首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacological effects of glargine, protamine zinc (PZI), and lente insulins were evaluated in nine healthy cats. A 3-way crossover study was performed and plasma concentrations of insulin and glucose were determined for 24 h after a single subcutaneous injection of each insulin at 3-day intervals.
Time to onset of action did not differ between insulins. Mean time to first nadir glucose was longer for glargine (14 h) relative to PZI (4 h) and lente (5 h). PZI was biphasic in action with nadirs at 4 and 14 h with the second nadir occurring at a similar time to glargine. Nadir glucose did not differ significantly between insulin types. The duration of action was similar for glargine and PZI and was longer than that for lente insulin. Mean daily glucose after glargine and PZI were also similar and were lower than after lente insulin.
Time to reach peak insulin did not differ between insulin types. Time to return to baseline insulin level for PZI was longer than glargine but did not differ significantly from lente.
In conclusion, healthy cats injected subcutaneously with glargine, compared to those injected with lente insulin, have a later glucose nadir and longer duration of action. Glargine and PZI had similar durations of action in study cats but a larger study is required to obtain precise comparisons of duration of action.  相似文献   

2.
The pharmacological effects of glargine administered once or twice daily were compared in six healthy cats. A two-way crossover study was performed with insulin and glucose concentrations measured following subcutaneous administration of glargine once daily (0.5U/kg) or twice daily (0.25U/kg, repeated after 12h). Nadir glucose concentration and mean daily glucose concentration did not differ significantly following insulin administration once daily or twice daily in divided doses. Time to reach last glucose nadir differed, with longer intervals occurring following twice daily dosing. Blood glucose failed to return to baseline concentration by 24h in three of six cats in each treatment group. Insulin variables were not significantly different following once or twice daily dosing. This study in healthy cats demonstrates that glargine has a long duration of action with carry-over effects to the next day likely, regardless of dosing regimen. A study in diabetic cats is required to determine the best dosing regimen.  相似文献   

3.
The aim of this study was to measure the pharmacokinetics and pharmacodynamics of subcutaneously injected 40 IU/ml porcine lente insulin preparation (Caninsulin, Intervet BV, The Netherlands) in diabetic cats. The pharmacological properties of the insulin in poorly controlled or untreated cats were compared with those after several weeks of treatment, to determine if improved diabetic stability altered the pharmacology of this insulin. In addition, the pharmacological properties of intravenously injected 100 IU/ml regular porcine insulin (Actrapid MC, NovoNordisk, Denmark) were measured. Serial plasma samples were collected after subcutaneous injection of porcine lente insulin from 25 diabetic cats in the first week of admission to a 12-month diabetic treatment trial. Samples were also collected after 4 or 8 weeks of treatment, in those cats which had not achieved diabetic remission by this time. At this time, serial plasma samples were also collected from these cats after intravenous injection of porcine regular insulin. Plasma samples were assayed for glucose, anti-insulin antibodies were extracted using a PEG technique, and samples were assayed for insulin using an RIA kit with low sensitivity for endogenous feline insulin, but high sensitivity for exogenous porcine insulin in feline plasma. Caninsulin injected subcutaneously in diabetic cats led to a peak insulin concentration in plasma after 1.7+/-0.1 h, and a nadir of blood glucose after 4.1+/-0.3 h. Insulin and glucose concentrations returned to baseline within 12 h. There was no significant change in the onset or duration of Caninsulin action between the first week of treatment and 5 or 9 weeks of treatment. Actrapid MC injected intravenously had a peak insulin at 0.36+/-0.03 h, and a nadir of blood glucose at 1.9+/-0.3 h. Insulin and glucose returned to baseline within 6 h. It was concluded that Caninsulin injected subcutaneously has suitable pharmacological properties for the twice-daily treatment of diabetes mellitus in cats. In addition, Actrapid MC insulin injected intravenously has suitable pharmacological properties for injection every 4-6 h in diabetic cats.  相似文献   

4.
Estimates of in vivo insulin sensitivity (S(I)) can be derived from minimal model analysis of a frequently sampled intravenous glucose tolerance test (FSIVGTT). Modification of the FSIVGTT by the injection of insulin allows insulin sensitivity to be measured in diabetics. To establish and compare reference values for insulin sensitivity in clinically normal and diabetic cats, we subjected 10 clinically normal cats and five diabetic cats to the insulin-modified FSIVGTT with minimal model analysis. Diabetic cats had a significantly lower insulin sensitivity than clinically normal cats (P<0.05). Mean insulin sensitivity in clinically normal cats was 3.22x10(-4)/min/microU/ml (range 1.71-5.23x10(-4)/min/microU/ml). In contrast, the mean insulin sensitivity in diabetic cats was 0.58x10(-4)/min/microU/ml (range 0.136-0.88x10(-4)/min/microU/ml), or approximately six times less insulin sensitive than clinically normal cats. Mean glucose effectiveness in clinically normal cats was 0.030/min (range 0.021-0.045/min). Mean glucose effectiveness in diabetic cats was 0.014/min (range 0.008-0.021/min). Our data demonstrate that insulin resistance is a feature of feline diabetes mellitus and that diabetic cats have a similar relative decrease in insulin sensitivity to humans with type 2 diabetes.  相似文献   

5.
Posthypoglycemic hyperglycemia (rebound hyperglycemia) after overdosing of insulin was diagnosed in 6 cats with diabetes mellitus. Administration of excessive insulin induced hypoglycemia within 4 to 8 hours, followed by rebound hyperglycemia. Diagnosis was made by serial blood glucose determinations during a 20- to 24-hour period after insulin administration. Four cats had a history of difficulty in regulating the diabetic state. In 2 cats, rebound hyperglycemia was diagnosed on routine serial blood glucose determinations. All of the cats were hyperglycemic for most of the day. Rebound hyperglycemia was observed with both intermediate (neutral protamine hagedorn) and long-acting (protamine zinc iletin) insulins, and the range of insulin doses at which the disorder developed overlapped previously determined therapeutic doses for these insulins in the cat. Urine glucose and single afternoon blood glucose determinations were inadequate and potentially misleading in monitoring diabetic cats receiving excessive amounts of insulin.  相似文献   

6.
Background: Cats with diabetes mellitus frequently achieve clinical remission, suggesting residual β‐cell function. Responsiveness of β‐cells to arginine persists the longest during diabetes progression, making the intravenous arginine stimulation test (IVAST) a useful tool to assess residual insulin and glucagon secretion. Hypothesis: Diabetic cats with and without remission will have different arginine‐induced insulin or glucagon response. Animals: Seventeen cats with diabetes, 7 healthy cats. Methods: Blood samples collected on admission and during subsequent IVAST. Glucose, insulin, and glucagon were measured. Response to IVAST was assessed by calculating the insulin and glucagon area under the curve (AUC) and the AUC glucagon‐to‐insulin ratio. Diabetic cats were treated with insulin and were followed for 18 weeks. Remission was defined as normoglycemia and disappearance of clinical signs of diabetes for ≥4 weeks, without requiring insulin. Results: Seven diabetic cats (41%) achieved remission. On admission, blood glucose concentration was significantly lower in cats with remission (median, 389 mg/dL; range, 342–536 mg/dL) than in those without remission (median, 506 mg/dL; range, 266–738 mg/dL). After IVAST, diabetic cats with remission had higher AUC glucagon‐to‐insulin ratios (median, 61; range, 34–852) than did cats without remission (median, 26; range, 20–498); glucose, insulin, and glucagon AUCs were not different. Diabetic cats had lower insulin AUC than did healthy cats but comparable glucagon AUC. Conclusions and Clinical Importance: Diabetic cats with and without remission have similar arginine‐stimulated insulin secretion on admission. Although cats with remission had lower blood glucose concentrations and higher AUC glucagon‐to‐insulin ratios, large overlap between groups prevents use of these parameters in clinical practice.  相似文献   

7.
The effects of diets with different starch sources on the total tract apparent digestibility and glucose and insulin responses in cats were investigated. Six experimental diets consisting of 35% starch were extruded, each containing one of the following ingredients: cassava flour, brewers rice, corn, sorghum, peas, or lentils. The experiment was carried out on 36 cats with 6 replications per diet in a completely randomized block design. The brewers rice diet offered greater DM, OM, and GE digestibility than the sorghum, corn, lentil, and pea diets (P < 0.05). For starch digestibility, the brewers rice diet had greater values (98.6%) than the sorghum (93.9%), lentil (95.2%), and pea (96.3%) diets (P < 0.05); however, starch digestibility was >93% for all the diets, proving that despite the low carbohydrate content of carnivorous diets, cats can efficiently digest this nutrient when it is properly processed into kibble. Mean and maximum glucose concentration and area under the glucose curve were greater for the corn-based diet than the cassava flour, sorghum, lentil, and pea diets (P < 0.05). The corn-based diets led to greater values for the mean glucose incremental concentration (10.2 mg/dL), maximum glucose incremental concentration (24.8 mg/dL), and area under the incremental glucose curve (185.5 mg.dL(-1).h(-1)) than the lentil diet (2.9 mg/dL, 3.1 mg/dL, and -40.4 mg.dL(-1).h(-1), respectively; P < 0.05). When compared with baseline values, only the corn diet stimulated an increase in the glucose response, occurring at 4 and 10 h postmeal (P < 0.05). The corn-based diet resulted in greater values for maximum incremental insulin concentration and area under the incremental insulin curve than the lentil-based diet (P < 0.05). However, plasma insulin concentrations rose in relation to the basal values for cats fed corn, sorghum, pea, and brewers rice diets (P < 0.05). Variations in diet digestibility and postprandial response can be explained by differences in the chemical composition of the starch source, including fiber content and granule structure, and also differences in the chemical compositions of the diets. The data suggest that starch has less of an effect on the cat postprandial glucose and insulin responses than on those of dogs and humans. This can be explained by the metabolic peculiarities of felines, which may slow and prolong starch digestion and absorption, leading to the delayed, less pronounced effects on their blood responses.  相似文献   

8.
The aim of this study was to compare the effects of three diets with varying macronutrient and fibre contents on postprandial plasma glucose, triglyceride, free fatty acid, and insulin concentrations over a 12 h period in 12 healthy neutered lean dogs. Each diet was fed to each dog for 3 weeks in a three-period cross-over study. Plasma analyte concentrations were measured prior to and after a meal at the end of the third week of each period. Postprandial glucose concentrations for the moderate carbohydrate and fibre diet were 0.4-0.7 mmol/L (8-12 mg/dL) lower than for both higher carbohydrate diets (p≤0.02). Postprandial glucose, insulin, and triglyceride concentrations in some dogs did not return to baseline by 12 h after feeding of each of the three diets. These results indicate that the moderate carbohydrate and fibre diet warrants evaluation in diabetic dogs. Variables should be measured over at least 12 h after feeding to fully evaluate postprandial dietary effects on these analytes.  相似文献   

9.
The high dose intravenous glucose tolerance test and concurrent immunoreactive serum insulin and glucagon levels were measured and the results related to the presence or absence of pancreatic insular amyloid in 16 cats, seven of which were known to be diabetic. Control values for all parameters were established using seven additional clinicopathologically normal cats. Nine of the 16 cats had normal fasting blood glucose levels (less than 120 mg/dl) and impaired glucose tolerance. These cats had attenuated (3/9) or normal (6/9) 0 to 5 minute glucose-stimulated insulin secretion, rising 45 to 60 minute insulin secretion (7/9), low mean insulin/glucose ratio, and normal mean serum glucagon. Three of the nine cats with impaired glucose tolerance had insular amyloidosis. These three cats had significantly higher mean blood glucose levels during the glucose tolerance test than did cats with impaired glucose tolerance and no insular amyloid deposits. Also, these three cats accounted for three of the four longest glucose disappearance one-half times (T1/2S), three of the four lowest glucose disappearance coefficients, and three of the four lowest 0 to 5 minute insulin responses. The seven diabetic cats (fasting blood glucose levels greater than 120 mg/dl) had either low to low normal (6/7) or above normal (1/7) fasting insulin levels, no insulin response to intravenous glucose stimulation (6/7), and elevated mean serum glucagon levels. Insular amyloid was present in six of the seven diabetic cats. Three diabetic cats with marked insular amyloid deposits had glucose disappearance T1/2 and K (coefficient) values, serum insulin levels, serum glucagon levels, and insulin/glucose ratios which were not significantly different from the other three diabetic cats with slight to moderate insular amyloidosis. These results confirm a strong association between the occurrence, but not the extent of insular amyloidosis and diabetes mellitus in adult diabetic cats, although amyloid replacement of pancreatic islets does not appear to be the primary diabetogenic event. Rather, these results appear to be consistent with our hypothesis that insular amyloid deposition is a morphologic marker of primary B-cell dysfunction that is basic to the pathogenesis of the diabetic condition, and is reflected clinically by impaired glucose tolerance.  相似文献   

10.
Ten diabetic cats were studied at intervals for up to 12 months with twice-daily insulin injections. Ten clinically healthy cats were also studied. Diets fed were based on the individual cat's performance, using mainly commercial dry or canned cat foods and fresh meat. In most cases more than one food was offered. Food was given fresh twice daily, and the cats allowed to eat ad libitum.The food intake and blood glucose were measured every 2 h in diabetic cats after insulin injection and in diabetic and normal cats without insulin injections. Food was quantified by the energy consumed (kJ ME), crude protein (g), crude fat (g), and carbohydrate (g). The blood glucose in 10 diabetic cats was measured for 2 h following a 20-min meal.Both diabetic cats and normal cats showed similar patterns of eating, with a higher food intake in the 2 h after fresh food was placed. Both groups of cats ate multiple small meals spread through the day and night. There was little or no correlation between the blood glucose and the amount of food consumed over the previous 2-h period, in insulin- or non-insulin-treated diabetic cats, or in normal cats. An overnight fast did not significantly alter morning blood glucose in diabetic cats. No demonstrable appetite stimulation occurred following an occurrence of low blood glucose; however, recorded incidences were few. No post-prandial hyperglycaemia was seen in the 10 diabetic cats during a 2-h period following the ingestion of typical cat foods.  相似文献   

11.
Glucagon-like peptide-1 (GLP-1) analogues and inhibitors of its degrading enzyme, dipeptidyl peptidase IV (DPPIV), are interesting therapy options in human diabetics because they increase insulin secretion and reduce postprandial glucagon secretion. Given the similar pathophysiology of human type 2 and feline diabetes mellitus, this study investigated whether the DPPIV inhibitor NVP-DPP728 reduces plasma glucagon levels in cats. Intravenous glucose tolerance tests (ivGTT; 0.5 g/kg glucose after 12 h fasting) and a meal response test (test meal of 50% of average daily food intake, offered after 24 h fasting) were performed in healthy experimental cats. NVP-DPP728 (0.5–2.5 mg/kg IV or SC) significantly reduced glucagon output in all tests and increased insulin output in the ivGTT. Follow-up studies will investigate the potential usefulness as therapy in diabetic cats.  相似文献   

12.
The glucagon-like peptide-1 mimetic exenatide has a glucose-dependent insulinotropic effect, and it is effective in controlling blood glucose (BG) with minimal side effects in people with type 2 diabetes. Exenatide also delays gastric emptying, increases satiety, and improves β-cell function. We studied the effect of exenatide on insulin secretion during euglycemia and hyperglycemia in cats. Nine young, healthy, neutered, purpose-bred cats were used in a randomized, cross-over design. BG concentrations during an oral glucose tolerance test were determined in these cats previously. Two isoglycemic glucose clamps (mimicking the BG concentration during the oral glucose tolerance test) were performed in each cat on separate days, one without prior treatment (IGC) and the second with exenatide (1 μg/kg) injected subcutaneously 2 h before (ExIGC). BG, insulin, and exenatide concentrations were measured, and glucose infusion rates were recorded and compared in paired tests between the two experiments. After exenatide injection, insulin serum concentrations increased significantly (2.4-fold; range 1.0- to 9.2-fold; P = 0.004) within 15 min. This was followed by a mild decrease in BG concentration and a return of insulin concentration to baseline despite a continuous increase in serum exenatide concentrations. Insulin area under the curve (AUC) during ExIGC was significantly higher than insulin AUC during IGC (AUC ratio, 2.0 ± 0.4; P = 0.03). Total glucose infused was not significantly different between IGC and ExIGC. Exenatide was detectable in plasma at 15 min after injection. The mean exenatide concentration peaked at 45 min and then returned to baseline by 75 min. Exenatide was still detectable in the serum of three of five cats 8 h after injection. No adverse reactions to exenatide were observed. In conclusion, exenatide affects insulin secretion in cats in a glucose-dependent manner, similar to its effect in other species. Although this effect was not accompanied by a greater ability to dispose of an intravenous glucose infusion, other potentially beneficial effects of exenatide on pancreatic β cells, mainly increasing their proliferation and survival, should be investigated in cats.  相似文献   

13.
The aim of this study was to investigate the effect of bexagliflozin on glycemic control in poorly regulated diabetic cats and to evaluate for adverse events associated with this medication.Sodium-glucose cotransporter 2 inhibitors are a newer class of drugs used in the management of humans with type 2 diabetes mellitus. The objective of this study was to evaluate the effect of the orally administered drug, bexagliflozin in a group of poorly regulated diabetic cats over a 4-week study period. Five client-owned cats with poorly controlled diabetes mellitus receiving insulin therapy were enrolled. Bexagliflozin was administered once daily. Serum fructosamine, serum biochemistry profile, and 10-hour blood glucose curves were assessed at baseline (Day 0), Day 14, and Day 28. All cats had a significant reduction in insulin dose requirement (P = 0.015) and insulin was discontinued in 2 cats. There was a significant decrease in blood glucose concentration obtained from blood glucose concentration curves during the study period (P = 0.022). Serum fructosamine decreased in 4 of the 5 cats with a median decrease of 152 μmol/L (range: 103 to 241 μmol/L), which was not statistically significant (P = 0.117). No cats had any documented episodes of hypoglycemia. Adverse effects were mild. The addition of bexagliflozin significantly improved diabetic management in this group of cats.  相似文献   

14.
Plasma glucose and insulin concentrations are increased for 12–24 h in healthy cats following moderate‐ to high‐carbohydrate meals. This study investigated associations between gastric emptying time and post‐prandial plasma glucose, insulin and lactate concentrations in cats fed an extruded dry, high‐carbohydrate, moderate‐fat, low‐protein diet (51, 28, 21% metabolizable energy, respectively) once daily by varying meal volume. Eleven healthy, non‐obese, neutered adult cats were enrolled in a prospective study and fed to maintain body weight. Ultrasound examinations were performed for up to 26 h, and blood collections over 24 h after eating meals containing approximately 100% and 50% of the cats’ daily caloric intake (209 and 105 kJ/kg BW, respectively). Gastric emptying time was increased after a meal of 209 kJ/kg BW compared with 105 kJ/kg BW (median gastric emptying times 24 and 14 h, respectively; p = 0.03). Time for glucose to return to fasting was longer after the 209 kJ/kg BW meal (median 20 h; 25th and 75th percentiles 15 and 23 h, respectively) than the 105 kJ/kg BW meal (13, 12 and 14 h; p < 0.01); however, peak glucose was not higher after the 209 kJ/kg BW meal compared with the 105 kJ/kg BW meal [(mean ± SD) 6.6 ± 0.6 and 7.8 ± 1.2 mmol/l, respectively, p = 0.07]. Times for insulin to return to fasting were not significantly longer after the 209 kJ/kg BW meal than the 105 kJ/kg BW meal (p = 0.29). d ‐ and l ‐lactate concentrations were not associated with gastric emptying time or post‐prandial blood glucose and insulin. Based on results obtained, prolonged gastric emptying contributes to prolonged post‐prandial hyperglycemia in cats meal fed a high‐carbohydrate, low‐protein, dry diet and fasting times for cats’ meal‐fed diets of similar composition should be 14–26 h, depending on meal size.  相似文献   

15.
Absorption kinetics of regular, isophane (NPH), and protamine zinc (PZI) insulin were evaluated in seven clinically normal domestic shorthair cats by measurement of serial serum concentrations of insulin after subcutaneous administration of each insulin preparation. These results were compared to measurements of serial serum insulin concentrations after similar dosages of regular insulin were administered intravenously. Regular insulin administered subcutaneously was better absorbed than NPH and PZI insulins (mean bioavailability index 45.4% vs. 33.0% for NPH and 27.3% for PZI), and resulted in a significantly greater maximal increase in mean circulating insulin concentrations above baseline values (3529 pM vs. 1044 pM for NPH and 344 pM for PZI, P<0.05). The mean time interval between insulin administration and time to reach peak concentrations was significantly shorter for regular insulin than for NPH or PZI insulin (0.5 hr vs. 1.6 hr for NPH and 4.1 hr for PZI, P<0.05). There was also a significant difference (P<0.05) in the mean time interval between insulin injection and return of serum insulin concentrations to baseline values between regular insulin (5.6 hr) and NPH (7.7 hr) or PZI (13.1 hr) insulins. When compared with PZI, NPH insulin showed a significantly (P<0.05) greater maximal increase in mean serum insulin concentrations over baseline values. In addition, the interval between insulin administration and time to reach peak concentrations, as well as the time between insulin injection and return of serum insulin concentrations to baseline values, were also significantly shorter with NPH insulin than with PZI. These results suggest that NPH and PZI insulins administered subcutaneously to cats may require a short time to reach peak serum insulin concentrations as well as a relatively short time for circulating insulin concentrations to return to baseline values. If the absorption kinetics are similar to that in this study, most cats with diabetes mellitus would need twice daily injection of NPH or PZI insulin to adequately control the diabetic state.  相似文献   

16.
Inhaled medications have proven effective and well tolerated in cats, and inhaled insulin has been used successfully for the management of diabetes mellitus in humans. Thus, we hypothesize that delivery of aerosolized regular insulin can lower blood glucose in healthy cats. Five adult cats were administered aerosolized 0.9% saline (IS), regular insulin intravenously (IV) 0.5 U/kg, and aerosolized regular insulin 15 U/kg (I15) and 25 U/kg (I25) and blood glucose was evaluated. Mean blood glucose was significantly lower at 15, 30 and 45 min in the I25 and IV groups compared to baseline. Similarly, the IV and I25 groups had a significantly greater maximal percent change in blood glucose than the IS group. Significantly more cats developed severe hypoglycemia (<50 mg/dl; 2.7 mmol/l) in the IV and I25 groups than in the IS group. Results of this study demonstrate that aerosolized insulin can effectively lower blood glucose concentrations in healthy cats.  相似文献   

17.
The recently discovered pancreatic peptide amylin is postulated to be involved in the pathogenesis of feline diabetes mellitus. However, plasma amylin concentrations in normal and diabetic cats have not yet been published. The aim of the present study was to validate a commercial amylin radioimmunoassay kit for the measurement of feline amylin in unextracted plasma, and to measure plasma amylin concentrations in normal and diabetic cats. The kit had satisfactory specificity, sensitivity, accuracy, and precision, and can be recommended for measurement of feline amylin in unextracted EDTA plasma, when nonspecific binding of plasma samples is used in the calculation of measured amylin concentration. Fasting amylin concentration in cats with normal glucose tolerance was 97 +/- 4 pmol/L. Plasma amylin increased in parallel with insulin after glucose administration in cats with normal and impaired glucose tolerance. In contrast to cats with normal glucose tolerance, cats with impaired glucose tolerance had markedly delayed amylin and insulin secretion. Diabetic cats had basal hypoinsulinemia combined with hyperamylinemia. Hyperamylinemia may lead to reduced insulin secretion and insulin resistance, and contribute to the development of feline diabetes. In conclusion, feline amylin can be measured in unextracted EDTA plasma. Fasting amylin concentrations are approximately 100 pmol/L, and amylin and insulin are cosecreted in cats with normal and impaired glucose tolerance. Increased amylin concentrations may contribute to the development of feline diabetes mellitus.  相似文献   

18.
This study investigated relationships between plasma leptin, insulin concentrations, insulin sensitivity and glucose tolerance in lean and overweight cats. Leptin concentrations were measured in 16 cats during glucose tolerance tests before and after gaining weight, and after feeding a test meal in overweight cats. An important finding of this study is that in both lean (r=-0.79) and overweight (r=-0.89) cats, the higher the leptin concentrations, the more insulin resistant the cat, independent of the degree of adiposity. Leptin concentrations at baseline and after consuming a meal tended to be higher in overweight cats with glucose intolerance, compared to overweight cats with normal glucose tolerance, although the difference was not significant. After feeding the test meal to overweight cats in the early morning, plasma leptin concentrations initially decreased before subsequently rising to peak 15 h later, which coincided with late evening. The leptin peak occurred 9 h after the insulin peak following ingestion of the test meal. Importantly, this study suggests that increased leptin concentrations may contribute to the diminished insulin sensitivity seen in overweight cats. Alternatively, the compensatory hyperinsulinaemia found with insulin resistance in overweight cats could stimulate leptin production.  相似文献   

19.
Serum concentrations of insulin-like growth factor 1 (IGF-1) and growth hormone were measured in 25 cats with untreated diabetes mellitus (11 of which were used for follow-up measurements, one to three, four to eight, nine to 12 and 13 to 16 weeks after their treatment with insulin began), 14 diabetic cats that had previously been treated with insulin, and seven diabetic cats that also had hypersomatotropism, two of which had not previously been treated with insulin; 18 healthy cats were used as controls. In the untreated diabetic cats the concentration of IGF-1 ranged from 13.0 to 433.0 ng/ml (median 170.5 ng/ml), which was significantly lower than the concentrations in the control cats (196.0 to 791.0 ng/ml, median 452.0 ng/ml). Their IGF-1 concentrations increased significantly when they were treated with insulin and after four to eight weeks were not different from those in the control cats. In the diabetic cats that had previously been treated with insulin the IGF-1 concentrations were 33.0 to 476.0 ng/ml (median 316.0 ng/ml), which was significantly lower than the concentrations in the control cats, but significantly higher than in the untreated diabetic cats. The IGF-1 concentrations in the two previously untreated diabetic cats with hypersomatotropism were low and low-normal but increased markedly after treatment with insulin. In the five previously treated cats with hypersomatotropism the concentration of IGF-1 was above the normal range. The concentrations of growth hormone in the treated and untreated diabetic cats without hypersomatotropisms were not significantly different and there was an overlap in its concentrations in the diabetic cats with and without hypersomatotropism.  相似文献   

20.
Glucose tolerance and insulin secretion after administration of a glucose load were determined in 11 clinically normal cats and 15 cats with spontaneous hyperthyroidism. In six hyperthyroid cats, a glucose tolerance test was repeated after treatment with radioactive iodine (131I). All cats had similar baseline glucose concentrations. However, the cats with hyperthyroidism had a significantly decreased glucose clearance, which was worse after treatment. Hyperthyroidism also caused a marked increase in basal and glucose-stimulated insulin secretion, which was not improved with treatment. It is concluded that hyperthyroidism in cats may lead to long-lasting alterations of glucose tolerance and insulin secretion which may not be reversed by treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号