 mL kg(-1) saline intravenously before induction of anaesthesia with up to 6.5 mg kg(-1) propofol intravenously. An electrocardiogram was recorded continuously. Heart rate was calculated and SAP (using Doppler ultrasonic flow detection) was recorded at the following time points: pre-treatment, following lidocaine or saline administration, before and after intubation. The occurrence, number and strength of coughs were recorded. Systolic arterial pressure and HR were compared using one-sample t-tests to examine whether SAP and HR changed with test drug administration or following intubation. The number of coughs was compared between groups using t-tests. A cross tabulation and chi-square or Fisher's exact test was used to compare proportions of dogs that coughed and intensity of coughing in each group. The level of significance was set at p < 0.05. RESULTS: Heart rate did not change in either group. Systolic arterial blood pressure increased following intubation in both the lidocaine (p = 0.003) and saline groups (p = 0.001). There was no difference in the increase in SAP or in the number or intensity of coughs at intubation between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Intravenous lidocaine had no effect on the occurrence or intensity of coughing or on changes in SAP at endotracheal intubation in dogs anaesthetized with propofol. The use of 1 mg kg(-1) lidocaine intravenously before intubation in dogs to attenuate cough and the pressor response was not supported.  相似文献   

8.
The effects of constant rate infusion (CRI) of lidocaine on sevoflurane (SEVO) requirements, autonomic responses to noxious stimulation, and postoperative pain relief were evaluated in dogs undergoing opioid-based balanced anesthesia. Twenty-four dogs scheduled for elective ovariectomy were randomly assigned to one of four groups: BC, receiving buprenorphine without lidocaine; FC, receiving fentanyl without lidocaine; BL, receiving buprenorphine and lidocaine; FL, receiving fentanyl and lidocaine. Dogs were anesthetized with intravenous (IV) diazepam and ketamine and anesthesia maintained with SEVO in oxygen/air. Lidocaine (2mg/kg plus 50μg/kg/min) or saline were infused in groups BL/FL and BC/FC, respectively. After initiation of lidocaine or saline CRI IV buprenorphine (0.02mg/kg) or fentanyl (4μg/kg plus 8μg/kg/h CRI) were administered IV in BC/BL and FC/FL, respectively. Respiratory and hemodynamic variables, drug plasma concentrations, and end-tidal SEVO concentrations (E'SEVO) were measured. Behaviors and pain scores were subjectively assessed 1 and 2h post-extubation. Lidocaine CRI produced median drug plasma concentrations <0.4μg/mL during peak surgical stimulation. Lidocaine produced a 14% decrease in E'SEVO in the BL (P<0.01) but none in the FL group and no change in cardio-pulmonary responses to surgery or postoperative behaviors and pain scores in any group. Thus, depending on the opioid used, supplementing opioid-based balanced anesthesia with lidocaine (50μg/kg/min) may not have any or only a minor impact on anesthetic outcome in terms of total anesthetic dose, autonomic responses to visceral nociception, and postoperative analgesia.  相似文献   

9.
OBJECTIVE: To compare the effect of anesthesia alone with anesthesia and abdominal surgery on plasma thromboxane B(2) concentrations in horses. STUDY DESIGN: Non-randomized experimental study. ANIMALS: Six male mixed-bred horses (5-12 years, 350 +/- 18 kg). METHODS: All horses were anesthetized for 2.5 hours using halothane, and a month later abdominal surgery was performed using the same anesthetic technique with a similar duration. The schedule of anesthesia included pre-medication with diazepam (0.1 mg kg(-1) IM), followed by xylazine (2.2 mg kg(-1) IV), and 10 minutes later anesthesia was induced with ketamine hydrochloride (2.2 mg kg(-1) IV). After orotracheal intubation, anesthesia was maintained with halothane. Blood samples for the determination of thromboxane B(2) (TXB(2)) were obtained before, at induction, at 60 minutes after halothane was first inspired, and at recovery from anesthesia as well as at the corresponding stages of the experimental abdominal surgery (before induction, prior to laparotomy, enterectomy, enteroanastomosis, abdominal wall closure). RESULTS: Baseline value for the anesthesia group was 76 +/- 12 pg mL(-1) and increased (p < 0.001) after 1 hour of anesthesia to 265 +/- 40 pg mL(-1). With surgery, the corresponding value was 285 +/- 21 pg mL(-1) (hour 1, p < 0.001) and 210 +/- 28 pg mL(-1) (hour 2, p < 0.001), respectively. These were not different from anesthesia alone. CONCLUSION: The increased concentrations of thromboxane B(2) between 1 and 2.5 hours of halothane anesthesia and during the corresponding stages of the surgical intervention suggested that the anesthetic technique caused a significant increase in thromboxane B(2) and that surgery did not appear to contribute to this response.  相似文献   

10.
ObjectiveTo evaluate selected effects of midazolam or lidocaine administered prior to etomidate for co-induction of anesthesia in healthy dogs.Study designProspective crossover experimental study.AnimalsA group of 12 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.3 mg kg–1), and anesthesia was induced with etomidate following midazolam (0.3 mg kg–1), lidocaine (2 mg kg–1) or physiologic saline (1 mL) IV. Heart rate (HR), arterial blood pressure, respiratory rate (fR) and intraocular pressure (IOP) were recorded following butorphanol, after co-induction administration, after etomidate administration and immediately following intubation. Baseline IOP values were also obtained prior to sedation. Etomidate dose requirements and the presence of myoclonus, as well as coughing or gagging during intubation were recorded. Serum cortisol concentrations were measured prior to premedication and 6 hours following etomidate administration.ResultsBlood pressure, fR and IOP were similar among treatments. Blood pressure decreased in all treatments following etomidate administration and generally returned to sedated values following intubation. HR increased following intubation with midazolam and lidocaine but remained stable in the saline treatment. The dose of etomidate (median, interquartile range, range) required for intubation was lower following midazolam (2.2, 2.1–2.6, 1.7–4.1 mg kg−1) compared with lidocaine (2.7, 2.4–3.6, 2.2–5.1 mg kg−1, p = 0.012) or saline (3.0, 2.8–3.8, 1.9–5.1 mg kg−1, p = 0.015). Coughing or gagging was less frequent with midazolam compared with saline. Myoclonus was not observed. Changes in serum cortisol concentrations were not different among treatments.Conclusions and clinical relevanceMidazolam administration reduced etomidate dose requirements and improved intubation conditions compared with lidocaine or saline treatments. Neither co-induction agent caused clinically relevant differences in measured cardiopulmonary function, IOP or cortisol concentrations compared with saline in healthy dogs. Apnea was noted in all treatments following the induction of anesthesia and preoxygenation is recommended.  相似文献   

11.
After sedation with xylazine (0.3 mg/kg intravenously [IV]), anesthesia was induced in six healthy horses with ketamine (2.0 mg/kg IV) and guaifenesin (100 mg/kg IV), diazepam (0.05 mg/kg IV), or diazepam (0.10 mg/kg IV). Anesthesia was maintained with halothane for 30 minutes. Heart rate, respiratory rate, direct arterial blood pressure, arterial blood gas, and pH measurements were made before, and at set intervals after, induction of anesthesia. Quality and characteristics of induction and recovery were evaluated objectively by an independent observer unaware of the protocol used. There were no significant differences among the three protocols from pre-induction values for arterial blood pressure, blood gas values, and pH. There was significantly greater ataxia at induction with the use of guaifenesin. The nature of induction, transition to and recovery from general anesthesia were comparable between guaifenesin and the higher dose of diazepam. Because of movements and difficulty with intubation, the lower dose of diazepam was considered unsatisfactory. It was concluded that diazepam (0.10 mg/kg) could be substituted for guaifenesin (100 mg/kg) to produce comparable quality of anesthesia in horses.  相似文献   

12.
ObjectiveTo determine the effects of graded doses of propofol on cardiovascular parameters and intraocular pressures (IOP) in normal dogs.Study designProspective, randomized, modified Latin square, cross-over experimental study.AnimalsEleven adult random-source dogs weighing 20.2 ± 5.7 kg.MethodsThere were three treatment groups: propofol 8 mg kg?1 intravenous (IV) until loss of jaw tone (Group P), propofol until loss of jaw tone +20% (Group P20), and propofol until loss of jaw tone +50% (Group P50). Atracurium 0.1 mg kg?1 IV was administered in all treatments immediately after the propofol. All dogs received the three treatments in a randomized order, with at least a one week interval between treatments. Direct arterial blood pressure and IOP by applanation tonometry were obtained at baseline, after 5 minutes of pre-oxygenation (before induction), before, and after intubation. Blood gas samples were obtained at baseline, after pre-oxygenation, and before intubation.ResultsThere was no significant difference in IOP readings at any time point among groups. The IOP was significantly higher before intubation versus before induction in all three groups. There was a significantly smaller change in systolic, mean (MAP), and diastolic (DAP) arterial pressures in the P50 group compared with the P group after intubation. There was a significantly smaller change in MAP and DAP in the P50 group compared with the P20 group after intubation. The increase in CO2 from before induction to before intubation was significantly greater in the P50 group than in the P or P20 groups.Conclusions and clinical relevanceGraded doses of propofol did not affect the increase in IOP observed with propofol induction in normal dogs. Higher doses of propofol are of no apparent additional benefit in animals who cannot tolerate an abrupt increase in IOP but may be of benefit in dogs who cannot tolerate an abrupt increase in blood pressure accompanying orotracheal intubation.  相似文献   

13.
OBJECTIVE: To determine the anesthetic, cardiorespiratory, and metabolic effects of 4 IV anesthetic regimens in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill. Each horse ran 4 simulated races, with a minimum of 14 days between races. Races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until fatigued or for a maximum of 2 minutes. Two minutes after exercise, horses received a combination of xylazine hydrochloride (2.2 mg/kg of body weight) and acepromazine maleate (0.04 mg/kg) IV. Five minutes after exercise, horses received 1 of the following 4 IV anesthetic regimens: ketamine hydrochloride (2.2 mg/kg); ketamine (2.2 mg/kg) and diazepam (0.1 mg/kg); tiletamine hydrochloride-zolazepam hydrochloride (1 mg/kg); and guaifenesin (50 mg/kg) and thiopental sodium (5 mg/kg). Treatments were randomized. Cardiopulmonary indices were measured, and samples of blood were collected before and at specific times for 90 minutes after each race. RESULTS: Each regimen induced lateral recumbency. The quality of induction and anesthesia after ketamine administration was significantly worse than after other regimens, and the duration of anesthesia was significantly shorter. Time to lateral recumbency was significantly longer after ketamine or guaifenesin-thiopental administration than after ketaminediazepam or tilet-amine-zolazepam administration. Arterial blood pressures after guaifenesin-thiopental administration were significantly lower than after the other regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia can be safely induced in sedated horses immediately after maximal exercise. Ketamine-diazepam and tilet-amine-zolazepam induced good quality anesthesia with acceptable perturbations in cardiopulmonary and metabolic indices. Ketamine alone and guaifenesin-thiopental regimens are not recommended.  相似文献   

14.
OBJECTIVE: To investigate effects of IV administered carprofen on indices of renal function and results of serum biochemical and hematologic analyses in dogs anesthetized with acepromazine-thiopentone-isoflurane that had low blood pressure during anesthesia. ANIMALS: 6 healthy Beagles. PROCEDURE: A randomized crossover study was conducted, using the following treatments: saline (0.9% NaCl solution)-saline, saline-carprofen, and carprofen-saline. Saline (0.08 ml/kg) and carprofen (4 mg/kg) were administered IV. The first treatment was administered 30 minutes before induction of anesthesia and immediately before administration of acepromazine (0.1 mg/kg, IM). Anesthesia was induced with thiopentone (25 mg/ml, IV) and maintained with inspired isoflurane (2% in oxygen). The second treatment was administered 30 minutes after onset of inhalation anesthesia. Blood gases, circulation, and ventilation were monitored. Renal function was assessed by glomerular filtration rate (GFR), using scintigraphy, serum biochemical analyses, and urinalysis. Hematologic analysis was performed. Statistical analysis was conducted, using ANOVA or Friedman ANOVA. RESULTS: Values did not differ significantly among the 3 treatments. For all treatments, sedation and anesthesia caused changes in results of serum biochemical and hematologic analyses, a decrease in mean arterial blood pressure to 65 mm Hg, an increase of 115 pmol/L in angiotensin II concentration, and an increase of 100 seconds in time required to reach maximum activity counts during scintigraphy. CONCLUSIONS AND CLINICAL RELEVANCE: Carprofen administered IV before or during anesthesia did not cause detectable significant adverse effects on renal function or results of serum biochemical and hematologic analyses in healthy Beagles with low blood pressure during anesthesia.  相似文献   

15.
Objective  The study was undertaken to evaluate the use of ketamine, xylazine, and diazepam along with a local retrobulbar nerve block for routine phacoemulsification in the dog.
Animals  Ten clinically healthy mixed-breed dogs of either sex, weighing between 10 and 15 kg.
Procedures  Ten mixed-breed dogs were selected for unilateral cataract removal by phacoemulsification. Standard preoperative preparations for cataract surgery were followed. Pre-anesthetic medication consisted of atropine sulfate (0.02 mg/kg, SC). Anesthesia was induced by xylazine HCl (1.0 mg/kg, IM) followed by ketamine (5.0 mg/kg, IM). Anesthesia was maintained subsequently with IV ketamine and diazepam to effect and depth of anesthesia was assessed clinically by pedal reflex and jaw reflex. After induction of anesthesia, a retrobulbar nerve block was performed using 2 mL of 2% lignocaine. Eye position was graded after retrobulbar block and IOP was examined preoperative, post-anesthetic, 6 h postoperative and 24 h after surgery. Phacoemulsification was performed using the phaco-chop technique and an intraocular lens was placed. Anesthetic recovery and postoperative recovery following surgery was recorded.
Result  The exposure of the globe in all the dogs was adequate; the desired central fixation of the eye was obtained and surgery could be performed uneventfully. The mean IOP recorded after induction of anesthesia was 15.75 ± 0.82, which was not significantly ( P  > 0.01) different from pre-anesthetic values (14.85 ± 0.85).
Conclusion  Phacoemulsification was successfully performed with this anesthetic regimen without encountering major intraoperative or anesthetic complications.  相似文献   

16.
ObjectiveTo assess the effect of a benzodiazepine co–induction on propofol dose requirement for induction of anaesthesia in healthy dogs, to describe any differences between midazolam and diazepam and to determine an optimal benzodiazepine dose for co–induction.Study designProspective, randomised, blinded placebo controlled clinical trial.AnimalsNinety client owned dogs (ASA I–III, median body mass 21.5kg (IQR 10–33)) presented for anaesthesia for a variety of procedures.MethodsDogs were randomised to receive saline 0.1 mL kg?1, midazolam or diazepam at 0.2, 0.3, 0.4 or 0.5 mg kg?1. All dogs received 0.01 mg kg?1 acepromazine and 0.2 mg kg?1 methadone intravenously (IV). Fifteen minutes later, sedation was assessed and scored prior to anaesthetic induction. Propofol, 1 mg kg?1, was administered IV, followed by the treatment drug. Further propofol was administered until endotracheal intubation was possible. Recorded data included patient signalment, sedation score, propofol dosage and any adverse reactions.ResultsMidazolam (all groups combined) significantly reduced propofol dose requirement compared to saline (p < 0.001) and diazepam (p = 0.008). Midazolam (0.4 mg kg?1) significantly reduced propofol dose requirement (p = 0.014) compared to saline, however other doses failed to reach statistical significance. Diazepam did not significantly reduce propofol dose requirement compared to saline (p = 0.089). Dogs weighing <5 kg, regardless of treatment group, required a greater propofol dose than those weighing 5–40 kg (p = 0.002) and those >40 kg (p = 0.008). Dogs which were profoundly sedated required less propofol than those which were mildly sedated (p < 0.001) and adequately sedated (p = 0.003).Conclusions and clinical relevanceMidazolam (0.4 mg kg?1) given IV after 1 mg kg?1 of propofol significantly reduced the further propofol dose required for intubation compared to saline. At the investigated doses, diazepam did not have significant propofol dose sparing effects.  相似文献   

17.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

18.
ObjectiveTo determine the effects of propofol or thiopental induction on intraocular pressures (IOP) in normal dogs.Study designProspective randomized experimental study.AnimalsTwenty-two random-source dogs weighing 19.5 ± 5.3 kg.MethodsDogs were randomly assigned to receive propofol 8 mg kg−1 IV (group P) or thiopental 18 mg kg−1 IV (group T) until loss of jaw tone. Direct arterial blood pressure, arterial blood gasses, and IOP were measured at baseline, after pre-oxygenation but before induction, before endotracheal intubation, and after intubation.ResultsThere were no significant differences between groups with regard to weight, body condition score, breed group, or baseline or before-induction IOP, arterial blood pressure, or blood gases. The baseline IOP was 12.9 mmHg. Before endotracheal intubation, IOP was significantly higher compared to baseline and before induction in dogs receiving propofol. After intubation with propofol, IOP was significantly higher compared to thiopental and was significantly higher compared to before induction. After intubation, IOP was significantly lower compared to before intubation in dogs receiving thiopental. Propofol increased IOP before intubation by 26% over the before-induction score and thiopental increased IOP by 6% at the same interval. The IOP in group P remained 24% over the before induction score whereas thiopental ultimately decreased IOP 9% below baseline after intubation. There was no significant relationship between any cardiovascular or blood gas parameter and IOP at any time. There was no significant relationship between the changes in any cardiovascular or blood gas parameter and the changes in IOP between time points.Conclusions and clinical relevancePropofol caused a significant increase in IOP compared to baseline and thiopental. Thiopental caused an insignificant increase in IOP which decreased after intubation. Propofol should be avoided when possible in induction of anesthesia in animals where a moderate increase in IOP could be harmful.  相似文献   

19.
OBJECTIVE: To evaluate the cardiopulmonary effects of anesthetic induction with thiopental, propofol, or ketamine hydrochloride and diazepam in dogs sedated with medetomidine and hydromorphone. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs received 3 induction regimens in a randomized crossover study. Twenty minutes after sedation with medetomidine (10 microg/kg, IV) and hydromorphone (0.05 mg/kg, IV), anesthesia was induced with ketamine-diazepam, propofol, or thiopental and then maintained with isoflurane in oxygen. Measurements were obtained prior to sedation (baseline), 10 minutes after administration of preanesthetic medications, after induction before receiving oxygen, and after the start of isoflurane-oxygen administration. RESULTS: Doses required for induction were 1.25 mg of ketamine/kg with 0.0625 mg of diazepam/kg, 1 mg of propofol/kg, and 2.5 mg of thiopental/kg. After administration of preanesthetic medications, heart rate (HR), cardiac index, and PaO(2) values were significantly lower and mean arterial blood pressure, central venous pressure, and PaCO(2) values were significantly higher than baseline values for all regimens. After induction of anesthesia, compared with postsedation values, HR was greater for ketamine-diazepam and thiopental regimens, whereas PaCO(2) tension was greater and stroke index values were lower for all regimens. After induction, PaO(2) values were significantly lower and HR and cardiac index values significantly higher for the ketamine-diazepam regimen, compared with values for the propofol and thiopental regimens. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine and hydromorphone caused dramatic hemodynamic alterations, and at the doses used, the 3 induction regimens did not induce important additional cardiovascular alterations. However, administration of supplemental oxygen is recommended.  相似文献   

20.
This study assessed the intraoperative analgesic effects of intravenous lidocaine administered by a constant rate infusion (CRI) in surgical canine patients. A prospective, blinded, randomized study was designed with 2 treatment groups: A (lidocaine) and B (placebo), involving 41 dogs. All patients were premedicated with acepromazine and buprenorphine, induced with propofol and midazolam; anesthesia was maintained with isoflurane in oxygen. Group A received 2 mg/kg IV lidocaine immediately after induction, followed within 5 min by a CRI at 50 μg/kg/min. Group B received an equivalent volume of saline instead of lidocaine. Changes in heart rate and blood pressure during maintenance were treated by increasing CRI. Fentanyl was used as a supplemental analgesic when intraoperative nociceptive response was not controlled with the maximum dose of lidocaine infusion. There was a significantly lower use of supplemental intraoperative analgesia in the lidocaine than in the placebo group. Group B dogs had almost twice as high a risk of intraoperative nociceptive response as group A dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号