首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhizopus rot, caused by Rhizopus stolonifer, is one of the main postharvest diseases in stone fruits, but there is little known about the processes of disease development during transport and postharvest storage. The objective of this study was to characterize temporal progress and spatial distribution of the disease in peach fruit. Rhizopus rot development was evaluated using two different fruit arrangements. Only one fruit of each arrangement was inoculated with a R. stolonifer spore suspension. Disease incidence and severity were assessed daily for all the fruit. Nonlinear models were fitted to the quantity of fruit and to the area of fruit that became infected over time and distance in relation to the source of inoculum. Disease‐free fruit placed next to the artificially inoculated peaches showed disease symptoms due to pathogen dissemination by mycelial stolons. The disease incidence and severity progress rates varied from 0.33 to 0.53 day?1 and from 0.30 to 0.49 day?1, respectively. The spatial spread of the disease followed a dispersive wave pattern with increasing speed over time, but decreasing speed with disease severity. For disease severity = 0.5, the velocity at day 3 varied from 0.14 to 0.32 fruit diameter day?1, while it ranged from 0.38 to 1.46 fruit diameter day?1 at day 12.  相似文献   

2.
Brown rot is a devastating disease of stone fruits caused by Monilinia spp. This study was conducted to investigate the disease aetiology on blossoms and fruit in peach, apricot, sweet cherry and plum orchards, in Greece. In total, 1433 isolates obtained from orchards located in the main stone fruit production regions of Greece were identified to species based on the presence/size of a cyt b intron. Monilinia laxa and M. fructicola were detected at frequencies of 59 and 41%, respectively, while M. fructigena was absent. Monilinia fructicola was more common on fruit whereas M. laxa occurred in similar frequency on blossoms and fruit. Monilinia laxa was replaced by M. fructicola in fruit infections of peach in both regions investigated and in fruit infections of plum in the Imathia region. Assessments of aggressiveness of 30 isolates of both species on the petals and fruits of the hosts showed that M. fructicola isolates were more aggressive. This suggests that the predominance of M. laxa on the blossoms cannot be explained by higher aggressiveness. Measurements of the effect of temperature on mycelial growth showed that M. laxa isolates had a higher growth rate than M. fructicola at the lowest temperature tested of 5°C, whereas M. fructicola isolates showed higher growth rates at higher temperatures. The observed high frequency of M. fructicola in Greece represents a major threat for stone fruit production. Furthermore, the information obtained about delineation of species and plant organ preference could be useful for the implementation of disease management strategies.  相似文献   

3.
The aim of this 4‐year study was to characterize temporal development of brown rot blossom blight and fruit blight (caused by Monilinia spp.) and their sporulating areas in sour cherry orchards; and to determine the relationships amongst incidence and sporulating area of blossom blight, fruit blight and fruit rot. The study was performed in integrated and organic orchard blocks on two cultivars (Újfehértói fürtös and Érdi b?term?). On both cultivars, disease progress on flowers and fruits was 2–10 times slower in the integrated than in the organic management system. The peak incidence values were 9 and 31 days after petal fall for blossom blight and fruit blight, respectively. After these dates, no new blight symptoms on flowers and/or fruits appeared and the disease was levelling off. Final blossom blight incidence ranged from 1 to 5% and from 12 to 34%, and fruit rot incidence from 2 to 6% and from 11 to 26% in the integrated and the organic orchards, respectively. The sum of fruit blight incidence ranged from 9 to 22% for the organic system, but was below 5% for the integrated system, while the final sporulating area was 5–16 mm2 and <3 mm2, respectively. Among the five highest Pearson's correlation coefficients, relationships between blossom blight and early fruit blight stage (= 0·845, = 0·0087 integrated; = 0·901, = 0·0015 organic), and between sporulating area and fruit rot (= 0791, = 0·0199 integrated; = 0·874, = 0·0039 organic) were the most significant relationships from an epidemic standpoint as they indicated a connection between different brown rot symptom types.  相似文献   

4.
Brown rot is the main disease of stone fruits in Brazil, but the susceptibility of peaches to brown rot at different stages of development in the field has not been studied under subtropical conditions. This information is relevant to guide the management of the disease. The objective of this research was to determine the influence of inoculating peaches with Monilinia fructicola at different stages of development on the infection and progress of brown rot at postharvest. Two experiments were carried out: one ex vivo with two cultivars and the other in the field for two seasons. Peaches were inoculated at different sizes for both experiments. In the field, peaches were bagged to avoid natural infection, and M. fructicola inoculum was monitored. The ex vivo incidence of the disease was lower at pit hardening than at other fruit stages for both cultivars. The incidence of brown rot for peaches attached to the trees increased with fruit ripening. Conversely, the time for symptom expression was reduced according to peach diameter. Peaches inoculated with a diameter smaller than 2 cm showed a lower incidence of brown rot and longer periods for disease expression than fruit inoculated near harvest. In conclusion, in areas with high inoculum in the orchard, a common condition in the subtropics, the grower must prevent infection at all stages of fruit development, thus avoiding losses during marketing.  相似文献   

5.
The effect of hot water treatment (HWT) to control peach brown rot was investigated. Peaches were dipped in water at 60°C for 60 s and artificially inoculated with Monilinia fructicola conidia. HWT failed to control brown rot if applied before inoculation and microscopic observations revealed a stimulatory effect on germ tube elongation of M. fructicola conidia placed immediately after HWT on the fruit surface, compared to the control. The influence of fruit volatile emission due to HWT was performed on the pathogen conidia exposed to the headspace surrounding peaches. The results showed an increase of M. fructicola conidial germination ranging from 33 to 64% for cultivars Lucie Tardibelle and Red Haven heat‐treated peaches, respectively, compared to the control. The volatile blend emitted from heat‐treated fruit was analysed by solid‐phase microextraction/gas chromatography‐mass spectrometry (SPME/GC‐MS) and proton transfer reaction‐time of flight‐mass spectrometry (PTR‐ToF‐MS). Fifty compounds were detected by SPME/GC‐MS in volatile blends of cv. Lucie Tardibelle peaches and significant differences in volatile emission were observed among heated and control fruit. Using PTR‐ToF‐MS analysis, acetaldehyde and ethanol were detected at levels 15‐ and 28‐fold higher in heated fruit compared to unheated ones, respectively. In vitro assays confirmed the stimulatory effect (60 and 15%) of acetaldehyde (0·6 μL L?1) and ethanol (0·2 μL L?1) on M. fructicola conidial germination and mycelial growth, respectively. The results showed that volatile organic compounds (VOCs) emitted from heat‐treated peaches could stimulate M. fructicola conidial germination, increasing brown rot incidence in treated peaches when the inoculation occurs immediately after HWT.  相似文献   

6.
近年随着乡村产业调整和果业发展, 褐腐病在我国的发生呈加重趋势。本文对重庆地区核果类果树褐腐病的发生状况做了调查分析, 在室内通过平板及离体果实试验, 筛选拮抗菌和化学药剂, 为田间防治实践提供科学依据。主要结果如下:桃褐腐病在重庆普遍发生, 核果类果树均易感, 病原菌经鉴定为果生链核盘菌Monilinia fructicola; 系统调查初步分析发现, 降雨时间与李褐腐病发生发展关系最密切, 其与病情指数增幅的相关系数R=0.94(P<0.05); 平板对峙和离体桃果筛选, 获得2株有生防潜力的放线菌YLS5-2和YYDB3-1, 二者的抑菌率分别为91.3%和84.5%, 相对防效分别为65.1%和67.1%, 可能具有较好的应用前景; 平板毒力测定和离体桃果控病试验, 效果最优的化学药剂分别为戊唑醇、苯甲·丙环唑, 其中戊唑醇在推荐浓度处理96 h其离体果实防效仍维持在100%水平。  相似文献   

7.
Nineteen yeast isolates obtained from the surface of several fruits and vegetables grown in Southern Italy and Israel were compared by molecular analysis using arbitrarily primed polymerase chain reaction (AP-PCR) and random amplified polymorphic DNA technique (RAPD-PCR). Genetic analysis made it possible to distinguish between closely-related genitically different strains which had the same morphological characteristic, and to discard isolates which were genetically identical. Following PCR characterisation, 6 isolates were selected and tested for their biocontrol activity against major postharvest pathogens (Penicillium digitatum on grapefruit, Botrytis cinerea, Rhizopus stolonifer and Aspergillus niger on table grape and B. cinerea and R. stolonifer on cherry tomato). All the isolates showed a good biocontrol efficacy on both wounded and non-wounded fruits. Furthermore, the preharvest application of the most effective antagonist (LS15) on table grape resulted in a significant reduction in grey mold ranging from 28.3% to 38.2% compared to the untreated control. The RAPD-PCR technique was also useful for identifying and monitoring the survival of the antagonist after field application.  相似文献   

8.
Based on partial sequence analysis of the β‐tubulin gene, 19 isolates of fungi causing bull's eye rot on apple in Poland were classified into species: Neofabraea alba, N. perennans and N. kienholzii. To the authors’ knowledge, the detection of N. kienholzii is the second in Europe and the first in Poland. Species affiliation of these fungi was confirmed by a new species‐specific multiplex PCR assay developed on the basis of previously published methods. The new protocol allowed for the specific identification of bull's eye rot‐causing species, both from pure cultures and directly from the skin of diseased or apparently healthy apples. In 550 samples of diseased fruits collected from nine cold storage rooms located in three regions of Poland, in 2011 and 2012, N. alba was detected as the predominant species causing bull's eye rot, occurring on average in 94% of the tested samples. Neofabraea perennans was found in a minority of apple samples, N. kienholzii was found only in two apple samples, while N. malicorticis was not detected in any sample tested. In tests on 120 apparently healthy fruits, only N. perennans was detected in a single sample. The results of genetic diversity analyses of bull's eye rot‐causing fungi based on the β‐tubulin gene sequence and an ISSR (inter‐simple sequence repeat) PCR assay with two primers were consistent, showing the expected segregation of tested isolates with respect to their species boundaries. However, the genetic distance between N. perennans and N. malicorticis was very low, as reported previously.  相似文献   

9.
A homothallic Phytophthora species was found to be consistently associated with a rot of mature fruits of two local cultivars of olive (Olea europaea) in Calabria, southern Italy. The phylogenetic analysis of sequences of the ITS1‐5.8S‐ITS2 region and cox1 gene enabled its identification as a new species of clade 2, with a basal position compared to previously described subclades. The new species is described formally with the epithet Phytophthora oleae, referring to the natural matrix from which it was isolated. A unique combination of molecular and morphological characters clearly separates P. oleae from other already described Phytophthora species. This new species produced semipapillate, occasionally bipapillate, persistent sporangia on simple sympodially branching sporangiophores as well as globose and smooth‐walled oogonia, paragynous antheridia and spherical, plerotic oospores. The pathogenicity of P. oleae was confirmed in inoculation trials on fruits of three olive cultivars, including the two local cultivars from which the pathogen had been isolated.  相似文献   

10.
 匍枝根霉(Rhizopus stolonifer)和半裸镰刀菌(Fusarium semitectum)以不同的机制侵染甜瓜果实。匍枝根霉侵染时,菌丝分泌大量的果胶甲酯酶(PME)、多聚半乳糖醛酸酶(PG)、果胶甲基半乳糖醛酸酶(PMG),迅速消解组织中胶层,引起细胞电解质外渗、质壁分离和软腐。菌丝在胞外和细胞间隙生长,不能穿透细胞壁。半裸镰刀菌侵染甜瓜果实时分泌高活力的果胶甲酯酶、果胶裂解酶类(PML)和纤维素酶(Celulase)而缺少果胶水解酶类,菌丝不能迅速消解中胶层,但以直接穿透细胞壁方式侵染组织细胞。这两种病原对甜瓜不同的致腐方式是由它们不同的外泌胞壁降解酶种类和酶学特性所决定的。  相似文献   

11.
The fungal pathogen Monilinia fructicola causes blossom blight and fruit brown rot of stone fruits in California. In this study, spore densities in the air were monitored in six orchard/year combinations with Burkard spore traps. A real-time PCR assay was developed to efficiently quantify the dynamics of spore density in these orchards during the growing season. Different patterns of dynamics of spore density were observed in these orchards. A linear relationship between numbers of spores counted with a compound microscope and those determined with the real-time PCR assay was obtained, using the same samples of spore traps. Spore density in five of six orchard/year combinations ranged from 0.0 to 0.05 spores l−1, except for that in orchard 4, which showed much higher values of spore density in the air, as well as higher values and wider range of incidences of blossom infection and fruit rot than those in the other orchards. The results demonstrated a potential method to quantitatively determine spore inoculum potential in orchards by using a real-time PCR assay.  相似文献   

12.
Olive leprosy, caused by the fungus Phlyctema vagabunda, is a classic fruit rot disease widespread in the Mediterranean basin. From 2009 to 2013, new disease symptoms consisting of small circular necrotic leaf lesions, coin branch canker and shoot dieback were observed in Spanish and Portuguese olive orchards showing intense defoliation. Phlyctema‐like anamorphs were consistently isolated from leaves and shoots with symptoms. Representative isolates from affected leaves, shoots and fruits were characterized based on morphology of colonies and conidia, optimum growth temperature and comparison of DNA sequence data from four regions: ITS, tub2, MIT and rpb2. In addition, pathogenicity tests were performed on apple and olive fruits, and on branches and leaves of olive trees. Maximum mycelial growth rate ranged between 0.54 and 0.73 mm per day. Conidia produced on inoculated apple fruits showed slight differences in morphology among the representative fungal isolates evaluated. Phylogenetic analysis clustered all of the Phlyctema‐like isolates in the same clade, identifying them as Phlyctema vagabunda. On fruits, influence of wounding, ripening and cultivar resistance was studied, with cv. Blanqueta being the most susceptible cultivar. On branches, a mycelial‐plug inoculation method reproduced olive leprosy symptoms and caused shoot dieback. On leaves, Koch's postulates were fulfilled and the pathogen caused characteristic necrotic spots and plant defoliation. This is the first time that the pathogenicity of P. vagabunda in olive leaves has been demonstrated.  相似文献   

13.
Bacterial canker is a major disease of Prunus avium (cherry), Prunus domestica (plum) and other stone fruits. It is caused by pathovars within the Pseudomonas syringae species complex including P. syringae pv. morsprunorum (Psm) race 1 (R1), Psm race 2 (R2) and P. syringae pv. syringae (Pss). Psm R1 and Psm R2 were originally designated as the same pathovar; however, phylogenetic analysis revealed them to be distantly related, falling into phylogroups 3 and 1, respectively. This study characterized the pathogenicity of 18 newly genome‐sequenced P. syringae strains on cherry and plum, in the field and laboratory. The field experiment confirmed that the cherry cultivar Merton Glory exhibited a broad resistance to all clades. Psm R1 contained strains with differential specificity on cherry and plum. The ability of tractable laboratory‐based assays to reproduce assessments on whole trees was examined. Good correlations were achieved with assays using cut shoots or leaves, although only the cut shoot assay was able to reliably discriminate cultivar differences seen in the field. Measuring bacterial multiplication in detached leaves differentiated pathogens from nonpathogens and was therefore suitable for routine testing. In cherry leaves, symptom appearance discriminated Psm races from nonpathogens, which triggered a hypersensitive reaction. Pathogenic strains of Pss rapidly induced disease lesions in all tissues and exhibited a more necrotrophic lifestyle than hemibiotrophic Psm. This in‐depth study of pathogenic interactions, identification of host resistance and optimization of laboratory assays provides a framework for future genetic dissection of host–pathogen interactions in the canker disease.  相似文献   

14.
Studies were undertaken to compare susceptible and resistant host responses to Pseudocercosporella capsellae in cotyledons of Brassica carinata, B. juncea and B. napus in order to define the mechanisms of resistance in these three species. On both resistant and susceptible hosts, hyphal penetration was always through stomatal openings and without infection pegs or appressoria. On resistant B. carinata ATC94129P, up to 72% of spores disintegrated and, generally, germination (<22%) and germ tube lengths (<25 μm) were comparatively low. Resistant B. napus Hyola 42 had the lowest germination (8%) and susceptible B. carinata UWA#012 had the highest (51%). On resistant B. carinata ATC94129P, germ tube extension was impeded across 24–60 h post‐inoculation (hpi) and percentage stomatal penetration lower (4%) at 60 hpi compared with susceptible B. carinata UWA#012 (26%). Stomatal densities (stomata/14 757 μm2) on resistant B. juncea Dune (2·12) and B. napus Hyola 42 (1·62) were lower than for susceptible B. juncea Vardan (2·40) and B. napus Trilogy (2·03). Resistant B. carinata ATC94129P had greater stomatal density (1·89) than susceptible B. carinata UWA#012 (1·58). Overall, B. juncea had greater stomatal density (2·26) compared with B. napus (1·83) and B. carinata (1·74). In resistant B. carinata ATC94129P, P. capsellae induced 28% stomata to close, while in susceptible B. carinata UWA#012 no such closure was induced. Epicuticular wax crystalloids were present only on resistant B. carinata ATC94129P and probably also contribute towards resistance.  相似文献   

15.
Dothistroma needle blight (DNB), caused by Dothistroma septosporum, is the most important disease currently affecting pine plantations in Britain. Intraspecific variation in susceptibility to DNB has been observed in several pine species, but it is not clear if similar variation occurs in Pinus sylvestris (Scots pine), Britain's only native pine. In three separate experiments 2‐ and 3‐year‐old Scots pine saplings from six native Scottish populations were artificially inoculated with D. septosporum conidial suspensions and incubated under conditions optimal for disease development. Conidial suspensions were produced using a single isolate from northeast Scotland. In one experiment, plants were also treated with various spore suspension concentrations to assess the impact of inoculum load on disease severity. There were no significant interactions between host population, plant height, and experiment/inoculum load (anova ,> 0·05), but population, height and inoculum load all significantly affected disease severity (anova ,< 0·05). Among the 2‐year‐old trees, those from Amat were less susceptible than those from Glen Loyne and Glen Cannich (anova ,< 0·05). Among the 3‐year‐old trees, those from Beinn Eighe were less susceptible than those from Abernethy. Plant height and DNB susceptibility had a slightly negative relationship. The use of a spore suspension with a concentration of 1·6 × 106 spores mL?1 was optimum for disease development. In an in vitro experiment, production of conidia was greater when cultures were incubated in darkness. This paper is the first to report intraspecific variation in DNB susceptibility within Scots pine.  相似文献   

16.
The host range specialization of Tranzschelia discolor (Fckl.) Tranz. & Litv. on stone fruits at the uredinial infection stage was investigated. Aeciospore inocula were collected from the alternate host, Anemone coronaria, at ten different locations of Aydın Province in early spring and were separately inoculated to 1–2-year-old nursery stocks of plum, peach, apricot, almond and sweet cherry under growth chamber conditions. Rust pustules developed only on plums, 15–21 days after inoculations, but no infections occurred on the other stone fruits. Urediniospore inocula were collected from naturally infected plums, apricots, peaches and almonds and were inoculated to four host species as well as sweet cherry in a series of cross-inoculations. Rust pustules developed on plants of the respective original host species from which the urediniospore inoculum was collected. No morphological differences were found among teliospores and urediniospores of T. discolor sampled from the different stone fruit species. Results of this study indicate that there is host specialization of T. discolor on stone fruits at the uredinial infection stage. Aecial inoculum from anemones in Aydin Province was infectious only on plums. The alternate host for the other stone fruits in this province was not found.  相似文献   

17.
Anthracnose fruit rot of blueberries caused by Colletotrichum acutatum is a serious problem in humid blueberry‐growing regions of North America. In order to develop a disease prediction model, environmental factors that affect mycelial growth, conidial germination, appressorium formation and fruit infection by C. acutatum were investigated. Variables included temperature, wetness duration, wetness interruption and relative humidity. The optimal temperature for mycelial growth was 26°C, and little or no growth was observed at 5 and 35°C. The development of melanized appressoria was studied on Parafilm‐covered glass slides and infection was evaluated in immature and mature blueberry fruits. In all three assays, the optimal temperature for infection was identified as 25°C, and infections increased up to a wetness duration of 48 h. Three‐dimensional Gaussian equations were used to assess the effect of temperature and wetness duration on the development of melanized appressoria (R2 = 0·89) on Parafilm‐covered glass slides and on infection incidence in immature (R2 = 0·86) and mature (R2 = 0·90) blueberry fruits. Interrupted wetness periods of different durations were investigated and models were fitted to the response of melanized appressoria (R2 = 0·95) and infection incidence in immature (R2 = 0·90) and mature (R2 = 0·78) blueberry fruits. Additionally, the development of melanized appressoria and fruit infection incidence were modelled in relation to relative humidity (R2 = 0·99 and 0·97, respectively). Three comprehensive equations were then developed that incorporate the aforementioned variables. The results lay the groundwork for a disease prediction model for anthracnose fruit rot in blueberries.  相似文献   

18.
Bacterial wilt caused by Ralstonia solanacearum is a serious disease of peanut (Arachis hypogaea) in China. However, the molecular basis of peanut resistance to R. solanacearum is poorly understood. Arachis duranensis, a wild diploid species of the genus Arachis, has been proven to be resistant to bacterial wilt, and thus holds valuable potential for understanding the mechanism of resistance to bacterial wilt and genetic improvement of peanut disease resistance. Here, suppression subtractive hybridization (SSH) and macroarray hybridization were employed to detect differentially expressed genes (DEGs) in the roots of A. duranensis after Rsolanacearum inoculation. A total of 317 unique genes were obtained, 265 of which had homologues and functional annotations. KEGG analysis revealed that a large proportion of these unigenes are mainly involved in the biosynthesis of phytoalexins, particularly in the biosynthetic pathways of terpenoids and flavonoids. Subsequent real‐time polymerase chain reaction (PCR) analysis showed that the terpenoid and flavonoid synthesis‐related genes showed higher expression levels in a resistant genotype of A. duranensis than in a susceptible genotype, indicating that the terpenoids and flavonoids probably played a fundamental role in the resistance of Aduranensis to R. solanacearum. This study provides an overview of the gene expression profile in the roots of wild Arachis species in response to R. solanacearum infection. Moreover, the related candidate genes are also valuable for the further study of the molecular mechanisms of resistance to R. solanacearum.  相似文献   

19.
Rhizoctonia solani anastomosis group 4 (AG‐4) is a serious pathogen causing damping off and root rot in many important crop plants. A total of 190 isolates of R. solani AG‐4 HG‐I were collected from host fields in five provinces of Iran. The genetic structure of this pathogen was evaluated using seven microsatellite loci, focusing particularly on geographic differentiation. Most of the multilocus genotypes (MLGTs) were unique, with few MLGTs shared among populations. High to moderate levels of gene flow among populations was indicated by low to moderate differentiation between pairs of populations based on the fixation index (FST). Gametic equilibrium of most pairs of microsatellite loci and moderate genotypic diversity were found for two out of five populations, indicating that these populations were sexually recombining in structure. High genotypic diversity, moderate clonal fractions and site‐specific genotypes were consistent with mixed reproductive systems for the remaining populations. The findings of departures from Hardy–Weinberg (HW) equilibrium, gametic disequilibrium and a significant excess of homozygotes in half or more than half of the loci were probably caused by the presence of null alleles and the Wahlund effect. This is the first study to consider the population genetics of the root and crown rot pathogen R. solani AG‐4.  相似文献   

20.
Signs and symptoms of a disease similar to those of armillaria root rot have recently been observed on various native woody plants on the foothills of Table Mountain in South Africa, one of the most botanically diverse natural environments globally. This is of concern because the root rot fungus Armillaria mellea has previously been shown to be an alien pathogen of European origin in planted gardens in the City of Cape Town. An aim of this study was to identify the cause of the root rot disease on infected plants. Based on DNA‐sequence phylogeny, it was shown that isolates collected from at least 16 native tree and woody shrub species represented the non‐native A. mellea. Microsatellite markers were then used to determine the genetic diversity and population structure of the A. mellea isolates from Table Mountain and two planted gardens where the pathogen has previously been found. Population genetic analyses revealed low levels of gene diversity and no population differentiation amongst the three populations. The results provide the first firm evidence that A. mellea has escaped the planted environment and invaded a sensitive and ecologically important natural woody environment in South Africa. This is only the second definitive case of a non‐native tree pathogen invading a natural ecosystem in the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号