首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amoebic gill disease (AGD), caused by Neoparamoeba perurans, is a major health challenge for Atlantic salmon aquaculture globally. While freshwater bathing for 2 hr is effective in reducing infection severity, there is need for more rapid and lower cost alternatives. To this end, a combination of sodium percarbonate (SPC) in freshwater was examined for its treatment efficacy. Initial in vitro studies showed a reduction in amoeba viability when exposed for 30 min to freshwater containing >500 mg/L SPC. Subsequently, AGD‐affected salmon were bathed for 30 min in 16°C freshwater containing 100, 500 or 1,000 mg/L SPC, or for 2 hr in 16°C freshwater to mimic industry practice. Treatment at the highest SPC concentration caused extensive gill damage and substantial mortality. Neither occurred to a significant extent at lower SPC concentrations. Gill pathology of surviving fish 10 days post‐treatment (dpt) was comparable to or more severe than pre‐treatment, and significantly (p < .001) more severe than in 2 hr freshwater bathed fish. N. perurans DNA was confirmed by qPCR in all treatment groups at 10 dpt. The data indicate that a 30‐min exposure to SPC in freshwater is not a suitable alternative to existing freshwater treatment of AGD.  相似文献   

2.
There have been recent efforts amongst immunologists to develop approaches for following individual fish during challenges with viral and bacterial pathogens. This study contributes to assessing the feasibility of using such approaches to study amoebic gill disease (AGD). Neoparamoeba perurans, agent of AGD, has been responsible for widespread economic and fish loss in salmonid aquaculture. With the emergence of AGD in Europe, research into infection dynamics and host response has increased. This study investigated the effect of repeat exposure to anaesthesia, a necessary requirement when following disease progression in individual fish, on N. perurans. In vitro cultures of N. perurans were exposed every 4 days over a 28‐day period to AQUI‐S® (isoeugenol), a popular anaesthetic choice for AGD challenges, at a concentration and duration required to sedate post‐smolt salmonids. Population growth was measured by sequential counts of amoeba over the period, while viability of non‐attached amoeba in the culture was assessed with a vital stain. AQUI‐S® was found to be a suitable choice for in vivo ectoparasitic challenges with N. perurans during which repetitive anaesthesia is required for analysis of disease progression.  相似文献   

3.
Amoebic gill disease (AGD) in farmed Atlantic salmon is caused by the amoeba Paramoeba perurans. The recent establishment of in vitro culture techniques for P. perurans has provided a valuable tool for studying the parasite in detail. In this study, flow cytometry was used to generate clonal cultures from single‐sorted amoeba, and these were used to successfully establish AGD in experimental Atlantic salmon. The clonal cultures displayed differences in virulence, based on gill scores. The P. perurans load on gills, determined by qPCR analysis, showed a positive relationship with gill score, and with clonal virulence, indicating that the ability of amoebae to proliferate and/or remain attached on gills may play a role in virulence. Gill scores based on gross signs and histopathological analysis were in agreement. No association between level of gill score and specific gill arch was observed. It was found that for fish with lower gill scores based on histopathological examination, gross examination and qPCR analysis of gills from the same fish were less successful in detecting lesions and amoebae, respectively.  相似文献   

4.
Amoebic gill disease (AGD) caused by the amoeba Paramoeba perurans is an increasing problem in Atlantic salmon aquaculture. In the present PCR survey, the focus was to identify reservoir species or environmental samples where P. perurans could be present throughout the year, regardless of the infection status in farmed Atlantic salmon. A total of 1200 samples were collected at or in the proximity to farming sites with AGD, or with history of AGD, and analysed for the presence of P. perurans. No results supported biofouling organisms, salmon lice, biofilm or sediment to maintain P. perurans. However, during clinical AGD in Atlantic salmon, the amoeba were detected in several samples, including water, biofilm, plankton, several filter feeders and wild fish. It is likely that some of these samples were positive as a result of the continuous exposure through water. Positive wild fish may contribute to the spread of P. perurans. Cleaner fish tested positive for P. perurans when salmon tested negative, indicating that they may withhold the amoeba longer than salmon. The results demonstrate the high infection pressure produced from an AGD‐afflicted Atlantic salmon population and thus the importance of early intervention to reduce infection pressure and horizontal spread of P. perurans within farms.  相似文献   

5.
Neoparamoeba perurans is the causative agent of amoebic gill disease (AGD). Two loop-mediated isothermal amplification (LAMP) assays targeting the parasite 18S rRNA and the Atlantic salmon EF1α, used as internal control, were designed. The N. perurans LAMP assay did not amplify close relatives N. pemaquidensis and N. branchiphila, or the host DNA. This assay detected 106 copies of the parasite 18S rRNA gene under 13 min and 103 copies under 35 min. Five “fast-and-dirty” DNA extraction methods were compared with a reference method and further validated by TaqMan™ qPCR. Of those, the QuickExtract buffer was selected for field tests. Seventy-one non-lethal gill swabs were analysed from AGD-clinically infected Atlantic salmon. The pathogen was detected under 23 min in fish of gill score >2 and under 39 min for lower gill scores. About 1.6% of the tests were invalid (no amplification of the internal control). 100% of positives were obtained from swabs taken from fish showing gill score ˃3, but only ~50% of positives for lower gill scores. The present LAMP assay could be implemented as a point-of-care test for the on-site identification of N. perurans; however, further work is required to improve its performance for lower scores.  相似文献   

6.
Amoebic gill disease (AGD) caused by the ectoparasite Paramoeba perurans affects several cultured marine fish species worldwide. In this study, the morphology and ultrastructure of P. perurans in vitro and in vivo was investigated using scanning and transmission electron microscopy (SEM and TEM, respectively). Amoebae cultures contained several different morphologies ranging from a distinct rounded cell structure and polymorphic cells with pseudopodia of different lengths and shapes. SEM studies of the gills of AGD‐affected Atlantic salmon, Salmo salar L., revealed the presence of enlarged swellings in affected gill filaments and fusion of adjacent lamellae. Spherical amoebae appeared to embed within the epithelium, and subsequently leave hemispherical indentations with visible fenestrations in the basolateral surface following their departure. These fenestrated structures corresponded to the presence of pseudopodia which could be seen by TEM to penetrate into the epithelium. The membrane–membrane interface contained an amorphous and slightly fibrous matrix. This suggests the existence of cellular glycocalyces and a role for extracellular products in mediating pathological changes in amoebic gill disease.  相似文献   

7.
Amoebic gill disease (AGD) is a pathogenic disease in salmonids caused by Neoparamoeba perurans. Treatment of AGD infection has been through freshwater bathing of the fish. However, as the availability of fresh water is often limited, hydrogen peroxide has been introduced as an alternative treatment. This study investigated the effect of hydrogen peroxide as treatment for AGD‐infected salmon (Salmo salar L.,) at different seawater temperatures and hydrogen peroxide dosages. In total, 600 fish were challenged with N. perurans and the severity of the AGD infection was measured using a gill score scale. After challenge and disease development, the fish were distributed into 12 tanks. The treatment was performed at different seawater temperatures (8°C, 12°C, 17°C) using different hydrogen peroxide doses. Each temperature included an untreated control group. Linear models were used to analyse gill score. A significant effect of treatment was found (?0.68 ± 0.05) regardless of dose and temperature, suggesting that hydrogen peroxide was effective in treating AGD. When the model included dose, a negative linear relationship between dose and gill score was found. The study proved that treatment of AGD with hydrogen peroxide was successful, as gills partially recovered following treatment and further disease development was delayed.  相似文献   

8.
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post‐amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune‐ and stress‐related genes showed more modulation in gills than in head kidney, revealing an organ‐specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.  相似文献   

9.
Currently, the only effective and commercially used treatment for amoebic gill disease (AGD) in farmed Tasmanian Atlantic salmon is freshwater bathing. Hydrogen peroxide (H2O2), commonly used throughout the aquaculture industry for a range of topical skin and gill infections, was trialled in vitro and in vivo to ascertain its potential as an alternative treatment against AGD. Under in vitro conditions, trophozoites of Neoparamoeba perurans were exposed to three concentrations of H2O2 in sea water (500, 1000 and 1500 mg L?1) over four durations (10, 20, 30 and 60 min) each at two temperatures (12 and 18 °C). Trophozoite viability was assessed immediately post‐exposure and after 24 h. A concentration/duration combination of 1000 mg L?1 for >10 min demonstrated potent amoebicidal activity. Subsequently, Atlantic salmon mildly affected with experimentally induced AGD were treated with H2O2 at 12 and 18 °C for 15 min at 1250 mg L?1 and their re‐infection rate was compared to freshwater‐treated fish over 21 days. Significant differences in the percentage of filaments affected with hyperplastic lesions (in association with amoebae) and plasma osmolality were noted between treatment groups immediately post‐bath. However, the results were largely equivocal in terms of disease resolution over a 3‐week period following treatment. These data suggest that H2O2 treatment in sea water successfully ameliorated a clinically light case of AGD under laboratory conditions.  相似文献   

10.
11.
The development and the application of a quantitative duplex real‐time PCR for the detection of Neoparamoeba perurans and the elongation factor α 1 gene (ELF) of Atlantic salmon, Salmo salar L., and rainbow trout, Oncorhynchus mykiss (Walbaum), are described. A set of primers and probe was designed to amplify a 139‐bp fragment specific to the N. perurans 18S rRNA gene. The test was shown to be very sensitive, being able to detect as little as 13.4 DNA copies per μL corresponding to 0.15 fg of template DNA. In addition, the reaction that detected N. perurans was found to have a high degree of repeatability and reproducibility, to have a linear dynamic range (R2 = 0.999) extending over 5 log10 dilutions and to have a high efficiency (104%). The assay was applied to DNA samples extracted from 48 formalin‐fixed, paraffin‐embedded (FFPE) salmon gill tissues showing varying degrees of gill histopathology and amoebic gill disease (AGD)‐type histopathology ranging from absent to severe (each scored 0–3). Neoparamoeba perurans DNA was detected in all the blocks where AGD‐type histopathology was diagnosed microscopically and in 43.6% of the blocks showing signs of gill pathology. The association between parasitic load and gill histopathology and AGD‐type histopathology severity was also investigated. This study also describes the development and the application of a second real‐time PCR for the generic detection of Neoparamoeba spp., Page, 1987. A set of primers and probe conserved among the Neoparamoeba spp. was designed to amplify a 150‐bp fragment within the 18S rRNA gene. Applied to N. perurans‐negative gill tissues, the method was used to exclude the presence of other Neoparamoeba spp. in those blocks where gill pathology was observed microscopically.  相似文献   

12.
Gill diseases are a complex and multifactorial challenge for marine farmed Atlantic salmon. Co‐infections with putative pathogens are common on farms; however, there is a lack of knowledge in relation to the potential effect co‐infections may have on pathology. The objective of this study was to determine the prevalence and potential effects of Neoparamoeba perurans, Desmozoon lepeophtherii, Candidatus Branchiomonas cysticola, Tenacibaculum maritimum and salmon gill poxvirus (SGPV) during a longitudinal study on a marine Atlantic salmon farm. Real‐time PCR was used to determine the presence and sequential infection patterns of these pathogens on gill samples collected from stocking until harvest. A number of multilevel models were used to determine the effect of these putative pathogens on gill health (measured as gill histopathology score), while adjusting for the effect of water temperature and time since the last freshwater treatment. Results indicate that between 12 and 16 weeks post‐seawater transfer (wpst), colonization of the gills by all pathogens had commenced and by week 16 of marine production each of the pathogens had been detected. D. lepeophtherii and Candidatus B. cysticola were by far the most prevalent of the potential pathogens detected during this study. Detections of T. maritimum were found to be significantly correlated with temperature showing distinct seasonality. Salmon gill poxvirus was found to be highly sporadic and detected in the first sampling point, suggesting a carryover from the freshwater stage of production. Finally, the model results indicated no clear effect between any of the pathogens. Additionally, the models showed that the only variable which had a consistent effect on the histology score was N. perurans.  相似文献   

13.
Although a stenohaline freshwater fish, the stinging catfish Heteropneustes fossilis, is also available in the freshwater fringes of the coastal areas of Bangladesh, the tolerance of this species to variable environmental salinity has not been thoroughly investigated. Based on median lethal salinity (MLS‐50 96 h), three sublethal salinity levels (3 ppt, 6 ppt and 9 ppt) and a control (0 ppt), each with three replications were selected to observe the effects of mildly brackish conditions on the fish for a period of 90‐day exposure. Better growth and survival were found up to 6 ppt compared with control. Salinity more than 6 ppt appeared unsuitable for H. fossilis fingerling due to increased mortality and reduced growth. To determine biochemical alterations, a few important physiological parameters were observed after 90 days of exposure. Glycogen level of liver and muscle in the fish reared at 9 ppt salinity decreased significantly (P < 0.05) as compared to the control. Glucose level in blood and liver was also found to be increased in fish with increase in salinity. ALP and ATPase activities were reduced significantly in both muscle and liver tissues at higher salinity, indicating the stress mitigation effect. However, all the biochemical parameters were found in normal condition up to 6 ppt compared with control. This evidence suggests that H. fossilis can sustain and grow well below 6 ppt and can be a potential candidate for culture in coastal areas after heavy downpour when the salinities level falls to 6 ppt or lower.  相似文献   

14.
Infections of gill amoebae that manifest as amoebic gill disease (AGD) occur in Atlantic salmon in Tasmania. The treatment of choice is freshwater bathing; however, the effectiveness of this treatment has declined over time. In this experiment, cage trials of chloramine‐T (Cl‐T) to treat AGD in Atlantic salmon were conducted over 3 months, and involved an initial bath in either freshwater or seawater with Cl‐T, followed by a second bath 6 weeks later. Amoeba densities were reduced to 50–80% of original values for both treatments. Neoparamoeba sp. density was not affected by bathing, and was not significantly different over the course of the experiment. Lesion prevalence was higher for Cl‐T‐treated fish than for freshwater‐treated fish, with overall prevalence levels of 14.30±1.00% and 8.03±0.57% respectively. This was also seen for gross gill scores. In the fortnight after each of the two baths, Cl‐T‐treated fish had significantly higher lesion levels, although this difference was then resolved by 4 weeks post bathing. The use of Cl‐T in seawater is at least as effective as freshwater at reducing amoebae density, and may be a more practical alternative when freshwater is in short supply.  相似文献   

15.
Exposure to heat‐shock protein (Hsp) stimulating factors induces Hsp accumulation and confers tolerance to lethal ammonia stress on the common carp Cyprinus carpio. This study investigated whether a non‐lethal heat shock bestowed similar protective effects against ammonia and induced thermotolerance, both thought to be rendered by increased amounts of Hsps. The 30‐min lethal temperature (30 min LHT) and 1‐h lethal ammonia concentration (1 h LCT) for this species occurred at 41°C and 14.2 mg/L NH3 respectively. Heating juvenile carp (5 cm) from 28°C to 32, 34 and 38°C, with a subsequent 8‐h recovery period augmented tolerance to lethal heat and ammonia perturbation by two to threefold as compared with animals held at 28°C. Protection occurred in conjunction with Hsp70 accumulation in gills, substantiating the role of this Hsp in enhancing the stress tolerance of common carp.  相似文献   

16.
Routine gill swabbing is a non-destructive sampling method used for the downstream qPCR detection and quantitation of the pathogen Neoparamoeba perurans, a causative agent of amoebic gill disease (AGD). Three commercially available swabs were compared aiming their application for timelier AGD diagnosis (Calgiswab® (calcium alginate fibre-tipped), Isohelix® DNA buccal and cotton wool-tipped). Calcium alginate is soluble in most sodium salts, which potentially allows the total recovery of biological material, hence a better extraction of target organisms’ DNA. Thus, this study consisted of (a) an in vitro assessment involving spiking of the swabs with known amounts of amoebae and additional assessment of retrieval efficiency of amoebae from agar plates; (b) in vivo testing by swabbing of gill arches (second, third and fourth) of AGD-infected fish. Both in vitro and in vivo experiments identified an enhanced amoeba retrieval with Calgiswab® and Isohelix® swabs in comparison with cotton swabs. Additionally, the third and fourth gill arches presented significantly higher amoebic loads compared to the second gill arch. Results suggest that limiting routine gill swabbing to one or two arches, instead of all, could likely lead to reduced stress-related effects incurred by handling and sampling and a timelier diagnosis of AGD.  相似文献   

17.
This study examined the efficacy of bithionol as a prophylactic or therapeutic oral treatment for Atlantic salmon (AS), Salmo salar , affected by amoebic gill disease (AGD). Furthermore, it explored the interaction of bithionol oral therapy with the current standard treatment (a freshwater bath for at least 3 h). The efficacy of three medicated feeds was determined in the trial by feeding AGD-affected AS at 1% body weight (BW) day−1 either oil coated commercial feed (control) or prophylactic and therapeutic bithionol at 25 mg kg−1 feed. Feeding commenced 2 weeks prior to exposure to Neoparamoeba spp. at 300 cells L−1 and continued for 49 days post-exposure (PE). Bithionol when fed as a 2-week prophylactic or therapeutic treatment at 25 mg kg−1 feed delayed the onset of AGD pathology and reduced the percentage of gill filaments with lesions. Administration of a 3-h freshwater bath at 28 days PE significantly reduced amoeba numbers to a similar level across all treatments; in contrast, gross gill score and percent lesioned filaments were reduced to different extents, the control having a significantly higher score than both bithionol treatments. Following the freshwater bath, clinical signs of AGD increased at a similar level across all treatments, albeit controls were significantly higher than the bithionol treatments immediately following freshwater treatment. This study demonstrated that bithionol at 25 mg kg−1 feed, when fed as a 2-week prophylactic or a therapeutic treatment, delayed and reduced the intensity of AGD pathology and warrants further investigation as a treatment for AGD-affected AS.  相似文献   

18.
Freshwater bathing is essential for control of amoebic gill disease (AGD) during the marine phase of the Tasmanian Atlantic salmon production cycle, a practice that is costly, production limiting and increasing in frequency. Although the pathogenesis of gill infection with Neoparamoeba sp. in naïve Atlantic salmon, Salmo salar, is now understood, the progression of re‐infection (post‐treatment) required elucidation. Here, we describe the weekly histopathological progression of AGD from first to second freshwater bath. Halocline cessation and increased water temperature appeared to drive the rapid onset of initial infection prior to bathing. Freshwater bathing cleared lesions of attached trophozoites and associated cellular debris. Subsequent gill re‐infection with Neoparamoeba sp. was evident at 2 weeks post‐bath and had significantly increased (P < 0.001), in severity by 4 weeks post‐bath. No significant difference in gross pathology was observed until 4 weeks post‐bath (P < 0.05). The re‐infective progression of AGD was characterized by localized host tissue responses juxtaposed to adhered trophozoites (epithelial oedema, hypertrophy and hyperplasia), non‐specific inflammatory cell infiltration (macrophages, neutrophils and eosinophilic granule cells) and finally advanced hyperplasia with epithelial fortification. During the post‐bath period, non‐AGD lesions including haemorrhage, necrosis and regenerative hyperplasia were occasionally observed, although no evidence of secondary colonization of these lesions by Neoparamoeba sp. was noted. We conclude that pathogenesis during the inter‐bath period was identical to initial infection although the source of re‐infection remains to be established.  相似文献   

19.
In the present study, the effects of Artemia supplemented with 2‐β‐mercapto‐ethanol (β‐ME) treated yeast cell, Saccharomyces cerevisiae, on growth and reproductive performance, lysozyme activity, and disease resistance to Aeromonas hydrophila of freshwater ornamental species, Poecilia latipinna, were investigated. Within 60 days, molly fish were fed with three treatments including commercial food (T1), un‐supplemented Artemia (T2), and Artemia supplemented with β‐ME‐treated yeast cell (at concentration of 4 × 107 CFU/L of water) (T3). After the feeding period, the fish were exposed to 100 μl of a suspension (1.1 × 107 cells/ml) of A. hydrophila (BCCM5/LMG3279) and the cumulative mortality rates were recorded for 12 days. No significant difference was found between survival rate and growth performance of P. latipinna except for weight gain that was higher in fish fed through Artemia supplemented with β‐ME‐treated yeast cell compared to control group. Fecundity rate was significantly improved in fish fed using T3 with the maximum amount of 49.5 ± 2.29 per female (p < 0.05). Besides, lysozyme activity was significantly increased in group 3 (p < 0.05). Moreover, lowest fish mortality was significantly observed in this treatment (p < 0.05). In addition, the number of colonies formed by yeast cell in T3 (634 × 103 CFU/g intestine) showed significant difference with other treatments (p < 0.05). In sum, Artemia enriched with β‐ME‐treated yeast improved reproductive indices, immune responses, and resistance against A. hydrophila of P. latipinna.  相似文献   

20.
A bacterial biosurfactant isolated from Pseudomonas (strain H6) has previously been shown to have a lethal effect on the oomycete Saprolegnia diclina infecting fish eggs. The present work demonstrates that the same biosurfactant has a strong in vitro antiparasitic effect on the fish pathogenic ciliate Ichthyophthirius multifiliis. Three life cycle stages (the infective theront stage, the tomont and the tomocyst containing tomites) were all susceptible to the surfactant. Theronts were the most sensitive showing 100% mortality in as low concentrations as 10 and 13 μg/ml within 30 min. Tomonts were the most resistant but were killed in concentrations of 100 μg/ml. Tomocysts, which generally are considered resistant to chemical and medical treatment, due to the surrounding protective cyst wall, were also sensitive. The surfactant, in concentrations of 10 and 13 μg/ml, penetrated the cyst wall and killed the enclosed tomites within 60 min. Rainbow trout fingerlings exposed to the biosurfactant showed no adverse immediate or late signs following several hours incubation in concentrations effective for killing the parasite. This bacterial surfactant may be further developed for application as an antiparasitic control agent in aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号