首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several published polymerase chain reaction (PCR) primers to identify Pseudomonas syringae pv. actinidiae, the causal organism of bacterial canker of kiwifruit, were found not to be specific. Two new sets of PCR primers, PsaF1/R2 and PsaF3/R4, were designed to be complementary to a portion of the 16S–23S rDNA intertranscribed spacer (ITS) regions. These primers amplified a DNA fragment from strains of P. syringae pv. actinidiae, but not from 56 strains of bacteria from six genera and 17 species, except for a strain of the tea pathogen, P. syringae pv. theae. When tested against DNA extracted from a further 20 strains from Japan, Korea, Italy and the USA deposited in culture collections as P. syringae pv. actinidiae, all except six cultures produced the expected product of 280 bp with PsaF1/R2 and 175 bp with PsaF3/R4. Results of multilocus sequence analysis using five housekeeping genes (gyrB, acnB, rpoD, pgi and cts) showed that none of these six strains was phylogenetically similar to P. syringae pv. actinidiae. In contrast to the P. syringae pv. actinidiae type strain, these strains were positive in the determinative tests for ice nucleation and syringomycin production. It is suggested that these six strains were incorrectly identified as P. syringae pv. actinidiae. It was not possible to distinguish P. syringae pv. actinidiae from the phylogenetically similar P. syringae pv. theae using the ITS, gyrB, acnB, rpoD, pgi or cts gene regions to design PCR primers. Because P. syringae pv. theae is unlikely to be found on kiwifruit, primers PsaF1/R2 and PsaF3/R4 are recommended for screening bacteria isolated from kiwifruit tissue.  相似文献   

2.
Bacterial canker is a major disease of Prunus avium (cherry), Prunus domestica (plum) and other stone fruits. It is caused by pathovars within the Pseudomonas syringae species complex including P. syringae pv. morsprunorum (Psm) race 1 (R1), Psm race 2 (R2) and P. syringae pv. syringae (Pss). Psm R1 and Psm R2 were originally designated as the same pathovar; however, phylogenetic analysis revealed them to be distantly related, falling into phylogroups 3 and 1, respectively. This study characterized the pathogenicity of 18 newly genome‐sequenced P. syringae strains on cherry and plum, in the field and laboratory. The field experiment confirmed that the cherry cultivar Merton Glory exhibited a broad resistance to all clades. Psm R1 contained strains with differential specificity on cherry and plum. The ability of tractable laboratory‐based assays to reproduce assessments on whole trees was examined. Good correlations were achieved with assays using cut shoots or leaves, although only the cut shoot assay was able to reliably discriminate cultivar differences seen in the field. Measuring bacterial multiplication in detached leaves differentiated pathogens from nonpathogens and was therefore suitable for routine testing. In cherry leaves, symptom appearance discriminated Psm races from nonpathogens, which triggered a hypersensitive reaction. Pathogenic strains of Pss rapidly induced disease lesions in all tissues and exhibited a more necrotrophic lifestyle than hemibiotrophic Psm. This in‐depth study of pathogenic interactions, identification of host resistance and optimization of laboratory assays provides a framework for future genetic dissection of host–pathogen interactions in the canker disease.  相似文献   

3.
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain.  相似文献   

4.
Pseudomonas syringae pv. actinidiae (Psa) is responsible for bacterial canker of kiwifruit. Biovar 3 of Psa (Psa3) has been causing widespread damage to yellow‐ and green‐fleshed kiwifruit (Actinidia spp.) cultivars in all the major kiwifruit‐producing countries in the world. In some areas, including New Zealand, P. syringae pv. actinidifoliorum (Pfm), another bacterial pathogen of kiwifruit, was initially classified as a low virulence biovar of Psa. Ability to rapidly distinguish between these pathovars is vital to the management of bacterial canker. Whole genome sequencing (WGS) data were used to develop PCR assays to specifically detect Psa3 and Pfm from field‐collected material without the need to culture bacteria. Genomic data from 36 strains of Psa, Pfm or related isolates enabled identification of areas of genomic variation suitable for primer design. The developed assays were tested on 147 non‐target bacterial species including strains likely to be found in kiwifruit orchards. A number of assays did not proceed because although they were able to discriminate between the different Psa biovars and Pfm, they also produced amplicons from other unrelated bacteria. This could have resulted in false positives from environmental samples, and demonstrates the care that is required when applying assays devised for pure cultures to field‐collected samples. The strategy described here for developing assays for distinguishing strains of closely related pathogens could be applied to other diseases with characteristics similar to Psa.  相似文献   

5.
Bacterial canker is one of the most important diseases of cherry (Prunus avium). This disease can be caused by two pathovars of Pseudomonas syringae: pv. morsprunorum and pv. syringae. Repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) was investigated as a method to distinguish pathovars, races and isolates of P. syringae from sweet and wild cherry. After amplification of total genomic DNA from 87 isolates using the REP (repetitive extragenic palindromic), ERIC (enterobacterial repetitive intergenic consensus) and BOX primers, followed by agarose gel electrophoresis, groups of isolates showed specific patterns of PCR products. Pseudomonas syringae pv. syringae isolates were highly variable. The differences amongst the fingerprints of P. syringae pv. morsprunorum race 1 isolates were small. The patterns of P. syringae pv. morsprunorum race 2 isolates were also very uniform, with one exception, and distinct from the race 1 isolates. rep-PCR is a rapid and simple method to identify isolates of the two races of P. syringae pv. morsprunorum; this method can also assist in the identification of P. syringae pv. syringae isolates, although it cannot replace inoculation on susceptible hosts such as cherry and lilac.  相似文献   

6.
Since 2008, Pseudomonas syringae pv. actinidiae virulent strains (Psa‐V) have quickly spread across the main areas of kiwifruit (Actinidia deliciosa and A. chinensis) cultivation causing sudden and re‐emerging outbreaks of bacterial canker to both species. The disease caused by Psa‐V strains is considered worldwide as pandemic. Recently, P. syringae strains (ex Psa‐LV, now called PsD) phylogenetically related to Psa‐V have been isolated from kiwifruit, but cause only minor damage (i.e. leaf spot) to the host. The different biological significance of these bacterial populations affecting kiwifruit highlights the importance of having a diagnostic method able to detect Psa‐V, which is currently solely responsible for the severe damage to the kiwifruit industry. In order to improve the specific molecular detection of Psa‐V, a real‐time PCR assay has been developed based on EvaGreen chemistry, together with a novel qualitative PCR (PCR‐C). Both methods are based on specific primer sets for the hrpW gene of Psa. The real‐time PCR and PCR‐C were highly specific, detecting down to 50 and 200 fg, respectively, and were applied to a range of organs/tissues of kiwifruit with and without symptoms. These methods are important tools for both sanitary and certification programmes, and will help to avoid the spread of Psa‐V and to check possible inoculum sources. In addition to being used as routine tests, they will also enable the study of the biology of Psa‐V and the disease that it causes, whilst avoiding the detection of other populations of related P. syringae present in kiwifruit.  相似文献   

7.
A bacterial strain, CFBP 3388, isolated from Vetch (Vicia sativa, L.) was identified asP. s. pv.syringae on the basis of nutritional and biochemical patterns which were obtained with classical tests and the Biolog system. It caused necrotic symptoms typical ofP. s. pv.syringae on bean leaves and pods after artificial inoculation. However, the isolate caused a citrulline-reversible inhibition ofE. coli in phaseolotoxin bioassay. Furthermore, with CFBP 3388 DNA as template a 1900 bp DNA fragment, specific for the phaseolotoxin DNA cluster ofP. s. pv.phaseolicola, was amplified by PCR. This is the first demonstration that an isolate ofP. syringae that is not pv.phaseolicola can produce phaseolotoxinAbbreviations bp base pair - kb kilobase - OCT Ornithine Carbamoyl Transferase  相似文献   

8.
Bleeding canker of European horse chestnut, caused by the pathogenic bacterium Pseudomonas syringae pv. aesculi (Pae), is now an established disease throughout several countries in northwest Europe after first emerging in 2001–2002. Pae infects the woody branches of horse chestnut directly via natural discontinuities in the bark, such as lenticels, leaf scars and leaf traces, and nodes. However, the timing of infection in relation to seasonality of host development, and the dispersal mechanisms of Pae, in particular its ability to survive and spread in soil and water, remains unknown. In this study, infection of freshly cut horse chestnut shoots by Pae was assessed at monthly intervals over a 12 month period. Pae infected the greatest numbers of lenticels and leaf scars of horse chestnut when inoculated onto actively elongating shoots in spring and early summer, whereas lesion extension from artificial wound sites was greatest after inoculation during early dormancy. Soil survival experiments showed that Pae was still detectable and viable after 50 weeks' incubation in sterile soil and 41 weeks' incubation in nonsterile soil in the absence of host debris. Pae also remained viable and pathogenic after 1 year's storage in King's B broth at ?20 and ?80°C, and was not killed by freeze/thaw treatments. Thus Pae is able to survive independently for extended periods in soil and water, and can tolerate lengthy periods of freezing at very low temperatures. Such information may facilitate a greater understanding of the epidemiology and spread of Pae in northern Europe.  相似文献   

9.
A rapid detection method based on PCR amplification of Pseudomonas syringae pv. tomato chromosomal sequences was developed. Primer design was based on the P. syringae DC3000 hrpZPst gene, which maps on a pathogenicity-associated operon of the hrp/hrc pathogenicity island.A 532 bp product corresponding to an internal fragment of hrpZPst was amplified from 50 isolates of P. syringae pv. tomato belonging to a geographically representative collection. The amplification product was also obtained from three coronatine-deficient strains of P. syringae pv. tomato.On the other hand, PCR did not produce any such products from 100 pathogenic and symbiotic bacterial strains of the genera Pseudomonas, Xanthomonas, Erwinia, and Rhizobium and 75 unidentified bacterial saprophytes isolated from tomato plants. The method was tested using leaf and fruit spots from naturally-infected tomato plants and asymptomatic nursery plants and artificially contaminated tomato seeds. The results confirmed the high specificity observed using pure cultures.  相似文献   

10.
A total of 298 bacterial isolates were collected from pea cultivars, landraces and breeding lines in North-Central Spain over several years. On the basis of biochemical-physiological characteristics and molecular markers, 225 of the isolates were identified as Pseudomonas syringae, either pv. pisi (110 isolates) or pv. syringae (112), indicating that pv. syringae is as frequent as pv. pisi as causal agent of bacterial diseases in pea. Most strains (222) were pathogenic on pea. Further race analyses of P. syringae pv. pisi strains identified race 4 (59.1% of the isolates of this pathovar), race 2 (20.0%), race 6 (11.8%), race 5 (3.6%) and race 3 (0.9%). Five isolates (4.6%) showed a not-previously described response pattern on tester pea genotypes, which suggests that an additional race 8 could be present in P. syringae pv. pisi. All the isolates of P. syringae pv. syringae were highly pathogenic when inoculated in the tester pea genotypes, and no significant pathogenic differences were observed. Simultaneous infections with P. syringae pv. pisi and pv. syringae in the same fields were observed, suggesting the importance of resistance to both pathovars in future commercial cultivars. The search for resistance among pea genotypes suitable for production in this part of Spain or as breeding material identified the presence of resistance genes for all P. syringae pv. pisi races except for race 6. The pea cultivars Kelvendon Wonder, Cherokee, Isard, Iceberg, Messire and Attika were found suitable sources of resistance to P. syringae pv. syringae.  相似文献   

11.
Bacterial strains isolated from cankers of wild cherry trees (Prunus avium) in France were characterized using numerical taxonomy of biochemical tests, DNA–DNA hybridization, repeat sequence primed-PCR (rep-PCR) based on REP, ERIC and BOX sequences, heteroduplex mobility assay (HMA) of internal transcribed spacer (ITS) as well as pathogenicity on wild cherry trees and other species of Prunus. They were compared to reference strains of Pseudomonas syringae pathovars isolated from wild and sweet cherry and various host plants. Wild cherry strains were closely related to P. syringae (sensu lato) in LOPAT group Ia (+ - - - +). Wild cherry strains were pathogenic to wild cherry trees and produced symptoms similar to those observed in orchards. They were pathogenic also, but at a lesser extent, to sweet cherry trees (cv. Napoléon). The wild cherry strains were collected from five different areas in France and appeared to constitute a very homogeneous group. They showed an homogenous profile of a biochemical and physiological characteristics. They were closely related by DNA–DNA hybridization and belonged to genomospecies 3 `tomato'. Rep-PCR showed that wild cherry strains constitute a tight group distinct from P. s. pv. morsprunorum races 1 and 2 and from other P. syringae pathovars. HMA profiles indicated that the ITS of all wild cherry strains were identical but different from P. s. pv. persicae strains since the two heteroduplex bands with reduced mobility were generated by hybridization with the P. s. pv. persicae pathotype strain CFBP 1573. The 8 genomospecies of Gardan et al. (1999) have not been converted into formal species as they cannot be differentiated by biochemical tests. Therefore, the pathovar system within P. syringae was currently used. P. syringae pv. avii is proposed for this bacterium causing a wild cherry bacterial canker and strain CFBP 3846 (NCPPB 4290, ICMP 14479) is designated as the pathotype.  相似文献   

12.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

13.
Bacterial canker is one of the most important diseases of stone fruit trees in various locations of Kurdistan province, Iran. Genetic diversity and evolutionary relationships among 20 fluorescent pseudomonads isolated from stone fruit trees with symptoms similar to bacterial canker were investigated using a polyphasic approach by means of phenotypic characterizations, repetitive PCR using the REP and ERIC primers and multilocus sequence typing (MLST) of four housekeeping genes (gapA, rpoD, gyrB and gltA). The pathogenicity of strains was carried out under greenhouse conditions. Twelve strains produced an expected amplified DNA fragment of about 752-bp which indicated the presence of the syrB gene. Based on MLST, these strains belonged to P. syringae species complex and included in the genomospecies 1, phylogroup 2b and 2d. Phylogenetic analysis of the other eight fluorescent pseudomonad strains by using gyrB and rpoD sequences allowed the identification of strains into P. fluorescens, P. putida and P. lutea groups. Unweighted pair group method analysis (UPGMA) of genomic fingerprints obtained by rep-PCR revealed 17 different patterns which grouped P. syringae strains into three clusters clearly separated from other fluorescent pseudomonads. MLST confirmed the genetic variability among strains obtained by rep-PCR. Grouping identified of P. syringae strains by both rep-PCR and MLST was related to geographic locations of strains.  相似文献   

14.
Pseudomonas savastanoi pv. savastanoi (Psav) is a member of P. syringae sensu lato, and causes olive knot disease, a disease first reported over 2000 years ago. Analysing 124 isolates of Psav from 15 countries by rep‐PCR, the population genetic structure of Psav was investigated. A total of 113 distinct fingerprints were detected. Cluster analysis revealed the existence of two clusters and four subclusters. These clusters were associated with the geographic origin of isolates, which in turn correspond to historic human migration events and trade routes across the Mediterranean Sea. In contrast, multilocus sequence typing (MLST) of 2788 bp of the gapA, gltA, gyrB and rpoD genes found only one variable site among 77 representative isolates. Virulence variation was observed within the Psav population, with the most virulent strains generating knots that had a weight that was 10‐fold greater than those generated by the least virulent strains. Taken together, these data suggest that today's Psav population is the result of clonal expansion of a single strain, that moderate migration of the pathogen occurred between countries, and that changes in virulence arose during its evolution.  相似文献   

15.
In October 2010, a bacterial disease produced flecks and spots on leaves of Chinese cabbage, cabbage and Japanese radish in Nagano Prefecture, Japan. The symptoms started on the abaxial surface of leaves as angular, water-soaked flecks of 1–2 mm in diameter with a yellow halo of 3–4 mm width. These flecks then became visible on both leaf surfaces, enlarged and coalesced into large blight lesions. The symptoms were similar to bacterial leaf spot caused by Pseudomonas syringae pv. maculicola. The bacterium isolated from leaf lesions formed a white colony and produced polysaccharides on YP agar. The isolates were identified as P. syringae group by LOPAT tests and the 16S rDNA sequence. Moreover, the results of pathogenicity on cruciferous plants, bacteriological characteristics, rep-PCR and the sequences of rpoD and gyrB showed that the isolates should be identified as P. cannabina pv. alisalensis (recently transferred from P. syringae pv. alisalensis). This is the first report of P. cannabina pv. alisalensis isolated from diseased crucifers in Japan.  相似文献   

16.
To improve the ability to understand how plants respond to multiple and/or concurrent stresses, disease resistance was investigated in Eutrema salsugineum, an extremophile model plant that is highly tolerant of abiotic stress. Compared to Arabidopsis (Col‐0), both Yukon and Shandong Eutrema accessions exhibit increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst) and pv. maculicola (Psm), with Shandong Eutrema exhibiting greater resistance to Pst than Yukon Eutrema. RT‐PCR of the EsPR1 (Pathogenesis‐related 1) defence marker gene confirmed RNA‐Seq data that healthy Shandong Eutrema constitutively expresses EsPR1. The data suggests that Shandong Eutrema exists in a highly primed state of defence preparedness, as it displays heightened resistance compared to defence‐primed natural accessions of Arabidopsis (Can‐0, Bur‐0). Pathogen‐triggered PR1 expression was delayed in Yukon Eutrema; however, these plants were resistant to Pst suggesting that Yukon Eutrema employs a PR1‐independent mechanism to resist Pst. This study demonstrates that Eutrema is an excellent model to investigate biotic stress tolerance. The Eutrema–P. syringae pathosystem will facilitate future studies to understand how this extremophile tolerates both abiotic and biotic stress, and will allow exploration of the interplay of these responses to inform efforts to improve stress tolerance in crops.  相似文献   

17.
A newly discovered bacterial species, Pseudomonas floridensis, has emerged as a pathogen of tomato in Florida. This study compares the virulence and other attributes of P. floridensis to Pseudomonas syringae pv. tomato, which causes bacterial speck disease of tomato. Pseudomonas floridensis reached lower population levels in leaves of tomato as compared to the P. syringae pv. tomato strains DC3000 and NYT1. Analysis of the genome sequence of the P. floridensis type strain GEV388 revealed that it has just nine type III effectors including AvrPtoBGEV388, which is 66% identical to AvrPtoB in DC3000. Five of these effectors have been previously reported to be members of a ‘minimal effector repertoire’ required for full DC3000 virulence on Nicotiana benthamiana; however, GEV388 grew poorly on leaves of this plant species compared to the DC3000 minimal effector strain. The tomato Pto gene recognizes AvrPtoB in race 0 P. syringae pv. tomato strains, thereby conferring resistance to bacterial speck disease. Pto was also found to confer resistance to P. floridensis, indicating this gene will be useful in the protection of tomato against this newly emerged pathogen.  相似文献   

18.
A total of 242 Pisum accessions were screened for resistance to Pseudomonas syringae pv. pisi under controlled conditions. Resistance was found to all races, including race 6 and the recently described race 8. Fifty‐eight accessions were further tested for resistance to P. syringae pv. syringae under controlled conditions, with some highly resistant accessions identified. Finally, a set of 41 accessions were evaluated for resistance to P. syringae pv. pisi and pv. syringae under spring‐ and winter‐sowing field conditions. R2, R3 and R4 race‐specific resistance genes to P. syringae pv. pisi protected pea plants in the field. Resistance sources to race 6 identified under controlled conditions were ineffective in the field. Frost effects were also evaluated in relation to disease response. Results strongly suggest that frost tolerance is effective in lowering the disease effects caused by P. syringae pv. pisi and pv. syringae under frost‐stress conditions, even in the absence of disease resistance genes, although the highest degree of this protection is reached when frost tolerance and disease‐resistance genes are combined in the same genetic background.  相似文献   

19.
The relationships between strains of Pseudomonas savastanoi pv. phaseolicola (P. sav. phaseolicola), P. syringae pv. tabaci (P. syr. tabaci) and P. syr. syringae which all cause disease on bean; the related species P. sav. glycinea and P. syr. actinidiae, and reference bacteria, were evaluated by studying the phenotypic and genetic diversity of a collection of 62 strains. All the P. sav. phaseolicola strains tested produced characteristic watersoaked lesions on bean pods. Other pathovars produced varying combinations of symptoms including necrotic lesions, with or without watersoaked centres and sunken tissue collapse of the lesion (P. syr. tabaci) and necrotic lesions with or without sunken collapse (P. syr. syringae). At the genomospecies level, all the strains of P. sav. phaseolicola, P. sav. glycinea and P. syr. tabaci, belonging to genomospecies 2, could be separated from P. syr. syringae strains (genomospecies 1) and P. syr. actinidiae strains (unknown genomospecies) by BOX-PCR and DNA/DNA hybridisation. To distinguish P. sav. phaseolicola, within genomospecies 2, from P. sav. glycinea and P. syr. tabaci, it was necessary to perform nutritional characterisations myo-inositol negative and p-hydroxy benzoate positive for P. sav. phaseolicola strains), PCR with specific primers designed from the tox region (positive for all of the P. sav. phaseolicola strains) and serotyping, as 71% of the P. sav. phaseolicola strains reacted as O-serogroup PHA1. Important intrapathovar variation was seen by genomic fingerprinting with REP and ERIC primers, as well as with RAPD primers (AE7 and AE10) and esterase profilings. While RAPD fingerprinting detected variability correlated with two race-associated evolutionary lines, REP, ERIC and esterase profiles revealed intrapathovar variation linked to some host origins, that separated the kudzu isolates, and the mungbean isolates, from the other P. sav. phaseolicola strains.  相似文献   

20.
Bacterial speck caused byPseudomonas syringae pv.tomato is an emerging disease of tomato in Tanzania. Following reports of outbreaks of the disease in many locations in Tanzania, 56 isolates ofP. syringae pv.tomato were collected from four tomato- producing areas and characterized using pathogenicity assays on tomato, carbon source utilization by the Biolog Microplate system, polymerase chain reaction and restriction fragment length polymorphism (RFLP) analysis. All theP. syringae pv.tomato isolates produced bacterial speck symptoms on susceptible tomato (cv. ‘Tanya’) seedlings. Metabolic fingerprinting profiles revealed diversity among the isolates, forming several clusters. Some geographic differentiation was observed in principal component analysis, with isolates from Arusha region being more diverse than those from Iringa and Morogoro regions. The Biolog system was efficient in the identification of the isolates to the species level, as 53 of the 56 (94.6%) isolates ofP. syringae pv.tomato were identified asPseudomonas syringae. However, only 23 isolates out of the 56 (41.1%) were identified asPseudomonas syringae pv.tomato. The results of this work indicate the existence ofP. syringae pv.tomato isolates in Tanzania that differ significantly from those used to create the Biolog database. RFLP analysis showed that the isolates were highly conserved in theirhrpZ gene. The low level of genomic diversity within the pathogen in Tanzania shows that there is a possibility to use resistant tomato varieties as part of an effective integrated bacterial speck management plan. http://www.phytoparasitica.org posting August 8, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号