首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
以汽车冷却系统中的管带式散热器为研究对象,建立了管带式散热器的传热和流动阻力的数学模型,运用温度效率-传热单元数法对散热器的温度效率、传热以及阻力进行校核,并编制了相应的计算程序,对散热器在不同工况的匹配特性进行仿真计算,将仿真结果与实验数据进行比较分析,仿真结果与实验值基本吻合。  相似文献   

2.
建立了外形尺寸相同的管片式散热器和管带式散热器空气侧通道的稳态紊流数学模型.对两种不同类型散热器的阻力特性和表面传热特性进行CFD(计算流体力学)模拟,模拟结果与试验结果符合较好.对数值仿真结果进行分析对比,结果表明同尺寸下管带式散热器的空气侧阻力略大于管片式散热器,但其散热性能与原件相比得到了很大的提升.  相似文献   

3.
建立了管带式车用散热器的有限元模型,对其动强度进行了计算分析,得出了散热器应力场分布及其危险位置,并在MTS振动台上进行了试验验证。结果表明,有限元计算结果可靠,此模型可为散热器结构参数的改进提供理论依据。  相似文献   

4.
装载机散热器模块进出口位置匹配试验   总被引:1,自引:0,他引:1  
为提高车辆冷却系统中多散热器模块匹配的性能,对某装载机散热器模块在风洞测试平台上进行试验研究。试验散热器模块第1排是中冷器和液压油冷却器,第2排为水箱,第3排是变矩器油冷器。在风洞上对模块原型和在原型基础上互换变矩器油冷器进出油口位置的变型进行对比试验。试验结果表明,调整进出油口位置,能提高总的散热量,且对模块中单个散热器的性能影响更大。在设计中可以合理布置散热器进出油口位置,使得模块性能更加优异。  相似文献   

5.
为了研究散热器安全间隙对管带式散热器散热性能的影响,提出了一种带密封装置的管带式散热器。基于计算流体力学方法,对改进前后两种散热器模型进行了模拟分析,得到两种散热器模型芯体区域的平均风速值。使用散热器性能实验数据和模拟得到的平均风速数据,在MTALAB中对进行拟合求解。对改进前后散热器的散热能力、风扇功耗和风扇噪声进行了分析。结果表明,散热能力提升,风扇功耗和风扇噪声降低。通过对两种散热器进行风洞试验测试,在相同水流量和冷风质量流量下,散热器的散热能力提升2%~5%。  相似文献   

6.
散热器常见的故障是水管破裂、水管被水垢或污物堵塞、散热片位移、折皱等。主要故障表现是漏水和散热不良。 1.散热器的检查 在进行散热器检查前,要对散热器进行清洗,清除水垢及污物。方法是把散热器置于含有5%~10%苏打的热水(80℃~90℃)中冲洗,然后再  相似文献   

7.
曾献勇  何文德  陈昱  邹修敏  孙菜兰  刘惺 《南方农机》2023,(14):135-137+152
【目的】针对破碎锤回油脉动造成液压油散热器寿命低、破碎锤回油背压溢流阀造成系统发热、液压系统中的铁屑损伤液压元器件工作表面的现状。【方法】课题组提出了一种破碎锤独立抽油冷却系统,将液压油箱分为独立的集油区和吸油区,集油区内设置磁棒和扰流板,主机液压系统回油不经过液压油散热器,独立冷却液压泵从集油区抽取液压油进入液压油散热器冷却后再流回液压油箱吸油区。同时,对优化后的破碎锤抽油冷却系统在四川邦立重机有限责任公司CEDP260-7破碎机上进行了2 000 h的工业性试验。【结果】该系统在试验中无液压系统高温报警,无散热器、回油滤损坏记录,满足试验要求。【结论】破碎锤独立抽油冷却系统可以延长液压油散热器使用寿命,提高液压系统清洁度,增加回油滤芯及液压元器件的使用寿命;散热器冷却功率智能可控,可防止液压系统过热;该系统成本低廉,改造简单,易于安装,可靠性高,利于在工程制造中推广运用。  相似文献   

8.
为了解纯电动汽车电池包液冷散热系统散热器的散热性能,对液冷散热系统进行结构分析和仿真分析。首先对纯电动汽车电池组液冷散热系统进行结构分析,然后在CATIA中建立散热器三维实体模型,并导入StarCCM+中,利用其自带的网格划分功能划分多面网格,并设置仿真参数。对电动车行驶过程中由于故障原因导致的散热器高温现象进行了冷却方案设计。最后,利用StarCCM+得到不同方案下散热器温度场、速度场及温升情况,分析不同冷却方案下散热器冷却速度,得出最优冷却方案。  相似文献   

9.
散热器散热规律分析与最佳工作参数的确定   总被引:2,自引:0,他引:2  
根据文献〔1〕中描述散热器散热性能的回归方程,系统地探讨了散热器入口水温、水流量及冷却风速对散热量、水阴及风阻的影响规律,并根据优化理论提出了散热器优工作参数的确定方法。  相似文献   

10.
基于某轻卡整车热管理项目,对整车进行了热管理模拟分析。利用换热器模型以及体积热源模型分别模拟散热器以及中冷器。模拟结果显示,利用两种模型在整体上都能够较为准确地模拟出散热器以及中冷器在散热量、压降分布以及进出口的质量流量分布。换热器模型能准确模拟出散热器、中冷器表面的温度分布及散热器和中冷器进出水室的温度分布。  相似文献   

11.
针对螺旋弯管内的流动与传热特性,以螺旋弯管传热试验中试验件模型为研究对象,基于Realizable k-ε湍流模型、第一类热边界条件下的薄壁热阻模型,对不同进口来流条件下,采用Fluent对螺旋弯管内水的流动与换热进行数值模拟.计算得到了螺旋弯管内速度场与温度场的分布,通过数值模拟结果与试验结果的比较,验证了数值模拟方法的正确性.结果表明:随着进口来流雷诺数的增大,螺旋弯管内的二次流迪恩涡核心向弯管管壁扩张;在螺旋弯管小曲率比、来流雷诺数2 280~6 000内,螺旋弯管的强化换热综合性能最佳;对模拟结果数据利用多元线性回归法,推导出螺旋弯管内换热努赛尔数、进出口压力降的准则关系式.研究结果可为螺旋管式换热器设计与优化提供一定的参考依据.  相似文献   

12.
为了研究孔板流量计在动态非稳定流态或振荡流态下的瞬时压力-流量特性,理论分析了孔板前后的旋涡域大小随流速变化是引起孔板进出口瞬时流量差的主要原因.借助CFD数值解析方法,建立孔板模型,并在模型入口加载某一频率下的正弦流速,对孔板流量计在振荡流态下的瞬时压力-流量特性进行分析.结果表明:当孔板流量计处于低频振荡流动状态时,孔板两端差压也处于周期振荡状态,差压与节流孔瞬时流量同频不同相,差压幅值随入口流速振幅增大而线性增大,且线性增长系数与振荡频率相关;孔板的入口与出口存在周期波动的瞬时流量差,振荡频率越大或入口流速峰值越小,瞬时流量差的波动越小.由于相位滞后和瞬时流量差的存在,使孔板流量计的测量流量与实际出口流量之间存在偏差.振荡频率越大,偏差也越大.  相似文献   

13.
【目的】探索坡地上采用动态水压喷灌时水滴直径分布规律。【方法】以雨鸟R5000型喷头为研究对象,应用视频雨滴谱仪对坡地喷灌水滴直径沿程分布进行了测量,分别分析了动态水压和恒压模式下水滴直径沿射程变化、水滴直径频率分布及落地水滴速度、水滴角度与水滴直径之间的关系,并比较2种压力模式下上述关系的异同。【结果】①动态水压和恒压喷灌下水滴直径存在差异,随距喷头的距离增加,二者差异逐渐增大;而随坡度增大,二者差异变小。②在喷头附近和射程末端处小水滴数量占绝大多数。③水滴平均速度与水滴直径呈对数增长,压力模式和坡度对速度与直径之间的关系不显著。④垂直落地的水滴频率大小与距喷头距离关系密切,且垂直落地水滴直径较小,压力模式对角度与直径关系的影响不明显。【结论】在坡地上,分别采用动态水压和恒压喷灌时,二者水滴直径分布规律相似,动态水压不会对坡地喷灌造成更不利影响,可应用于生产实践。  相似文献   

14.
针对西北地区黄河流域农业滴灌中黄河水泥沙含量高的问题,设计了碟式分离机,选用了LW-380E型卧螺离心机和FXJ-150-I型水力旋流器,将卧螺离心机、碟式分离机和水力旋流器顺次串联进行黄河水泥沙分离。通过三因素二次正交旋转回归试验设计,考察了卧螺离心机差转速、碟式分离机喷嘴直径以及旋流器旋流入口压力对黄河水泥沙分离效率的影响,得出分离效率与影响因素的回归模型。通过方差和效应分析得出:旋流入口压力和差转速对分离效率的影响极显著,喷嘴直径对分离效率的影响显著;水平优化表明,黄河水泥沙分离的最佳参数是旋流入口压力为1.2 MPa,差转速为9.4 r/min,喷嘴直径为0.8 mm。  相似文献   

15.
基于2DVD的非旋转折射式喷头水滴直径分布规律   总被引:6,自引:0,他引:6  
采用基于三维视频粒子测量原理的视频雨滴谱仪(Two-dimensional video disdrometer,2DVD)对喷灌机中常用的Nelson D3000型喷头在多个工作压力下水滴直径沿射程的分布进行了测量,分析了水滴直径沿射程的变化趋势及水滴速度、水滴角度与水滴直径之间的关系。结果表明:水滴直径与射程符合指数函数关系,在距离喷头相同测点处,水滴直径随工作压力的升高而减小,而射程末端的水滴直径随着压力的升高而增大;水滴速度随水滴直径增加而增大,两者呈对数关系;水滴落地时与地面夹角(简称水滴角度)随水滴直径增加呈减小趋势,水滴直径小于1.0 mm时,50、100、150和200 kPa工作压力下,与地面夹角为90°的水滴个数占总水滴数的比值分别为90.46%、84.46%、89.91%和89.15%,其余水滴与地面夹角在30°~89°之间,水滴直径在1.0~2.25 mm范围内,水滴角度随水滴直径的增加迅速减小,水滴直径大于2.25 mm时减小趋势变缓,4个工作压力下最大直径水滴落地时与地面夹角平均值为45°;工作压力对于水滴直径与速度、水滴直径与角度之间的关系影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号