首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative analysis of the state of microbial communities in kurgans, paleosols buried under them, and background surface soils in the dry steppe zone of the Lower Volga region has been performed. It is shown that the population density of microorganisms of various trophic groups in the kurgans is an order of magnitude lower than that in the A1 horizon of the corresponding buried paleosols and background surface soils within the areas of chestnut, light chestnut, and solonetzic soils. The respiration activity of the microbial communities in the upper layer of the kurgans is comparable with that in the A1 horizons of the background surface soils; it decreases in the deeper layers of the kurgans. In the A1 horizon of the buried paleosols, the respiration activity is approximately the same as in the deep layers of the kurgans. In the buried paleosols, the spatial variability in the numbers of soil microorganisms is approximately the same or somewhat higher than that in the background surface soils. The spatial variability in the respiration activity of the buried paleosols is two to four times higher than that in the background surface soils.  相似文献   

2.
3.
Micromorphological examination of the paleosols (50–10 ka) developed in alluvial fan deposits of the NW Himalayas and the bordering polygenetic soils (mainly Holocene) of the Gangetic Plains has been used to differentiate the pedosedimentary features indicating climatic changes during late Quaternary time. The paleosols within rapidly aggrading sediments of the alluvial fans of the Dehradun valley resulted in response to the reduced rate of sedimentation and climatic changes and correspond to the MIS3 and MIS2 stages. Distinctive micromorphic features of these paleosols provided the details of the prevalent pedogenesis in response to the paleoclimatic changes during 50 ka. Microfabrics of these paleosols show reorganization of the pedality from massive and/or subangular blocky to platy and prismatic structures, strong to very strong mobilization of the plasma, different types of textural pedofeatures along with faunal activities. These pedofeatures are indicative of cold-humid climate with subsequent change to even colder but drier conditions during the last Glaciation. Comparison of the micromorphological characters of the paleosols of the NW Himalayas and the polygenetic soils of the Gangetic Plains show the same degree of soil development indicating 5–10 ka pedogenic intervals in alluvial fans of the Dehradun Valley. However, the difference in their pedofeatures is attributed to different pedogenic environments. The paleosols of the Dehradun Valley show predominance of the illuvial features with superposed impure silty clay on earlier clay pedofeatures and banded clay fabric features without any pedogenic calcium carbonate. The bordering Gangetic Plains are covered with polygenetic soils developed on stable surfaces and are < 13.5 ka. These surficial soils developed during the period marked by deglaciation and correspond to MIS1 stage. These are defined by the juxtaposition of different illuvial pedofeatures along with pedogenic calcium carbonate. This study suggests that formation of the paleosols in NW Himalayas was mainly controlled by warmer intervals during the last glaciation and the movement along the adjacent thrusts. While fluctuating climate punctuated with humid–semiarid–humid conditions played a major role during the formation of soils on the Gangetic Plains in Holocene that favoured illuviation, calcification and dissolution of pedogenic carbonates in the polygenetic soils.  相似文献   

4.
中国古土壤与第四纪环境   总被引:7,自引:2,他引:7  
  相似文献   

5.
The Graulehme (grey loams) are relict soils or paleosols formed during the Tertiary or earlier but persisting locally on land surfaces. Thus, for example, the Permotriassic peneplain of the Rhinish Massif in Germany was mantled by deep soils during most of the Tertiary, but these were largely removed during a period of uplift and dissection in the Late Tertiary and the Pleistocene. Graulehme remained on the parts of the massif that lagged behind in the general uplift and therefore suffered little erosion. These paleosols now occupy the flat and low-lying positions in the landscape. Other components of the soil pattern are Rankers, acid brown earths and Rotlehme, the last also being paleosois but of limited extent.The Graulehme are high in silt and clay, plastic, virtually impermeable and low in base saturation and plant nutrients. Consequently, the soils are not suitable for cultivation generally. Exceptions are local bodies of the paleosols where materials from acid brown earths have been mixed with or mantle the Graulehme. The paleosols are suitable for pasture without drainage but require lime, complete fertilizer and modern management. The Graulehme are also suitable for forestry. Spruce is the best adapted species, but beech and oak can also be grown.  相似文献   

6.
The morphology of microbial cells was studied, and the biomass of microorganisms was estimated in the modern steppe soils and paleosols buried under kurgans in the Lower Volga region with the methods of electron microscopy. The shape and ultrastructure of the cells in the modern soils and paleosols were similar, though their average volumes differed (0.37 and 0.28 μm3, respectively). The portion of cells with a volume above 1 μm3 in the surface soils and paleosols reached 10.9 and 9.2%, respectively, and the portion of cells with a volume less than 0.01 μm3 in the surface soils was 10% lower than that in the buried paleosols. It was found that the cells of the microorganisms have an external organomineral layer, which increases the cell volume by 4.9 times, and this fact was taken into account in the calculation of the microbial biomass. In the chestnut and light chestnut paleosols, the latter comprised 1500 and 230 μg of C/g soil, respectively.  相似文献   

7.
Borisov  A. V.  Ganchak  T. V.  Demkina  T. S.  Demkin  V. A. 《Eurasian Soil Science》2006,39(1):S106-S111
The contents of fungal mycelium have been studied in paleosols of ancient archeological monuments and in surface soils within the steppe, dry steppe, and desert zones of European Russia, on the Stavropol, Privolzhskaya, and Ergeni uplands. The buried paleosols date back to the Bronze Age (4600–4500 and 4000–3900 BP), the Early Iron Age (1900–1800 BP), and the early 18th century (1719–1721). The fungal mycelium has been found in all these paleosols. The biomass of fungal mycelium varies from 2 to 124 μg/g of soil. The distribution patterns of fungal mycelium in the profiles of buried paleosols and surface soils have been identified. It is shown that the dark-colored mycelium is typical of the ancient paleosols. In some cases, the content of the dark-colored mycelium in them may reach 100% of the total mycelium biomass.  相似文献   

8.
黄淮海平原晚第四纪古土壤   总被引:4,自引:0,他引:4  
刘良梧 《土壤学报》1999,36(1):9-14
本文运用孢子花粉,古生物化石和放射性碳断代等手段,从土壤剖面层段的特征,土壤年龄和环境变化方面证明,分布于黄淮海平原的变性土不是现代土壤,而是古土壤,该古土壤自晚新世晚期以来经历了三次沉积-成土作用旋回,其土壤发育程度较弱,且是由钙质结核土层,暗色土层,表土层和(或)淤土层组成的一个叠置型古土壤。  相似文献   

9.
The physical and physicochemical properties and morphogenetic characteristics of the buried soddy gleyic and gleyed paleosols developed from the glaciolacustrine loamy sediments on the southern coast of the Finnish Gulf in the Late Pleistocene and Early Holocene (12–9 ka, calibrated) are considered. It is shown that the morphology and properties of these paleosols sharply differ from those of the enclosing gravelly sands deposited in the ancient basins. The latter substrates serve as the major type of soil-forming materials for the modern surface soils. The studied paleosols fill wedge-shaped structures dissecting the gravelly sediments. Their profiles are well preserved, though their normal horizontal orientation is disturbed; large soil blocks were displaced into the open wedges. The presence of these soils attests to the fact that the initial soil cover in the studied region was formed in the Late Glacial epoch soon after the retreat of the glacial sheet. The good degree of preservation of the paleopedogenic information recorded in the profiles of these paleosols is of great value for the paleoenvironmental reconstructions.  相似文献   

10.
The White River Plateau erosion surface (Miocene-Pliocene) at an elevation of approximately 2850 m (9500 ft) is dominated by weakly developed Holocene soils which commonly possess simple A-C horizonation. However, Pre-Wisconsin soils occur on the surface in isolated areas at both high and low topographic sites, most notably in Triangle Park. These Pre-Wisconsin soils consist of composite, polygenetic profiles having truncated, clayey subsoils which are overlain by stone or pebble lines, colluvium, soil creep, and probable local eolian deposits Truncation of the paleosols preceded development of the Holocene soils, which have formed on bedrock surfaces and have been superposed on the truncated, buried paleosols Soil distribution and character, in relation to structure of bedrock on the erosion surface, indicate that the surface as it now exists is structurally controlled and has a topography generated in late Tertiary to Pre-Wisconsin time.  相似文献   

11.
A sequence of five paleosol units (with seven individual paleosol profiles) buried in the Late Pleistocene (20–40 ka) deposits was studied at the Kostenki 14 (K14) key section in Voronezh oblast with the use of a set of morphological, physicochemical, and instrumental methods. The upper-lying paleosols differed from the lower-lying paleosols in the less pronounced gley features, stronger aggregation of the soil material, more significant accumulation of carbonates, and higher percentage of calcium humates and fulvates. These features attested to the higher aridity of the paleoclimate and the development of the upper-lying paleosols under grassy vegetation. Within the studied paleosol sequence, the most developed profiles were typical of the soils that formed 27–32 ka ago during the Bryansk interstadial. The good aggregation, the presence of features left by the soil fauna activity, the high magnetic susceptibility, and the morphology of the secondary carbonates in the studied paleosols suggest that they were formed under meadow-steppe vegetation in well-drained positions and resembled modern cryoarid soils.  相似文献   

12.
Eurasian Soil Science - Climatic conditions are an important factor affecting mineralogical and chemical compositions of soils and paleosols with the formation of paleosol archives that reflect...  相似文献   

13.
Y. Kato  T. Matsui 《Geoderma》1979,22(1):45-60
Paleosols in Japan consist of buried soils and relict soils. The former occur primarily in tephra deposit, whereas the latter occupy old land surfaces in various parts of the country. The buried soils affect construction of highways and urban development. The relict soils pose problems in forestry.The paleosols formed in tephra and buried by subsequent volcanic eruptions are chiefly Andosols with their low bulk densities, low solid ratios, high specific surfaces and high water losses. These characteristics are responsible for poor engineering performance of the paleosols and tephras. These have been especially troublesome in the Kanto plain near tokyo and around the Ashitaka Volcano. Some buried soils in tephra, as for example those in the San'in district, are exceptions to the general rule and have desirable properties for construction. Those tephras have clay fractions low in allophane and high in layer-silicate minerals.The buried soils have provided approximate ages of human artifacts through radiocarbon dating of humic horizons. Conversely, identification of artifacts found in buried soils has helped to bracket their ages.Paleosols that are relicts are chiefly members of a Red-Yellow group, many of which seem to be Udults (Ultisols). The soils apparently began forming in warmer past periods but still persist on the land surface. Such soils are strongly acid and very low in plant nutrients, with resulting low productivity when used for forestry or farming. Moreover, such soils are readily subject to erosion because of their landscape positions and poor plant cover.  相似文献   

14.
Paleosol studies were conducted on the Moskva-Oka interfluve in the center of the East European Plain. Three paleosol complexes were distinguished in the sequence of soil-loess deposits: the Mezin complex of the Late Pleistocene age and the Kamensk and Inzhavin complexes of the Middle Pleistocene. Each of them consisted of the paleosols of two phases: the earlier interglacial phase and the later interstadial phase. In some cases, the paleosols of these two phases were separated by a thin layer of sediments with distinct features of cryoturbation. Paleosols of the interstadial phases are represented by the dark-colored humus-rich meadowchernozemic and chernozem-like prairie soils. During the interglacial periods in the Middle and Late Pleistocene, the soils with pronounced eluvial-illuvial differentiation of their profiles were developed under forest cenoses. Data on the morphology of paleosols; their physical, chemical, and physicochemical properties (particle-size distribution, pH, humus, carbonates, amorphous and crystallized iron oxides, etc.); and their micro-morphological features studied in thin sections prepared from undisturbed soil monoliths make it possible to judge the character of the pedogenesis during different epochs.  相似文献   

15.
The size and structure of microbial pool in light chestnut paleosols and paleosolonetz buried under kurgans of the Middle Bronze Age 4600–4500 years ago (the burial mound heights are 45–173 cm), as well as in recent analogues in the desert-steppe zone (Western Ergeni, Salo-Manych Ridge), have been studied. In paleosol profiles, the living microbial biomass estimated from the content of phospholipids varies from 35 to 258% of the present-day value; the active biomass (responsive to glucose addition) in paleosols is 1?3 orders of magnitude lower than in recent analogues. The content of soil phospholipids is recalculated to that of microbial carbon, and its share in the total soil organic carbon is determined: it is 4.5–7.0% in recent soils and up to three times higher in the remained organic carbon of paleosols. The stability of microbial communities in the B1 horizon of paleosols is 1.3–2.2 times higher than in the upper horizon; in recent soils, it has a tendency to a decrease. The share of microorganisms feeding on plant residues in the ecological–trophic structure of paleosol microbial communities is higher by 23–35% and their index of oligotrophy is 3–5 times lower than in recent analogues. The size of microbial pool and its structure indicate a significantly higher input of plant residues into soils 4600–4500 years ago than in the recent time, which is related to the increase in atmospheric humidity in the studied zone. However, the occurrence depths of salt accumulations in profiles of the studied soils contradict this supposition. A short-term trend of increase in climate humidity is supposed, as indicated by microbial parameters (the most sensitive soil characteristics) or changes in the annual variation of precipitation (its increase in the warm season) during the construction of the mounds under study.  相似文献   

16.
Red soil-like layers intercalated amid basaltic flows from the Miocene-Pleistocene in the Galilee, Israel, were examined. Micromorphological features which can be related to (a) translocation of materials, and (b) biological activity, and are therefore of distinct pedological origin, identify two of the layers as paleosols. Absence of these features and preservation of the fabric of the parent basalt serve to identify the third layer as an edaphoid. A fourth layer consists of an edaphoid superimposed on a paleosol. The edaphoids are composed almost entirely of a dioctahedral smectite. In two of the paleosols dioctahedral smectites predominate. In the third kaolinite and haematite are present also in considerable amounts. The presence of quartz in the paleosols is attributed partly to precipitation from Si-rich solutions percolating the upper basalt layer and partly to aeolian contamination. In all the layers the free iron is predominantly in an anhydrous form. Similarity in the clay mineral composition of the Plio-Pleistocene paleosols with that of contemporaneous basaltic soils is taken to indicate similarity in climatic conditions of formation. Differentiation between paleosols and edaphoids cannot be made by the use of a single criterion but must be based on corroborative evidence derived from micromorphological and mineralogical examinations.  相似文献   

17.
Investigation of paleosols with different ages of burial mounds and the unique fortified city of Arkhaim in the steppe zone of the Southern Trans-Urals (Chelyabinsk region) is carried out. They are located on the remnants of the Big Karaganka River valley. The time of construction of archaeological monuments dates back to the Early Iron Age (Sarmatian Culture, 2300–2200 years ago) and Middle Bronze Age (Sintashta culture, 3800–4100 years ago). The soils are of medium and light loamy granulometric composition. Morphological, chemical, and mineralogical investigations of paleosols and background soils indicate that, in the Sarmatian time, the climatic conditions in the region were drier than currently, while during the Sintashta cultural development, the climate of the region was similar to the present one.  相似文献   

18.
The studies of recent soils and paleosols buried under kurgans created in the periods of long-term aridization (3000–2000 BC) and climatic optimum (13th–14th centuries AD) were performed in steppes of the southeastern part of the East European Plain (Privolzhskaya Upland and Caspian Lowland) in order to determine the rate of carbon dioxide production by the soil samples at the natural moisture and after moistening up to 60% of the total moisture capacity. The CO2 emission from the samples of paleosols corresponding to the period of climatic aridization in the Lower Volga River at their natural moisture status was lower than that from the samples of background surface soils, whereas the CO2 emission from the samples of paleosols buried under optimum climatic conditions was higher than that from the samples of background surface soils. After moistening of the samples, the increase in the CO2 emission from the paleosol samples depended on the actual humidity of the climate in the corresponding period.  相似文献   

19.
Diagnostic features of a catastrophic aridization of climate, desertification, and paleoecological crisis in steppes of the Lower Volga region have been identified on the basis of data on the morphological, chemical, and microbiological properties of paleosols under archeological monuments (burial mounds) of the Middle Bronze Age. These processes resulted in a certain convergence of the soil cover with transformation of zonal chestnut (Kastanozems) paleosols and paleosolonetzes (Solonetz Humic) into specific chestnut-like eroded saline calcareous paleosols analogous to the modern brown desert-steppe soils (Calcisols Haplic) that predominated in this region 4300–3800 years ago.1 In the second millennium BC, humidization of the climate led to the divergence of the soil cover with secondary formation of the complexes of chestnut soils and solonetzes. This paleoecological crisis had a significant effect on the economy of the tribes in the Late Catacomb and Post-Catacomb time stipulating their higher mobility and transition to the nomadic cattle breeding.  相似文献   

20.
The total microbial biomass (TMB) was assessed in the chestnut and light chestnut soils and in the paleosols under burial mounds (steppe kurgans) in the Lower Volga region on the basis of data on the organic carbon content in the extracted microbial fraction supplemented with the data on the extraction completeness as a conversion coefficient. The completeness of the microbial fraction extraction was determined by direct counting of the microbial cells and colony-forming units (on plates with soil agar). The total microbial biomass varied from 400 to 6600 μg of C/soil. Its values in the buried soils were 3–5 times lower than those in the surface soils. The TMB distribution in the buried chestnut soil profile was close to that in its modern analogue (with the minimum in the B1 horizon). In the buried light chestnut paleosols, the TMB values usually increased down the profile; in the recent light chestnut soils, the maximum TMB values were found in the uppermost horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号