首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colletotrichum coccodes is the causal agent of the potato blemish disease black dot. Two PCR primer sets were designed to sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a nested PCR. The genus-specific outer primers (Cc1F1/Cc2R1) were designed to regions common to Colletotrichum spp., and the species-specific nested primers (Cc1NF1/Cc2NR1) were designed to sequences unique to C . coccodes . The primer sets amplified single products of 447 bp (Cc1F1/Cc2R1) and 349 bp (Cc1NF1/Cc2NR1) with DNA extracted from 33 European and North American isolates of C. coccodes. The specificity of primers Cc1NF1/Cc2NR1 was confirmed by the absence of amplified product with DNA of other species representing the six phylogenetic groups of the genus Colletotrichum and 46 other eukaryotic and prokaryotic plant pathogenic species. A rapid procedure for the direct extraction of DNA from soil and potato tubers was used to verify the PCR assay for detecting C. coccodes in environmental samples. The limit of sensitivity of PCR for the specific detection of C. coccodes when inoculum was added to soils was 3·0 spores per g, or the equivalent of 0·06 microsclerotia per g soil, the lowest level of inoculum tested. Colletotrichum coccodes was also detected by PCR in naturally infested soil and from both potato peel and peel extract from infected and apparently healthy tubers. Specific primers and a TaqMan fluorogenic probe were designed to perform quantitative real-time (TaqMan) PCR to obtain the same levels of sensitivity for detection of C. coccodes in soil and tubers during a first-round PCR as with conventional nested PCR and gel electrophoresis. This rapid and quantitative PCR diagnostic assay allows an accurate estimation of tuber and soil contamination by C. coccodes .  相似文献   

2.
North American isolates of Colletotrichum coccodes, representing six vegetative compatibility groups (NA-VCG), were used to study morphological and pathogenic variability. The objective was to determine if variability in conidial and microsclerotial size was related to pathogenicity. Significant differences were detected in length, width, and length/width ratios of conidia as well as in the length and width of microsclerotia among the NA-VCGs. The longest and widest conidia were produced by isolates belonging to NA-VCG1 and the largest microsclerotia were produced by isolates of NA-VCG2. Conidial and microsclerotial lengths and widths also were affected significantly by type of growth medium. There was no relationship between the size of conidia and the size of microsclerotia among the NA-VCGs studied. Conidial and microsclerotial size may affect inoculum potential and survival as isolates of NA-VCG2 have been demonstrated to occur more frequently than other NA-VCGs. Aggressiveness of 17 isolates of C. coccodes representing six NA-VCG's was studied on three potato cultivars using foliar and root inoculation methods. C. coccodes infection reduced tuber weight in all cultivars with both inoculation methods although tuber weight reductions were significantly higher following root inoculations than foliar inoculations. Pathogenic aggressiveness varied among NA-VCGs. Isolates belonging to NA-VCG2 and 3 were the least aggressive on potato foliage and isolates of NA-VCG1, 2, 3, 4, and 5 produced higher microsclerotial density on all three cultivars compared with isolates of NA-VCG6. Across inoculation methods, isolates of C. coccodes belonging to NA-VCG2 and 6 were the most aggressive based on reductions in tuber weight. Umatilla Russet was the most susceptible cultivar to C. coccodes compared to other cultivars regardless of inoculation method. These results demonstrate variability in morphology and pathogenic aggressiveness among the NA-VCGs of C. coccodes but these traits are not related.  相似文献   

3.
The effectiveness of various methods for detecting three fungal potato pathogens was compared with artificially infested soil, naturally infested tuber-borne soil and field soil. In the spring of 1985 and 1986 field soils from 30 farms in north-east Scotland were sampled just before planting a seed potato crop and 6 months after harvesting such a crop. The minimum statutory gap between crops is 5 years. Polyscytalum pustulans was recovered from 32 out of 60 field soil samples taken 6 months after harvest while from fields sampled in the spring before a potato crop was planted the fungus was isolated from 10 out of 30 soils in 1985 and five out of 30 in 1986. Phoma foveata was isolated from only one out of 60 pre-planting soil samples but Fusarium solani var. coeruleum was recovered from eight of these soils.
Microplant bait plants were grown over 3 years at an experimental farm near Edinburgh in various fields at different intervals after a previous potato crop. Contamination by P . pustulans was not related to interval after potatoes between 1 - 7 years. No contamination was recorded in fields where potatoes had not been grown for more than 30 years.  相似文献   

4.
ABSTRACT Specific and sensitive quantitative diagnostics, based on real-time (TaqMan) polymerase chain reaction (PCR) and PCR enzyme-linked immunosorbent assay, were developed to detect dry-rot-causing Fusarium spp. (F. avenaceum, F. coeruleum, F. culmorum, and F. sulphureum). Each assay detected Fusarium spp. on potato seed stocks with equal efficiency. Four potato stocks, sampled over two seed generations from Scottish stores, were contaminated with F. avenaceum, F. sulphureum, F. culmorum, F. coeruleum or a combination of species, and there was a general trend towards increased Fusarium spp. contamination in the second generation of seed sampled. F. sulphureum and F. coeruleum caused significantly (P < 0.05) more disease in storage than the other species when disease-free tubers of potato cvs. Spunta and Morene were inoculated at a range of inoculum concentrations (0, 10(4), 10(5), and 10(6) conidia/ml). Increased DNA levels were correlated with increased disease severity between 8 and 12 weeks of storage. The threshold inoculum levels resulting in significant disease development on both cultivars were estimated to be 10(4) conidia/ml for F. sulphureum and 10(5) conidia/ml for F. coeruleum. To study the effect of soil infestation and harvest date on disease incidence, seed tubers of cvs. Morene and Spunta were planted in a field plot artificially infested with the four Fusarium spp. F. culmorum and F. sulphureum were detected in soil taken from these plots at harvest, and F. sulphureum DNA levels increased significantly (P < 0.05) at the final harvest. All four Fusarium spp. were detected in progeny tubers. There was a trend toward higher levels of F. culmorum detected in progeny tubers at the earliest harvest date, and higher levels of F. sulphureum at the final harvest. The use of diagnostic assays to detect fungal storage rot pathogens and implications for disease control strategies are discussed.  相似文献   

5.
ABSTRACT The relative contribution of migration of Rhizoctonia solani anastomosis group 3 (AG-3) on infested potato seed tubers originating from production areas in Canada, Maine, and Wisconsin (source population) to the genetic diversity and structure of populations of R. solani AG-3 in North Carolina (NC) soil (recipient population) was examined. The frequency of alleles detected by multilocus polymerase chain reaction-restriction fragment length polymorphisms, heterozygosity at individual loci, and gametic phase disequilibrium between all pairs of loci were determined for subpopulations of R. solani AG-3 from eight sources of potato seed tubers and from five soils in NC. Analysis of molecular variation revealed little variation between seed source and NC recipient soil populations or between subpopulations within each region. Analysis of population data with a Bayesian-based statistical method previously developed for detecting migration in human populations suggested that six multilocus genotypes from the NC soil population had a statistically significant probability of being migrants from the northern source population. The one-way (unidirectional) migration of genotypes of R. solani AG-3 into NC on infested potato seed tubers from Canada, Maine, and Wisconsin provides a plausible explanation for the lack of genetic subdivision (differentiation) between populations of the pathogen in NC soils or between the northern source and the NC recipient soil populations.  相似文献   

6.
Xiao CL  Subbarao KV 《Phytopathology》1998,88(10):1108-1115
ABSTRACT Microplot and field experiments were conducted to evaluate the effects of inoculum density on Verticillium wilt and cauliflower growth. Soil containing Verticillium dahliae microsclerotia was mixed with various proportions of fumigated soil to establish different inoculum densities (fumigated soil was used as the noninfested control). Seven inoculum density treatments replicated four times were established, and the treatments were arranged in a randomized complete block design. Soil was collected from each microplot immediately after soil infestation for V. dahliae assay by plating onto sodium polypectate agar (NP-10) selective medium using the Anderson sampler technique. Five-week-old cauliflower was transplanted into two beds within each 1.2- by 1.2-m microplot. At the same time, several extra plants were also transplanted at the edge of each bed for destructive sampling to examine the disease onset (vascular discoloration) after planting. Cauliflower plants were monitored for Verticillium wilt development. Stomatal resistance in two visually healthy upper and two lower, diseased leaves in each microplot was measured three times at weekly intervals after initial wilt symptoms occurred. At maturity, all plants were uprooted, washed free of soil, and wilt incidence and severity, plant height, number of leaves, and dry weights of leaves and roots were determined. The higher the inoculum density, the earlier was disease onset. A density of 4 microsclerotia per g of dry soil caused 16% wilt incidence, but about 10 microsclerotia per g of soil caused 50% wilt incidence. Both wilt incidence and severity increased with increasing inoculum density up to about 20 microsclerotia per g of soil, and additional inoculum did not result in significantly higher disease incidence and severity. A negative exponential model described the disease relationships to inoculum levels under both microplot and field conditions. Stomatal resistance of diseased leaves was significantly higher at higher inoculum densities; in healthy leaves, however, no treatment differences occurred. The height, number of leaves, and dry weights of leaves and roots of plants in the fumigated control were significantly higher than in infested treatments, but the effects of inoculum density treatments were variable between years. Timing of cauliflower infection, crop physiological processes related to hydraulic conductance, and wilt intensity (incidence and severity) were thus affected by the inoculum density. Verticillium wilt management methods used in cauliflower should reduce inoculum density to less than four micro-sclerotia per g of soil to produce crops with the fewest number of infected plants.  相似文献   

7.
对茄子黄萎病在田间的空间分布及取样方法进行了研究,并探讨了田间土壤带菌量的准确测定方法。研究结果表明:用分布型指数法测定茄田土壤中微菌核的空间分布型,当菌核数量在8-63 ~39-93 个/g 干土范围内,为聚集分布。当茄田发病率小于75 % 时,病株在田间均属聚集分布;发病率大于75 % 时呈均匀分布。土壤中微菌核的调查方法以棋盘式为最适宜。  相似文献   

8.
对茄子黄萎病在田间的空间分布及取样方法进行了研究,并探讨了田间土壤带菌量的准确测定方法。研究结果表明:用分布型指数法测定茄田土壤中微菌核的空间分布型,当菌核数量在8-63 ~39-93 个/g 干土范围内,为聚集分布。当茄田发病率小于75 % 时,病株在田间均属聚集分布;发病率大于75 % 时呈均匀分布。土壤中微菌核的调查方法以棋盘式为最适宜。  相似文献   

9.
Carry-over of inoculum of X.c. pv. campestris in the soil from one cropping season to the next was studied in field experiments over three years. These studies were supported by laboratory and greenhouse experiments on quantitative assessment of bacteria by bioassay using the Most Probable Number technique, and on recovery rates of bacteria from the soil. The mean recovery rate from artificially infested soil was 58%. Extinction of X.c. pv. campestris in soil infested with infected plant debris proceeded exponentially and extinction rates depended on temperature, as did the decomposition of plant debris. In replicated field plots, over three years, infection foci of black rot disease were established. At harvest time, all plants were chopped and resulting plant debris was rotovated into the soil. The resulting soil infestation was sampled and showed clear infestation foci reflecting the original infection foci of the crop. These infestation foci decreased with time and disappeared after the winter. Follow-up crops remained virtually uninfected. The results show that in The Netherlands good crop and soil management impedes survival of inoculum from one year to the next, so that cabbage can be grown continuously. Polyetic carry-over of inoculum by debris in the soil can be avoided in The Netherlands.  相似文献   

10.
Using potato, eggplant and thorn apple as test plants, the relationship between soil inoculum density and plant infection was studied as a basis for the development of a quantitative bioassay of Verticillium dahliae. A linear relationship was demonstrated (P < 0.05) between soil inoculum density and population density on roots for all three test plants and for soil inoculum density and population density in sap extracted from stems for eggplant. Correlation coefficients were higher with densities on or in roots (R2 varying from 0.45 to 0.99) than with densities in stems (R2 varying from 0.04 to 0.26). With eggplant, population densities on/in root and in sap extracted from stems were significantly correlated at 20 and 25°C with Pearson's correlation coefficients of 0.41 and 0.53, respectively. For potato, root colonization was higher at 15 than at 20°C, whereas the reverse applied to eggplant. Stems of potato were less colonized than stems of eggplant. The pathozone sensu Gilligan (1985) was calculated to be <300 µm, indicating that infection was caused by microsclerotia which were located close to the roots. To assess the density of V. dahliae in plant tissue pipetting infested plant sap on solidified ethanol agar medium without salts yielded higher densities than using pectate medium or mixing sap with molten agar. A bioassay for determining effects of (a)biotic factors on development of V. dahliae in the plant is recommended with eggplants as a test plant, grown in soil infested with 300 single, viable microsclerotia g-1 soil at a matric potential of –6.2 kPa, and incubated at 20°C for 8 weeks.  相似文献   

11.
 棉花品种抗黄萎病鉴定一般在田间病圃中进行,其结果受病圃中病原菌分布均匀程度、气象等因素影响极大,往往导致鉴定结果不准确。为了使鉴定方法简单、科学、可靠,我们在温室条件下比较了3种苗期接种棉花黄萎病的方法,即切根蘸孢子法(接种浓度为106分生孢子/mL);菌培养物土壤接种法(0.5%、1%、2%,w/w);微菌核土壤接种法(103个微菌核/g土)。结果表明,切根蘸孢子法导致棉苗发病均匀、严重、迅速,播种35~45 d后即可得到均匀一致的发病结果。而其它2种接种方法在播种75 d后才得到相对稳定的发病结果。同时,研究还表明接种浓度为104分生孢子/mL所导致的黄萎病显著比105或106的轻。利用切根蘸孢子法在室内鉴定12个棉花品种或品系的抗黄萎病能力,证明该方法是抗黄萎病快速鉴定的有效方法。此外,该鉴定方法还可快速鉴定黄萎病菌不同菌株的致病性,并可应用于作物对其它土传病害的抗病性鉴定上。  相似文献   

12.
A mathematical equation was developed that describes the inoculum densities of microsclerotia of Verticillium dahliae in the soil over a long time span. The equation was based on measurable parameters and ecologically meaningful principles. In the model, the number of systemic infections of plant roots during crop growth was related to soil inoculum density. In turn, formation of microsclerotia in debris and reduction of the amount of crop growth were related to the number of systemic infections. Finally, a gradual release and mortality of microsclerotia in the soil were included to calculate subsequent inoculum densities in the soil.
Fitting the function to experimental data of potato cvs Element, Ostara, Mirka and Astarte, flax, pea, barley, sugar beet, onion and faba bean gave a very high correlation between observed and predicted soil inoculum densities. The clear differences in inoculum production among potato cultivars and other crops were expressed in quantitative terms. The highest inoculum density after incorporation of the debris of a susceptible crop was estimated to occur at 2.3 thermal time units of 3600 degree days (base 0°C). Ten per cent of the initial input of inoculum was still present after 4.5 thermal time units. The model was used to predict the dynamics of soil inoculum densities for V. dahliae under various cropping frequency schemes and performed satisfactorily.  相似文献   

13.
Powdery scab of potato, once established in a field, is difficult to control because of the longevity of the resting spores (cystosori) of the causal organism, Spongospora subterranea f.sp. subterranea. Host resistance is likely to be the most efficient in a long-term control strategy for preventing build-up of field inoculum and spread of the disease. Resistance screening of potato cultivars is mostly done in laborious field trials where disease development is likely to be unpredictable. A bioassay with potato tissue cultured plantlets and cystosori as inoculum is described and was tested for its potential to screen potato cultivars at an early stage for their relative susceptibility to powdery scab by comparing the lab results with field data. With cystosori inoculum of Swiss origin, the laboratory test showed clear differences between the potato cultivars in the severity of zoosporangial root infection which correlated better with ranked tuber infection data, compared to root galling. There are apparent differences in the relative trends in susceptibility between roots and tubers of five selected cultivars when using naturally infested soil instead of prepared cystosori as inoculum in the lab bioassay. Furthermore, differences in the severity of zoosporangial root infection of two selected cultivars were found when cystosori from different countries where used as inoculum. A possible host genotype × pathogen interaction is discussed. The bioassay has the potential to screen and select for resistant material at an early breeding stage thus making field trials not unnecessary but more economical. It will allow the use of a standard set of pathogen collections and facilitate testing for inoculum virulence in infested soils.  相似文献   

14.
ABSTRACT A murine hybridoma cell line GD2 secreting an immunoglobulin (Ig)M monoclonal antibody (MAb) was produced against surface antigens from an anastomosis group (AG) 4 isolate of Rhizoctonia solani (teleomorph: Thanatephorus cucumeris). Ascites were produced in mice using GD2 hybridoma cells and used to develop a rapid immunochromatographic lateral flow device (LFD) for the detection of antigens from R. solani and certain related Rhizoctonia spp. The LFD was tested for specificity against surface antigens from related and unrelated soil fungi. Antigens from representative isolates of R. solani AGs 1, 2-1, 2-3, 2-t, 3, 4, 5, 6, 7, 8, 9, 10, 11, and BI gave a positive response in LFD tests, as did antigens from Thanatephorus orchidicola, T. praticola, R. fragariae (teleomorph: Ceratorhiza fragariae), Ceratorhiza goodyerae-repentis, Ceratobasidium cornigerum, and binucleate AGE. Antigens from R. solani AGs 2-2, 2-2IIIB, and 2-2IV and from the related fungi R. carotae, R. cerealis (teleomorph: Ceratobasium cereale), R. crocorum (teleomorph: Helicobasidium brebissonii), R. oryzae (teleomorph Waitea circinata), and R. zeae gave negative responses, as did antigens from a range of unrelated fungi and oomycetes including Fusarium, Gliocladium, Trichoderma, Pythium, and Phytophthora spp. The usefulness of the LFD to detect R. solani was demonstrated in soils naturally infested with R. solani AG3. There was close agreement between results of LFD tests and conventional plate enrichment tests employing selective medium. The specificity of the technique was confirmed by polymerase chain reaction PCR using R. solani AG3-specific primers and by analyses based on sequences of the internal transcribed spacer (ITS)1-5.8S-ITS2 rRNA-encoding regions of unrelated fungi recovered from soil samples. The LFD was used to quantify R. solani AG4 in artificially infested soil samples (chopped potato soil inoculum). Estimates of CFU per gram of soil were derived using a most-probable number technique, which was based on the presence or absence of a detectable signal in the LFD. Estimates of CFU obtained in LFD tests and those obtained in a plate-trapped antigen enzyme-linked immunosorbent assay incorporating MAb GD2 were identical (449 CFU g(-1) of soil).  相似文献   

15.
Fifteen isolates of binucleate Rhizoctonia fungi (BNR) were studied as potential biocontrol agents for protection of potato from Rhizoctonia canker in artificially infested greenhouse soil and potato fields naturally infested with Rhizoctonia solani (AG-3). Eight of the BNR reduced incidence and severity of Rhizoctonia stem canker in greenhouse experiments by an average of 78 and 85%, respectively. In a field naturally infested with R. solani, selected isolates of BNR and the fungicide Tops 2.5D (thiophanate-methyl) were equally protective of potato from Rhizoctonia stem canker. BNR isolates gave protection of potato from Rhizoctonia stolon canker similar to PCNB and superior to Tops 2.5D. Cultivars Atlantic, Irish Cobbler, Kennebec, Norchip, Russet Burbank, and Superior were protected equally from Rhizoctonia stem canker by selected isolates of BNR under field conditions. Isolates of BNR show potential as biocontrol agents for protection of potato from Rhizoctonia canker.  相似文献   

16.
Xing L  Westphal A 《Phytopathology》2006,96(7):763-770
ABSTRACT Sudden death syndrome (SDS) of soybean is caused by the soilborne Fusarium solani f. sp. glycines (synonym F. virguliforme). In a sequential approach, two multifactor factorial-design microplot experiments were conducted to investigate the effects of fungal infestation levels and soil moisture on both root necrosis and foliar SDS severity, and the interaction between F. solani f. sp. glycines and Heterodera glycines in fumigated versus nonfumigated soil. In 2003, soybean cv. Spencer was grown in nonfumigated or methyl bromide-fumigated soil and infested with increasing levels of F. solani f. sp. glycines, either under rainfall or irrigated after growth stage V6/R1. In 2004, interactions between F. solani f. sp. glycines and H. glycines were explored in a factorial inoculation design in fumigated or nonfumigated soil, planted to Williams 82 or Cyst-X20-18. In both years, higher levels of foliar SDS severity and root necrosis were found in F. solani f. sp. glycines-infested soils with H. glycines than in soils without the nematode on the soybean cultivars susceptible to both pathogens. Both natural infestations of H. glycines in 2003 and artificially amended populations of H. glycines in 2004 contributed to higher foliar SDS severity. More severe foliar SDS symptoms always were associated with more root necrosis, but elevated levels of root necrosis did not predict severe leaf symptoms. In contrast to the critical role of H. glycines, increasing fungal infestation levels had no significant effects on increasing either foliar SDS symptoms or root necrosis. Effects of moisture regime and fungal infestation levels also were examined in factorial greenhouse and growth chamber experiments. High soil moisture resulted in higher levels of SDS root necrosis. In the greenhouse, root necrosis increased at a higher rate in low soil moisture than the rate in high soil moisture. The two pathogens acted as a complex and the disease development was strongly dependent on high soil moisture.  相似文献   

17.
ABSTRACT The severity of bean root rot caused by Fusarium solani f. sp. phaseoli in vitro was studied with regard to exchangeable soil aluminum for 25 soil samples collected from northeastern Honshyu island, Japan. Of these, 24 were Andosols, typically acidic and of volcanic ash origin. Disease severity was assessed based on the number of lesions produced by the pathogen on a 6-cm section of bean stem buried and incubated for 8 days at 25 degrees C in artificially infested soil samples. The number of lesions differed considerably among soil samples. In all soils in which disease incidence was very low, macroconidial germination was strongly inhibited. The inhibition was observed in all soil samples with exchangeable aluminum contents of at least 0.4 meq/100 g of soil, although it is unclear if this concentration is the lowest limit for inhibition. When soil pH was 5.6 or lower, higher amounts of exchangeable aluminum were detected from soils in which the major clay mineralogy was chloritized 2:1 minerals, while no or limited amounts of aluminum were detected from soils in which the major clay mineralogy was allophane/imogolite. Macroconidial germination and disease incidence are thus closely related to clay mineralogy, which regulates the behavior of exchangeable aluminum.  相似文献   

18.
Mazzola M  Gu YH 《Phytopathology》2002,92(12):1300-1307
ABSTRACT The induction of disease-suppressive soils in response to specific cropping sequences has been demonstrated for numerous plant-pathogen systems. The role of host genotype in elicitation of the essential transformations in soil microbial community structure that lead to disease suppression has not been fully recognized. Apple orchard soils were planted with three successive 28-day cycles of specific wheat cultivars in the greenhouse prior to infestation with Rhizoctonia solani anastomosis group (AG)-5 or AG-8. Suppressiveness to Rhizoctonia root rot of apple caused by the introduced isolate of R. solani AG-5 was induced in a wheat cultivar-specific manner. Pasteurization of soils after wheat cultivation and prior to pathogen introduction eliminated the disease suppressive potential of the soil. Wheat cultivars that induced disease suppression enhanced populations of specific fluorescent pseudomonad genotypes with antagonistic activity toward R. solani AG-5 and AG-8, but cultivars that did not elicit a disease suppressive soil did not modify the antagonistic capacity of this bacterial community. When soils were infested prior to the initial wheat planting, all cultivars were uniformly susceptible to R. solani AG-8. However, when pathogen inoculum was added after three growth-cycles, wheat root infection during the fourth growth-cycle varied in a cultivar specific manner. The same wheat cultivar-specific response in terms of transformation of the fluorescent pseudomonad community and subsequent suppression of Rhizoctonia root rot of apple was observed in three different orchard soils. These results demonstrate the importance of host genotype in modification of indigenous saprophytic microbial communities and suggest an important role for host genotype in the success of biological control.  相似文献   

19.
ABSTRACT Isolates of Helminthosporium solani, the causal agent of silver scurf of potato, collected from multiple locations consistently show white sectoring and rings, differential coloration, and reduced sporulation in culture. It has been accepted that this growth pattern is normal for H. solani cultures. Scanning electron microscopy confirmed the presence of a contaminating fungus in close association with cultures of H. solani. Repeated hyphal tip isolation techniques were used to separate H. solani from the fungal contaminant. Resultant pure cultures of H. solani were uniformly black in color, without white sectors or rings. The contaminating fungus was identified as Acremonium strictum. The purpose of this study was to elucidate the relationship between A. strictum and H. solani, and evaluate the impact of the fungicolous A. strictum on the growth and biology of H. solani. In vitro studies demonstrated that A. strictum significantly reduced sporulation of H. solani isolates from 65 to 35%, spore germination from 53 to 43%, and mycelial growth from 40 to 32% compared with noncontaminated cultures of H. solani. These data indicate that A. strictum is antagonistic to H. solani, and can be considered a mycoparasite. A. strictum reduced H. solani conidia production on minitubers, thereby reducing inoculum for infection. However, treatment with A. strictum does not reduce silver scurf of previously infected tubers. Further studies are warranted to determine the full potential of A. strictum as a biological control agent of H. solanii-incited silver scurf of stored potato tubers and the most effective manner of use.  相似文献   

20.
Mechanism of broccoli-mediated verticillium wilt reduction in cauliflower   总被引:2,自引:0,他引:2  
ABSTRACT Broccoli is resistant to Verticillium dahliae infection and does not express wilt symptoms. Incorporation of broccoli residues reduces soil populations of V. dahliae. The effects of broccoli residue were tested on the colonization of roots by V. dahliae, plant growth response, and disease incidence of both broccoli and cauliflower in soils with different levels of V. dahliae inoculum and with or without fresh broccoli residue amendments. The three soils included a low-Verticillium soil, a high-Verticillium soil, and a broccoli-rotation soil (soil from a field after two broccoli crops) with an average of 13, 38, and below-detectable levels of microsclerotia per g of soil, respectively. Cauliflower plants in broccoli-amended high-Verticillium soil had significantly (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号