首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple novel vegetable oil-based polyols were synthesized from the reaction-addition to epoxidized soybean oil (ESBO) by a series of acid acyl moieties derived from vegetable oils. The acid acyl moieties were linoleic acid (LA), ricinoleic acid (RC), ricinoleic acid estolide (RC estolide) and hydrolyzed bodied soybean oil (HBSBO). LA and RC were commercially available but RC estolide and HBSBO were synthesized by enzymatic catalytic reactions. In the reaction-addition, ESBO was heated with the acid acyl moieties at 170 °C, atmospheric pressure without any catalyst and solvent. The synthesized vegetable oil-based polyols had acid numbers less than 10 (mg KOH/g), hydroxy numbers of 82–152 (mg KOH/g), and hydroxyl equivalent weights of 370–680. The polyols made from RC estolide and HBSBO had improved numbers of OH equivalent weight comparing to the numbers from alkoxyl hydroxyl soybean oil which is widely used commercial soy-based polyols.  相似文献   

2.
Ferulic acid is a hydroxy cinnamic acid derivative found ubiquitously throughout the plant kingdom, is especially abundant in rice and corn bran, and possesses excellent ultraviolet (UV) and antioxidant properties. Ferulic acid was enzymatically incorporated into soybean oil to form feruloylated monoacyl- and diacylglycerols (FAG). The FAG possess the UV-absorbing and antioxidant properties of ferulic acid but are water insoluble and extremely lipophilic. These characteristics make FAG attractive in the cosmeceutical industry as an all-natural replacement for petroleum-based sunscreen active ingredients and antioxidants. The FAG were synthesized from the transesterification of soybean oil with ethyl ferulate catalyzed by the commercial lipase, Novozym 435 (Candida antartica lipase B). The FAG were encapsulated as microdroplets within a starch matrix via steam jet cooking (140 °C and 225 kPa). Up to 50% (w/w) of the feruloylated lipids was encapsulated into the starch matrix with the microdroplets ranging in size from 1 to 10 μm. Transmittance and irradiance measurements of UV radiation (300–400 nm) through thin films of neat FAG (not manipulated after FAG synthesis) and starch-encapsulated FAG showed that the FAG retained its ultraviolet-absorbing efficacy after steam jet cooking. Furthermore, starch-encapsulation of the FAG was found to enhance the ultraviolet absorbance of the feruloylated lipids. When encapsulated at 50% (w/w) in the starch matrix, one-half of the coverage (mg/cm2) of FAG was required to block the same amount or more UV radiation as neat FAG. The starch-encapsulated FAG was formulated as an aqueous dispersion without the need for emulsifiers or surfactants. The dispersions were drum dried to a powder and shown to be easily reconstituted into water dispersions without the loss of ultraviolet-absorbing efficacy.  相似文献   

3.
This work deals with the alkaline hydrolysis of brewer's spent grain (BSG) for the extraction of ferulic and p-coumaric acids, compounds of considerable interest for applications in the food, health, cosmetic, and pharmaceutical industries. A 23 full factorial design with three replicates at the center point was used to investigate the simultaneous effects of the variables: NaOH concentration (1.0, 1.5 and 2.0%, w/v), temperature (80, 100 and 120 °C), and reaction time (30, 60 and 90 min), on the alkaline hydrolysis. The assays were performed using a solid:liquid ratio of 1:20 (w/w). The Student's t-test revealed a positive influence (p < 0.05) of all the studied variables on the ferulic and p-coumaric acids extraction from BSG. Linear models were well fitted (R2 > 0.90) to the experimental data to describe the extraction of these acids as a function of the operational variables employed. The best alkaline hydrolysis conditions consisted in using a 2% NaOH concentration, at 120 °C for 90 min. Under these conditions, a liquor containing 145.3 mg/l ferulic acid and 138.8 mg/l p-coumaric acid was obtained. These values corresponded to 9.65 mg ferulic acid and 9.22 mg p-coumaric acid per gram of solubilized lignin.  相似文献   

4.
Studies were conducted on the properties of seeds and oil extracted from Maclura pomifera seeds. The following values (on a dry-weight basis) were obtained for M. pomifera seed, respectively: moisture 5.88%, ash 6.72%, oil 32.75% and the high protein content 33.89%. The carbohydrate content (20.76%) can be regarded as a source of energy for animals if included in their diets. The major nutrients (mg/100 g oil) were: potassium (421.65), calcium (218.56) and magnesium (185.00). The physicochemical properties of the oil include: the saponification number 174.57; the iodine value 141.43; the p-anisidine value 1.86; the peroxide value 2.33 meq O2/kg; the acid value 0.66; the carotenoid content 0.59 mg/100 g oil; the chlorophyll content 0.02 (mg/100 g oil) and the refractive index 1.45. Polymorphic changes were observed in thermal properties of M. pomifera seed oil. This showed absorbency in the UV-B and UV-C ranges with a potential for use as a broad spectrum UV protectant. The main fatty acids of the crude oil were linoleic (76.19%), oleic (13.87%), stearic (6.76%) and palmitic acid (2.40%). The polyunsaturated triacylglycerols (TAGs) LLL, PLL, POL + SLL, OLL, OOL (L: linoleic acid, O: oleic, P: palmitic acid and S: stearic acid) acids were the major TAGs found in M. pomifera seed oil. A relatively high level of sterols making up 852.93 mg/100 g seed oil was present. The sterol marker, β-sitosterol, accounted for 81% of the total sterol content in the seed oil and is followed by campesterol (7.4%), stigmasterol (4.2%), lupeol (4.1%) and Δ5-avenesterol (3.2%). The seed oil was rich in tocopherols with the following composition (mg/100 g): α-tocopherol 18.92; γ-tocopherol 10.80; β-tocopherol 6.02 and δ-tocopherol 6.29. The results showed that M. pomifera seed oil could be used in cosmetic, pharmaceutical and food products.  相似文献   

5.
Changes in fatty acids were studied during maturation of coriander (Coriandrum sativum L.) fruits cultivated in the North-East of Tunisia (Charfine). The fruits matured in 55 days after flowering (DAF). Oil and petroselinic acid synthesis proceeded at a steady rate up to 32 DAF. The first results showed a rapid oil accumulation started at newly formed fruits (9.6 ± 0.2%) and continued until their full maturity (26.4 ± 0.5%). During fruit maturation, fatty acid profiles varied significantly among the nine stages of maturity. At the 32th DAF, palmitoleic, gadoleic, erucic and docosahexenoic acids were not detected and petroselinic acid had a highest amount (84.8 ± 4.5%). Fruits development resulted mainly in an increase of petroselinic acid and a decrease of palmitic acid (C16:0). At full maturity, the main fatty acids were petroselinic acid (80.9 ± 5.7%), followed by linoleic (13.6 ± 2.9%), palmitic (3.6 ± 0.1%) and stearic (0.7 ± 0.1%) acids. Saturated and polyunsaturated fatty acids decreased significantly and monounsaturated fatty acids increased during maturation of coriander fruit. Coriander fruits at the first four stages of maturity have a healthy nutritional value and the last five stages were with important economic and industrial applications. Results of this study indicate that the variation in the fatty acid composition of coriander fruit during maturation may be useful in understanding the source of nutritionally and industrially important fatty acids in this fruit. Coriander fruit is potentially an important source of petroselinic acid which has numerous industrial applications.  相似文献   

6.
《Field Crops Research》2006,95(2-3):412-419
Jasmonic acid (JA) is a plant hormone produced via the octadecanoid pathway from its precursor, linolenic acid. Jasmonates are involved in plant wound responses and defense against insects and fungal elicitors. They can also act as signal molecules in the Bradyrhizobium-soybean symbiosis. Pre-incubation of Bradyrhizobium japonicum inocula with gensitein (Ge), an effective inducer of nodulation genes in this species enhances soybean nodulation, nitrogen fixation and yield under low spring soil temperature field conditions. Since jasmonates are also able to induce nodulation genes and cause the production of lipo-chitooligosaccharides (LCOs) by B. japonicum, we conducted two field experiments, in southwestern Quebec, Canada, to determine whether pre-incubation of B. japonicum with methyl jasmonate (MeJA) alone or in combination with genistein (Ge), prior to inoculation, increased soybean plant dry matter production and grain yield. Experiments at each site used a two factor randomized complete block design (RCBD) with four replicates. Two B. japonicum strains (USDA3 and 532C) and four inducer molecule treatments [control, Ge (20 μM), MeJA (50 μM), and Ge + MeJA (20 μM + 50 μM)] were used in the study. The bacterial cultures were induced for 24 h with the inducer molecules and then applied into the furrows at the time of planting. Both Ge and MeJA, alone or in combination, increased plant growth, dry matter accumulation, and grain yield. This study showed that MeJA, alone or in combination with Ge, can be used to promote soybean plant growth and grain yield under short season field conditions.  相似文献   

7.
《Field Crops Research》2005,91(2-3):217-229
Soybean [Glycine max (L.) Merr.] seed is a major source of protein for animal feed and oil for human consumption. Selection within elite soybean cultivars for the improvement of agronomic and seed traits is assumed to be ineffective due to the belief that cultivars are highly homogeneous. Previously reported data suggest that latent variation among the single plant selections within a cultivar exists and that mechanisms that generate de novo variation may also be present. The main objective of this study was to perform divergent single-plant selection at ultra-low plant density and investigate the presence of genetic variation for seed protein and oil within three elite soybean cultivars. A secondary objective was to investigate the variation for fatty acid composition. In 1995, single plants from the three cultivars were grown in a honeycomb design using a plant-to-plant spacing of 0.9 m. A total of 333 plants from ‘Benning’, 392 plants from ‘Haskell’, and 371 plants from ‘Cook’ were evaluated. Divergent single-plant selection for protein and oil content was performed to select a total of 20 plants for high or low protein and 20 plants for high or low oil from each cultivar. The selected plants were further evaluated in replicated row-plot experiments for 3 years. Our results indicate that single-plant selection at low plant density was successful in discovering significant variation for seed protein and oil within each of the three soybean cultivars. For protein content, the magnitude of intra-cultivar variation between the highest- and lowest-protein lines averaged 19 g kg−1 across the three cultivars and ranged from 13 to 24 g kg−1. For oil composition, the magnitude of variation between the most divergent lines averaged 12 g kg−1 across the three cultivars and ranged from 9 to 14 g kg−1. Significant variation among the selected progeny lines was also discovered for specific fatty acid composition. The magnitude of intra-cultivar variation averaged from 6 to 29 g kg−1 across the five fatty acids of soybean. The genetic variation discovered within the soybean cultivars is most likely due to latent variation and/or newly created variation. Our data provide evidence that single-plant selection at ultra-low plant density within elite cultivars can be effective in improving the seed composition of a soybean cultivar.  相似文献   

8.
《Field Crops Research》1999,63(2):99-112
Field experiments were conducted at Gatton and Dalby in southeastern Queensland to determine parameters associated with radiation interception and biomass and nitrogen (N) accumulation for the ley legume species, phasey bean (Macroptilum lathyroides (L.) Urban) and vigna, (Vigna trilobata (L.) Verdc.). Sesbania (Sesbania cannabina Retz.), a native legume species, and soybean (Glycine max (L.) Merrill)) were included in the study for comparison. The most important differences between species related to differences in radiation interception, radiation-use efficiency (RUE), N-accumulation efficiency and the partitioning of N to plant parts. During early growth, soybean intercepted more radiation than the other species, primarily because of its greater leaf area index (LAI). Sesbania had the highest RUE (1.08 g MJ−1) followed by phasey bean (0.94 g MJ−1), soybean (0.89 g MJ−1) and vigna (0.77 g MJ−1). The efficiency of N-accumulation was greater in soybean (0.028 g N g−1) and phasey bean (0.030 g N g−1) than in vigna (0.022 g N g−1) and sesbania (0.021 g N g−1). In all species, the proportion of N allocated to leaves declined throughout the experimental period, being more rapid in soybean than in sesbania and phasey bean. Despite this decline in total N partitioned to the leaves, both soybean and phasey bean maintained a relatively stable specific leaf nitrogen (SPLN) throughout the experimental periods although sesbania and vigna displayed rapid decreases in SPLN. The large variation between species in RUE and N-accumulation efficiency indicates that the development of ley legume cultivars with a combination of traits for more efficient legume production, water use and soil N-accumulation in the water-limited environments of the grain belt of eastern Australia may be possible. The sensitivity of forage production, water use and soil N-accumulation to variation in RUE and N-accumulation efficiency needs to be quantified using modeling techniques prior to embarking on screening programs to select appropriate germplasm for evaluation studies.  相似文献   

9.
The objective of this work was to study the feasibility of using phosphoric acid to hydrolyze the hemicellulosic fraction of olive tree pruning, as a step in the bioconversion process to produce ethanol. Milled olive tree pruning was submitted to hydrolysis at 90 °C by phosphoric acid in a concentration range 0.3–8N for 240 min. The hydrolysates were then fermented by Pachysolen tannophilus. The hydrolysis stage was evaluated by the evolution of glucose and reducing sugars generated and by the conversion of hemicellulose fraction. The main parameters determined in the fermentation were: maximum specific growth rate, specific substrate consumption rate, specific ethanol production rate and ethanol yield. The maximum ethanol yield (0.38 kg/kg, equivalent to 74.5% of the theoretical yield) was obtained when hydrolysing with 0.5N phosphoric acid. Hemicellulose conversion is however incomplete at these operational conditions. Higher acid concentrations lead to higher hydrolysis of hemicellulose, but the ethanol yields resulting from the fermentation are lower.  相似文献   

10.
A 20-year field experiment was employed with the aim of evaluating the effect of tillage systems on biological, chemical and physical aspects of the soil, and to establish whether there was a correlation of these parameters with the incidence of charcoal rot (Macrophomina phaseolina) of soybean and crop yield. The tillage systems evaluated were direct seeding (DS), DS + scarifier (DS + S), minimum tillage (MT) and conventional tillage (CT). DS presented higher values than CT in culturable total fungi (26.33 × 105 vs. 2.33 × 105 CFU g−1 dry soil), total bacteria (182 × 107 vs. 64 × 107 CFU g−1 dry soil), microbial respiration (0.77 mg CO2 g−1 week−1 vs. 0.45 mg CO2 g−1 week−1) and fluorescein diacetate (FDA) hydrolysis (4.17 ug fluorescein g−1 h−1 vs. 1.70 ug fluorescein g−1 h−1 in CT. Fungal and bacterial community fingerprints, by terminal restriction fragment length polymorphism (T-RFLP) analysis, of Intergenic spacer regions of rRNA and 16S rRNA genes, respectively, were influenced by the tillage system. Also FAME (fatty acid methyl ester) profiles showed that microbial community structure in DS and CT was clearly different. DS samples contained significantly higher total microbial biomass than the other tillage treatments, but there were no significant differences in fungal biomass or any consistent trend with respect to stress index. Our results showed that microbial communities were more abundant and active in DS than in CT in response to high nutrient content in soil. Indeed, DS systems presented higher soil OM, total N, K and Ca than CT. Electrical conductivity and aggregate stability (AS) were also improved by DS. Soybean grown in high-quality soil was not affected by charcoal rot, however, under CT, disease incidence in soybean was 54%. These differences were correlated to the higher microbial abundance and activity under DS, the biological component being a key factor determining soil capacity to suppress the soilborne pathogen.  相似文献   

11.
The lipid profile of nuts from Ximenia caffra and Ricinodendron rautanenii was determined and compared. Although the total oil content of X. caffra and R. rautanenii nuts was similar (47.6 ± 7.5% versus 53.3 ± 13.7%), the fatty acid profiles differed significantly. X. caffra had a higher content (p < 0.05) of saturated fatty acids than R. rautanenii (20.19 ± 1.07% versus 13.87 ± 3.68%) and contained C22:0 and C24:0 which were lacking in R. rautanenii. Total monounsaturated fatty acids were higher in X. caffra than R. rautanenii (71.48 ± 0.99% versus 36.66 ± 1.95%). Oleic acid (C18:1n9) was the major monounsaturated fatty acid (MUFA) in X. caffra whereas erucic acid (C22:1n9), the major MUFA in R. rautanenii, was undetectable in X. caffra. R. rautanenii had a greater polyunsaturated fatty acid content than X. caffra which contained C18:3n3 (α-linolenic acid) and nervonic acid (24:1n9). X. caffra is potentially an important source of essential fatty acids.  相似文献   

12.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

13.
Lesquerella is a developing hydroxy oilseed crop suitable for rotation in the arid Southwestern United States. The hydroxy oil of lesquerella makes it suitable for esterification into triglyceride estolides. The estolide functionality imparts unique physical properties that make this class of materials suitable for functional fluid applications. Lesquerella and castor hydroxy triglycerides were converted to their corresponding estolides by reacting the oils with saturated fatty acids (C2–C18) in the presence of a tin 2-ethylhexanoate catalyst (0.1 wt.%) and utilizing the condensation of hydroxy with corresponding anhydride or heating under vacuum at 200 °C. Two homologous series of estolides for each triglyceride were synthesized for comparison, mono-capped (one hydroxy functionality per triglyceride molecule) and full-capped (all hydroxy functionalities per triglyceride molecule). Physical properties (pour point, cloud point, viscosity, and oxidative stability) were compared for this estolide series. The longer chain saturate capped estolides (C14–C18) had the highest pour points for both mono-capped (9 °C, C18:0) and full-capped (24 °C, C18:0) lesquerella estolides. Castor mono-capped (9 °C) and full-capped (18 °C) triglyceride estolides gave similar properties. However, pour points improved linearly when the shorter saturated fatty acid capping chain lengths were esterified with the hydroxy triglycerides. Lesquerella capped with a C6:0 fatty acid had pour points of −33 °C for the mono-capped and −36 °C for the full-capped and castor had −36 and −45 °C, respectively. Oxidative stabilities of the estolides were compared for oleic, lauric and lauric-hydrogenated mono- and full-capped materials by rotating bomb oxygen test (RBOT). RBOT times for oleic and lauric capped estolides were low and similar with times centered around 15 min. However, when antioxidant (4 wt.%) was added the RBOT times increased to 688 min for the hydrogenated full-capped lesquerella lauric estolide. The antioxidant had little effect on RBOT times when 2 wt.% or less antioxidant was added for all the estolides except those that were hydrogenated. The hydrogenated estolides showed improvements in oxidative stability at all concentrations of antioxidant tested. Viscosity index ranged from 130 to 202 for all estolides with the shorter chain length capped estolides gave the lower viscosity index values. Viscosity at 100 °C ranged from 13.9 to 26.6 cSt and the 40 °C viscosity ranged from 74.7 to 260.4 cSt where the longer chain length capped estolides gave the highest viscosities.  相似文献   

14.
The compositions of essential oils of 19 accessions belonging to six different Achillea species, transferred from the natural habitats in 10 provinces of Iran to the field conditions, were assessed. The relationship between the leaf areas of selected accessions with their essential oil content was also investigated. Essential oil yield of dried plants obtained by hydro-distillation ranged from 0.1 to 2.7% in leaves. Results indicated a significant variation in oil composition among and within species. Total of 94 compounds were identified in 19 accessions belonging to the six species of A. millefolium, A. filipendulina, A. tenuifolia, A. santolina, A. biebersteinii and A. eriophora. The major constituents of the leaves in the tested genotypes were determined as germacrene-D, bicyclogermacrene, camphor, borneol, 1,8-cineole, spathulenol and bornyl acetate. According to the major compounds, four chemotypes were defined as: (I) spathulenol (1.64–34.31%) + camphor (0.2–15.61%) (7 accessions); (II1) germacrene-D (18.78–23.93%) + borneol (7.93–8.26%) + bornyl acetate (11.56–14.66%) (5 accessions); (II2) germacrene-D (13.28–36.28%) + bicyclogermacrene (5.93–8.4%) + 1,8-cineole (15.26–19.41%) + camphor (14.95–23.32%) (2 accessions); (III) borneol + camphor (52.04–63.27) (2 accessions); (IV) germacrene-D (45.86–69.64%) (3 accessions). The relationships of chemotypes with soil type and climatic conditions of collected regions were assessed, as probable reasons of high variations in essential oil components, and discussed.  相似文献   

15.
Eight different oilseed crops (Brassica carinata, Camelina sativa, Coriandrum sativum, Euphorbia lagascae, Lepidium sativum, Lesquerella fendleri, Madia sativa, Vernonia galamensis) grown in Italy were investigated regarding anti-nutritive compounds, such as glucosinolates, sinapine, inositol phosphates and condensed tannins, which can adversely affect the nutritional value of residues from the oilseed processing. In all seeds at least one anti-nutritive compound was found, which possibly could lower the nutritive value, but in most cases a real negative effect is not to be expected. The existence and the concentration of the different anti-nutritive components varied in the different seeds. Glucosinolates and sinapine were found only in seeds of B. carinata, L. sativum, C. sativa and L. fendleri, whereas condensed tannins and inositol phosphates appeared in all seeds. In the different seeds the amount ranged from 0.2 mg/g (L. fendleri) to 13.1 mg/g (L. sativum) for sinapine, from 0.4 mg/g (E. lagascae) to 19.6 mg/g (L. fendleri) for condensed tannins, from 6.6 mg/g (E. lagascae) to 23.1 mg/g (B. carinata) for inositol hexa-phosphate as well as from 18.7 μmol/g (C. sativa) to 164.6 μmol/g (L. sativum) for glucosinolates.  相似文献   

16.
The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.  相似文献   

17.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

18.
《Field Crops Research》2006,99(1):67-74
An inverse relationship between soybean [Glycine max (L.) Merr.] seed protein and oil concentration is well documented in the literature. A negative correlation between protein and yield is also often reported. The objective of this study was to determine the effect of high rates of N applied at planting on seed protein and oil. Nitrogen was surface-applied at soybean emergence at rates of 290 kg ha−1 in 2002, 310 kg ha−1 in 2003, and 360 kg ha−1 in 2004. Eight cultivars ranging from Maturity Group II–IV were evaluated under the Early Soybean Production System (ESPS). However, not all cultivars were evaluated in all 3 years. Glyphosate herbicide was used in all 3 years and a non-glyphosate herbicide treatment was applied in 2002. Cultivars grown in 2003 were also evaluated under an application of 21.3 kg ha−1 of Mn. All cultivar, herbicide, and Mn treatments were evaluated in irrigated and non-irrigated environments with fertilizer N (PlusN treatment) or without fertilizer N (ZeroN treatment). When analyzed over all management practices (years, cultivars, herbicide, and Mn treatments), the PlusN treatment resulted in a significant decrease in protein concentration (2.7 and 1.9%), an increase in oil concentration (2.2 and 2.7%), and a decrease in the protein/oil ratio (4.7 and 4.6%) for the irrigated and non-irrigated environments, respectively. However, the overall protein and oil yield increased with the application of fertilizer N at planting (protein: 5.0% irrigated, 12.7% non-irrigated and oil: 9.9% irrigated and 18.9% non-irrigated). These increases were due to the increase in seed yield with the application of large amounts of fertilizer at planting. Additionally, a significant correlation (r = 0.45, P = 0.0001) was found between seed protein concentration and seed yield. No significant correlation was found between seed oil concentration and seed yield. The data demonstrate the inverse relationship between protein and oil and indicate that large amounts of N applied at planting do not change this relationship.  相似文献   

19.
Structure and health effects of inulin-type fructans have been extensively studied, while less is known about the properties of the graminan-type fructans in wheat. Arabinoxylan (AX) is another important indigestible component in cereal grains, which may have beneficial health effects. In this study, the fructan content in milling fractions of two wheat cultivars was determined and related to ash, dietary fibre and AX contents. The molecular weight distribution of the fructans was analysed with HPAEC-PAD and MALDI-TOF MS using 1H NMR and enzymatic hydrolysis for identification of fructans. The fructan content (g/100 g) ranged from 1.5 ± 0.2 in flour to 3.6 ± 0.5 in shorts and 3.7 ± 0.3 in bran. A correlation was found between fructan content and dietary fibre content (r = 0.93, P < 0.001), but with a smaller variation in fructan content between inner and outer parts of the grain. About 50% of the dietary fibre consisted of AX in all fractions. The fructans were found to have a DP of up to 19 with a similar molecular weight distribution in the different fractions.  相似文献   

20.
Steam explosion of corn stalk in the presence of 3% sulphuric acid at 200 °C for 5 min gave the highest recovery of lignin. Lignin has Mw = 2640 and Mz = 93,994. In the UV spectrum absorptions at λ = 231 and 280 nm were recorded. 1H NMR spectrum of lignin showed signals attributable to cinnamaldehyde units, guaiacyl units, and syringyl units. Syringyl and guaiacyl units are in 1:1 ratio. 13C NMR spectrum showed signals for guaiacyl, syringyl, and p-hydroxyphenyl units. The spectrum showed a prevalence of guaiacyl units. The 13C NMR spectrum is in agreement with the presence of cinnamic units. The same characterization was performed on lignin from pine. The irradiation of lignin from pine from steam explosion process in the presence of oxygen, in conditions described for the formation of superoxide ion, for different irradiation time was followed isolating the lignin and determining the average molecular weight. The experiments showed that, until 8 h irradiation, Mn decreases, while Mw and Mz increases. After 8 h irradiation an inverse behaviour was observed, with an increase of Mn and a decrease of Mw and Mz. These results are in agreement with an initial polymerization process followed by a photoinduced degradation. Ozonization was carried out in acetonitrile–methanol solution. The reaction showed a zero-order kinetics. After 50 min the average molecular weight of lignin is the half. The reaction mixture was analyzed by using GC–MS. Oxalic acid was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号