首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The postfire transformation of the functional activity of the microbial cenoses and the main soil properties under mixed larch forests were studied in the lower reaches of the Angara River. It was shown that the intensity of the postfire changes in the population density, biomass, and activity of the microorganisms in the dark podzolized brown forest soil depended on the degree of burning of the ground cover and the surface litter during the fire. The maximum effects of the fire on the microbial cenoses were observed in the litter and the upper 5-cm-thick layer of the dark-humus horizon in the areas of intense burning. The postfire restoration of the structural-functional activity of the microbial cenoses was determined by the degree of transformation of soil properties and by the postpyrogenic succession in the ground cover. The microbial complexes of the dark podzolized brown forest soils under mixed larch forests in the studied region restored their functional activity after the fires of different intensities quicker than the microbial cenoses of the sandy podzols in the pyrogenic lichen-green-moss pine forests of the same zone.  相似文献   

2.
The respiratory activity features in oil-contaminated soddy-podzolic soils of different textures have been studied. Unidirectional processes occur in contaminated loamy and loamy sandy soddy-podzolic soils; their intensities depend on the soil parameters. The mineralization rates of the oil products and the activity of the microflora in loamy soils exceed the corresponding parameters for loamy sandy soils. The long-term impact of oil and its transformation products results in more important disturbances of the microbial community in light soils. It has been shown that light soils containing 9% oil require longer time periods or more intensive remediation measures for the restoration of soil microbial cenoses disturbed by the pollutant.  相似文献   

3.
The biological properties of the most widespread automorphic and hydromorphic soils of cultural and native cenoses in the Terskii variant of the altitudinal zonality (Kabardino-Balkaria) are compared. The data on the humus reserves in the 0- to 20-cm soil layer and those on the carbon content in the microbial biomass calculated on the basis of the results of substrate-induced respiration measurements are presented. The share of carbon in the microbial biomass of the total organic carbon in the soils was determined. Long-term (more than 70 years) farming on the studied soils significantly changed their biological properties. The humus content and its reserves became lower by 25–40%. The physiological activity of the microbial biomass in the cultural soils decreased by more than 60%. Presently, the soils of the cultural cenoses function as an entire natural system, but at a lower level of fertility; the loss of more than 30% of the bioorganic potential (the critical threshold of soil system stability) indicates the disturbance of soil ecological functions, their stability, and the capability of self-restoration.  相似文献   

4.
The state of microbial cenoses in the soils of forest ecosystems damaged by fires of different strengths and gypsy moth outbreaks (Central Siberia) was assessed by the intensity of the basal respiration, the content of carbon of the microbial biomass, and the microbial metabolic quotient. The degree of the disturbance of the microbial cenoses in the soils under pine forests after fires was higher than that in the soils under the forests defoliated by gypsy moths. The greatest changes of the microbial complexes were recorded after the fires of high and medium intensity. In the litters, the content of the microbial biomass, the intensity of basal respiration, and the microbial metabolic quotient value were restored on the fifth year after the fires, whereas in the upper (0–10 cm) soil layer, these parameters still differed from those in the control variant, especially after the highly intense fires. After the weak fires, the ecophysiological state of the microbial complexes was restored within two-three years.  相似文献   

5.
The biomass of large invertebrates was studied in the soils of forest ecosystems in the forest-tundra and southern taiga of Central Siberia. Its formation is shown to be controlled by the integrated effect of the soil and climatic conditions. The distribution of the zoomass according to the main taxonomic groups testifies to the higher functional significance of the large saprophagous invertebrates in the ecosystems of the southern taiga compared to those of the forest-tundra. The quantitative contribution of the invertebrates-destroyers to the organic matter decomposition was assessed on the basis of field experiments; it was shown to be determined by the quality of the material decomposed irrespective of the conditions and time of its exposition. Every year, soil saprophages decompose 0.5–2.0% of the total phytodetritus reserves in the forest-tundra and 3–14% in the southern taiga amounting to 12–54% of its losses upon decomposition.  相似文献   

6.
The health status of microbial communities in soils of the Sulak Lowland (Dagestan) was estimated on the basis of data on their functional diversity. The health status of the microbial communities decreased in the following soil sequence: typical meadow soil > meadow-chestnut soil > dark chestnut soil > saline soil (solonchak). The low concentration of soluble salts (<1 meq/100 g of soil) had a positive effect on the functioning of the microbial communities. The health status of the microbial communities also depended on the soil humus content and pH conditions.  相似文献   

7.
Soils and vegetation of the coastal zone of the Khaipudyr Bay of the Barents Sea have been examined and compared with analogous objects in the Karelian coastal zone of the White Sea. The environmental conditions of these two areas are somewhat different: the climate of the Khaipudyr Bay coast is more severe, and the seawater salinity is higher (32–33‰ in the Khaipudyr Bay and 25–26‰ in the White Sea). The soil cover patterns of both regions are highly variable. Salt-affected marsh soils (Tidalic Fluvisols) are widespread. The complicated mesotopography includes high geomorphic positions that are not affected by tidal water. Under these conditions, zonal factors of pedogenesis predominate and lead to the development of Cryic Folic Histosols and Histic Reductaquic Cryosols. On low marshes, the concentrations of soluble Ca2+, K+ + Na+, Cl, and SO2-4 ions in the soils of the Khaipudyr Bay coast are two to four times higher than those in the analogous soils of Karelian coast. Cluster analysis of a number of soil characteristics allows separation of three soils groups: soils of low marshes, soils of middle-high marshes, and soils of higher positions developing under the impact of zonal factors together with the aerial transfer and deposition of seawater drops. The corresponding plant communities are represented by coastal sedge cenoses, forb–grassy halophytic cenoses, and zonal cenoses of hypoarctic tundra. It is argued that the grouping of marsh soils in the new substantivegenetic classification system of Russian soils requires further elaboration.  相似文献   

8.
The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.  相似文献   

9.
The contributions of root and microbial respiration to the CO2 emission from the surface of gray forest and soddy-podzolic soils under meadow and forest vegetation were determined in field and laboratory experiments. In the field, a new modification of the substrate-induced respiration (SIR) method was applied. According to this method, the contribution of root respiration was estimated at 41–50% for meadow cenoses and 33% for forest cenoses; similar values were obtained in the course of separate incubation of roots and soil in laboratory (42–57% and 29–32%, respectively) and with the use of the laboratory version of the SIR method (35–40% and 21–31%, respectively). The analysis of difference between the values of root respiration and microbial respiration obtained by the field and laboratory methods for the same experimental plots and the comparison of advantages and disadvantages of these methods made it possible to outline the ways for the further improvement of the field version of the SIR method.  相似文献   

10.
In the humus horizon of soddy-podzolic soils of postagrogenic cenoses and primary forests, the contributions of the fungi and bacteria were determined by the selective inhibition of the substrate-induced respiration (SIR) by antibiotics; the basal (microbial) respiration and the net-produced nitrous oxide (N2O) were also determined. The procedure of the SIR separation using antibiotics (cycloheximide and streptomycin) into the fungal and bacterial components was optimized. It was shown that the fungi: bacteria ratio was 1.58, 2.04, 1.55, 1.39, 2.09, and 1.86 for the cropland, fallow, and different-aged forests (20, 45, 90, and 450 years), respectively. The fungal and bacterial production of CO2 in the primary forest soil was higher than in the cropland by 6.3 and 11.4 times, respectively. The production of N2O in the soils of the primary and secondary (90-year-old) forests (3 and 7 ng N-N2O/g soil per hour, respectively) was 2–13 times lower than in the postagrogenic cenoses, where low values were also found for the microbial biomass carbon (Cmic), its components (the Cmic-bacteria and Cmic-fungi), and the portion of Cmic in the organic carbon of the soil. A conclusion was drawn about the misbalance of the microbial processes in the overgrown cropland accompanied by the increased production of N2O by the soil during its enrichment with an organic substrate (glucose).  相似文献   

11.
The contents and distribution of water-soluble, exchangeable, and nonexchangeable forms of potassium have been studied in the profiles of sandy gleyic soddy-podzolic soils under forest, intensively used cropland, extensively used cropland, and a 20-year-old fallow. It is shown that soil cultivation leads to a rise in the concentration of mobile potassium compounds. The ratio between nonexchangeable and exchangeable forms of potassium also changes in the cultivated soil. Under the fallow, the restoration of this ratio to the values typical of the soil under natural forest cenoses takes place. Data on the mineralogical composition of the clay and colloidal fractions in the virgin and cultivated soils are presented.  相似文献   

12.
Vanadium in soil-forming rocks, soils, and vegetation of forest-steppe, steppe, and dry-steppe landscapes of Transbaikalia has been studied. The mean element contents in rocks and soils are equal to its mean natural abundances (clarke values). The content of vanadium in soils is strictly determined by its content in parent materials; its dependence on the vanadium concentration in plants and on the soil pH and humus is less pronounced. With respect to the coefficient of biological uptake by plants, vanadium is assigned to the group of elements of slight accumulation (0.10–0.33) on mineral soils and of moderate accumulation (1.1–1.5) on peat bog soils. The mean vanadium concentration in steppe, meadow, and cultivated vegetation exceeds the norm for animals by 1.7–2.6 times but does not rich toxic levels. Vanadium uptake by plants is most intensive in meadow cenoses and is less intensive in dry-steppe cenoses.  相似文献   

13.
实际污染土壤中有机污染物通常以复合污染状态存在,有机复合污染物的微生物降解过程及其作用机制显得更为复杂。土壤微生物类群多样,具有丰富的功能多样性。而有机复合污染物的降解通常由微生物组操控,通过微生物群落代谢网络完成污染物的去除。近年来,研究者逐渐关注有机复合污染土壤中微生物群落适应机制-微生物组转化过程-合成微生物组设计-原位微生物组修复等方面的研究,对认知污染土壤治理和修复具有重要的科学意义。本文以具有代谢协同性及功能互补性的微生物组为切入点,系统阐述土壤中有机复合污染物的微生物组转化机制与调控原理等,探讨微生物组在复合污染土壤绿色可持续原位生物修复中的发展前景。  相似文献   

14.
Microbial properties may help to provide an integrated view of changes in soil functioning associated with soil management or soil status. The fatty acid profiles of membrane phospholipids (PLFA) can give the composition of ecophysiological groups of soil microbial communities, while catabolic response profiles (CRP) estimate the heterotrophic functional diversity in soils, both relevant to the understanding of the role of micro‐organisms in the functioning of the soil. The objectives of this study were (i) to evaluate the CRP and PLFA as microbial tools to characterize changes in soil functioning and (ii) clarify the relation among these microbial measurements, with other physical, chemical and biochemical soil properties. We compare the same soil subjected to different managements and degrees of erosion. An undisturbed soil (UN), an old pasture soil (OP) and soils under continuous cultivation (NT) with four different depth of A horizon: 25 cm (NT 25), 23 cm (NT 23), 19 cm (NT 19) and 14 cm (NT 14) were tested. Substrate‐induced respiration of most substrates diminished when cropping pressure increased (UN > OP > NT), and soil catabolic evenness, as a diversity index, decreased by increasing production pressure and soil erosion. The correlation found among most of the measured physical, chemical and biochemical soil properties with the catabolic evenness showed the potential of this measurement to provide an integrated view of soil functioning. The PLFA analysis showed that the composition of microbial community denoting a partial recovery after 10 yr under grazed grassland. The stress indicators showed that farming practices increased microbial stress with the highest values found in the most eroded soils.  相似文献   

15.
The main physicochemical parameters of soils formed on dumps composed of overburden rocks in a coalfield deposit have been compared with the properties of the zonal soils. For the first time, the potassium state of embryozems at different stages of development has been analyzed; the concentrations and profile distributions of different potassium compounds and the potential soil buffering capacity for potassium were studied. It was shown that the increase in the available potassium concentrations in the upper horizons of the embryozems was due to the higher intensity of the biological processes and the active weathering of the rocks transferred to the surface. The intensity of the biological accumulation of potassium was higher under the herbaceous cenoses than under the tree-shrub ones.  相似文献   

16.
The spatial ecology of soil microbial communities and their functioning is an understudied aspect of soil microbial ecology. Much of our understanding of the spatial organisation of microbial communities has been obtained at scales that are inappropriate for identifying how microbial functioning and spatial patterns are related. In order to reveal the spatial strategies of soil microorganisms, we measured the microscale spatial distribution of 6 exoenzyme activities (EEA) and related them to the catalytic potential of three soils. The relationship between EEA profiles and microbial community structure was also measured in soil aggregates. All the EEA exhibited scale-invariant spatial clustering. The extent of spatial clustering varied significantly among EEA, suggesting that microbial communities employ different spatial strategies when foraging for different elements. The dispersed distribution of alkaline phosphatase suggests that microorganisms invest more heavily in the acquisition of P. The EEA associated with the C and N cycles, but not the P cycle, were significantly affected by management practices in the loamy soil. A significant negative relationship between the extent of spatial clustering of EEA and the overall intensity of the EEA was identified in the two loamy soils, indicating that the microscale spatial ecology of microbial activity may have a significant impact on biogeochemical cycles. No relationship was found between microbial community structure and EEA profiles in aggregates. However, a number of negative relationships between the relative abundance of certain taxa and the most dispersed EEA (alkaline phosphatase and β-glucosidase) were found, suggesting that these taxa make the EEA products available by means other than the production of exoenzymes (e.g. solubilisation of phosphate through the production of organic acids).  相似文献   

17.
The influence of surface fires and cutting on the quantitative and functional parameters of microbial cenoses in the soils of light coniferous forests in the Lower Angara River basin was studied. In the litters of soddy-podzolic soils under pine forests, the microbial biomass was 4080–4700 μg C/g; the basal respiration was 17.00–20.32 μg C-CO2/g/h; and the qCO2, 4.17–4.33 μg C-CO2/mg Cmic/h. In the humus-accumulative horizon, these values were 880–1160 μg C/g, 2.48–4.12 μg C-CO2/g/h, and 2.83–3.55 C-CO2/mg Cmic/h, respectively. In the litter of the one-year-old felled area, the content of microbial biomass carbon was by two times lower; in the litter of burned plots, it was by 60–70% lower than in the litter of the control area. The intensity of the microbial respiration did not change proportionally to the microbial biomass content, which resulted in an imbalance between the processes of the organic matter mineralization-immobilization towards a release of CO2 as evidenced by the increase of the qCO2 values by 2–4 times. In the five-year-old felled area, at the stage of restoring the herbaceous vegetation, a tendency towards the stabilization of the destructive microbiological processes was revealed. In the felled areas, the high number of heterotrophic microorganisms, the reduced oligotrophy of the soil organic horizons, and the more intense microbiological mineralization of the organic matter were observed. The surface fires in the felled areas and forests significantly affected the structure and the number of ecological-trophic groups of microorganisms in the litters, the humus-accumulative horizons, and in the upper mineral soil layers. The maximal structural and functional disturbance in the soil microbial complex was found in the logged areas affected by fires.  相似文献   

18.
Characteristics, such as microbial biomass, basal respiration, and functional diversity of the microbial communities, were investigated in paddy soils located in Bandung, West Java Province, Indonesia, that have been heavily polluted by industrial effluents for 31 years. Paddy soil samples (10?C20 cm) were taken from two sites: polluted soils and unpolluted soils (as control sites). The polluted soils contained higher salinity, higher sodicity, higher nutrient contents, and elevated levels of heavy metals (Cr, Mn, Ni, Cu, and Zn) than unpolluted soils. Soil physicochemical properties, such as maximum water holding capacity, exchangeable sodium percentage, sodium adsorption ratio, and swelling factor, in polluted soils were much greater than those in unpolluted soils (P?<?0.05). Changes in the physical and chemical soil properties were reflected by changes in the microbial communities and their activities. BIOLOG analysis indicated that the functional diversity of the microbial community of polluted soils increased and differed from that of unpolluted soils. Likewise, the average rate of color development (average well color development), microbial biomass (measured as DNA concentration), and the soil CO2 respiration were higher in polluted soils. These results indicate that major changes in the chemical and physical properties of paddy soils following the application of industrial wastewater effluents have had lasting impacts on the microbial communities of these soils. Thus, the increased activity, biomass, and functional diversity of the microbial communities in polluted soils with elevated salinity, sodicity, and heavy metal contents may be a key factor in enhancing the bioremediation process of these heavily polluted paddy soils.  相似文献   

19.
A detailed characterization of soils in the upper reaches of the Khoseda-Yu River (the Bol’shezemel’skaya tundra in the northeast of European Russia) is given. The classification position of these soils is considered. The specificity of soil formation under tundra communities and under forest groves within the tundra zone is examined. The polygenetic nature of the studied soils is shown; it is explained by the repeated shifts of zonal boundaries within the forest-tundra ecotone.  相似文献   

20.
The postagrogenic transformation of the plow horizon of soddy-podzolic soils under a mown meadow and an artificially planted dense spruce stand has been studied in relation to the microclimatic specificity, water budgets, and soil temperature regimes in the compared cenoses. Over 20 years, a considerable part of precipitation reaching the soil surface under the meadow cenosis has been discharged with the surface runoff and subsurface lateral water flows. The soil warming in summer has been considerable, and the soil freezing in winter has been relatively weak. As a result, a gray humus horizon with well-shaped fine granular and coprolitic structure has been formed within the body of the former plow layer. Under the spruce stand, a larger part of atmospheric moisture has been infiltrated into the soil. The microclimatic conditions under the spruce stand have been more humid and colder. As a result, a thinner humus horizon with a considerable admixture of weakly decomposed plant debris has been formed in the upper part of the former plow layer. Below, a newly formed horizon with a specific thin platy (schlieren) structure ha been developed. The morphology of this horizon resembles the morphology of the eluvial horizon in virgin soddy-podzolic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号