首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Climate change is not occurring over a homogeneous landscape and the quantity and quality of available land cover will likely affect the way species respond to climate change. The influence of land cover on species’ responses to climate change, however, is likely to differ depending on habitat type and composition.

Objectives

Our goal was to investigate responses of forest and grassland breeding birds to over 20 years of climate change across varying gradients of forest and grassland habitat. Specifically, we investigated whether (i) increasing amounts of available land cover modify responses of forest and grassland-dependent birds to changing climate and (ii) the effect of increasing land cover amount differs for forest and grassland birds.

Methods

We used Bayesian spatially-varying intercept models to evaluate species- and community-level responses of 30 forest and 10 grassland birds to climate change across varying amounts of their associated land cover types.

Results

Responses of forest birds to climate change were weak and constant across a gradient of forest cover. Conversely, grassland birds responded strongly to changing climatic conditions. Specifically, increasing temperatures led to higher probabilities of localized extinctions for grassland birds, and this effect was intensified in regions with low amounts of grassland cover.

Conclusions

Within the context of northeastern forests and grasslands, we conclude that forests serve as a possible buffer to the impacts of climate change on birds. Conversely, species occupying open, fragmented grassland areas might be particularly at risk of a changing climate due to the diminished buffering capacity of these ecosystems.
  相似文献   

2.

Context

Although biodiversity in cities is essential to ensure the healthy functioning of ecosystems and biosecurity over time, biodiversity loss resulting from human interventions in land cover patterns is widespread in urban landscapes. In the Southern Hemisphere, climate change is likely to accelerate the process of landscape upheavals, and consequently biodiversity loss.

Objectives & Methods

The aim of this research is to test the potentials of landscape pattern composition and configuration in safeguarding indigenous avifauna against the local impacts of climate change in urban landscapes, with reference to New Zealand. To build up a platform for landscape pattern interpretation, the literature was reviewed and semi-structured interviews with six subject-matter experts were conducted to provide information about the most important avifauna in the study area, key information on their ecological traits and niches, possible impacts of climate change on their primary habitats, and spatial requirements for ongoing species survival as the climate continues to change. A spatial analysis of land cover patterns was undertaken in Wellington, New Zealand using GIS and FRAGSTATS.

Results

Although there are still opportunities for biodiversity conservation in the study area, the current land cover patterns are unlikely to safeguard the selected species against climate change impacts.

Conclusions

Eight implications for avifauna persistence under climate change are discussed for the first time in relation to a New Zealand context. These implications can give rise to a higher level of informed decision-making on a wide range of practices for biodiversity conservation related to uncertainties associated with climate change.
  相似文献   

3.

Context

Loss and fragmentation of semi-natural grasslands has critically affected many butterfly species in Europe. Habitat area and isolation can have strong effects on the local biodiversity but species may also be strongly affected by the surrounding matrix.

Objectives

We explored how different land cover types in the landscape explained the occurrence of butterfly species in semi-natural grasslands.

Methods

Using data from 476 semi-natural grasslands in Sweden, we analysed the effect of matrix composition on species richness and occurrence. Additionally, we analysed at which spatial scales butterflies responded to matrix types (forests, semi-natural grasslands, arable land and water).

Results

Forest cover showed the strongest positive effect on species richness, followed by semi-natural grasslands. Forest also had a positive effect on red-listed species at local scales. Responses to matrix composition were highly species-specific. The majority of the 30 most common species showed strong positive responses to the amount of forest cover within 200–500 m. There was a smaller group of species showing a positive response to arable land cover within 500–2000 m. Thirteen species showed positive responses to the amount of semi-natural grasslands, generally at larger scales (10–30 km).

Conclusions

Our study showed that surrounding forest is beneficial for many grassland butterfly species and that forests might mitigate the negative effects of habitat loss caused by agricultural intensification. Also, semi-natural grasslands were an important factor for species richness at larger spatial scales, indicating that a landscape consisting mainly of supporting habitats (i.e. forests) are insufficient to sustain a rich butterfly fauna.
  相似文献   

4.

Context

Natural regenerating forests are rapidly expanding in the tropics. Forest transitions have the potential to restore biodiversity. Spatial targeting of land use policies could improve the biodiversity benefits of reforesting landscapes.

Objective

We explored the relative importance of landscape attributes in influencing the potential of tree cover increase to restore native woody plant biodiversity at the landscape scale.

Methods

We developed land use scenarios that differed in spatial patterns of reforestation, using the Pangor watershed in the Ecuadorian Andes as a case study. We distinguished between reforestation through natural regeneration of woody vegetation in abandoned fallows and planted forests through managed plantations of exotic species on previously cultivated land. We simulated the restoration of woody plant biodiversity for each scenario using LANDIS-II, a process-based model of forest dynamics. A pair-case comparison of simulated woody plant biodiversity for each scenario was conducted against a random scenario.

Results

Species richness in natural regenerating fallows was considerably higher when occurring in: (i) close proximity to remnant forests; (ii) areas with a high percentage of surrounding forest cover; and (iii) compositional heterogeneous landscapes. Reforestation at intermediate altitudes also positively affected restoration of woody plant species. Planted exotic pine forests negatively affected species restoration.

Conclusions

Our research contributes to a better understanding of the recolonization processes of regenerating forests. We provide guidelines for reforestation policies that aim to conserve and restore woody plant biodiversity by accounting for landscape attributes.
  相似文献   

5.

Context

Amphibians are declining worldwide and land use change to agriculture is recognized as a leading cause. Argentina is undergoing an agriculturalization process with rapid changes in landscape structure.

Objectives

We evaluated anuran response to landscape composition and configuration in two landscapes of east-central Argentina with different degrees of agriculturalization. We identified sensitive species and evaluated landscape influence on communities and individual species at two spatial scales.

Methods

We compared anuran richness, frequency of occurrence, and activity between landscapes using call surveys data from 120 sampling points from 2007 to 2009. We evaluated anuran responses to landscape structure variables estimated within 250 and 500-m radius buffers using canonical correspondence analysis and multimodel inference from a set of candidate models.

Results

Anuran richness was lower in the landscape with greater level of agriculturalization with reduced amount of forest cover and stream length. This pattern was driven by the lower occurrence and calling activity of seven out of the sixteen recorded species. Four species responded positively to the amount of forest cover and stream habitat. Three species responded positively to forest cohesion and negatively to rural housing. Two responded negatively to crop area and diversity of cover classes.

Conclusions

Anurans within agricultural landscapes of east-central Argentina are responding to landscape structure. Responses varied depending on species and study scale. Life-history traits contribute to responses differences. Our study offers a better understanding of landscape effects on anurans and can be used for land management in other areas experiencing a similar agriculturalization process.
  相似文献   

6.

Context

Edge effects due to habitat loss and fragmentation have pervasive impacts on many natural ecosystems worldwide.

Objective

We aimed to explore whether, in tandem with the resource-based model of edge effects, species feeding-guild and flight-capacity can help explain species responses to an edge.

Methods

We used a two-sided edge gradient that extended from 1000 m into native Eucalyptus forest to 316 m into an exotic pine plantation. We used generalised additive models to examine the continuous responses of beetle species, feeding-guild species richness and flight-capable group species richness to the edge gradient and environmental covariates.

Results

Phytophagous species richness was directly related to variation in vegetation along the edge gradient. There were more flight-capable species in Eucalyptus forest and more flightless species in exotic pine plantation. Many individual species exhibited multiple-peaked edge-profiles.

Conclusions

The resource based model for edge effects can be used in tandem with traits such as feeding-guild and flight-capacity to understand drivers of large scale edge responses. Some trait-groups can show generalisable responses that can be linked with drivers such as vegetation richness and habitat structure. Many trait-group responses, however, are less generalisable and not explained by easily measured habitat variables. Difficulties in linking traits with resources along the edge could be due to unmeasured variation and indirect effects. Some species’ responses reached the limits of the edge gradient demonstrating the need to examine edge effects at large scales, such as kilometres.
  相似文献   

7.

Context

Landscape modification is an important driver of biodiversity declines, yet we lack insight into how ongoing landscape change and legacies of historical land use together shape biodiversity.

Objectives

We examined how a history of agricultural land use and current forest fragmentation influence the abundance of red-backed salamanders (Plethodon cinereus). We hypothesized that historical agriculture and fragmentation cause changes in habitat quality and landscape structure that limit abundance.

Methods

We measured salamander abundance at 95 forested sites in New York, USA, and we determined whether sites were agricultural fields within the last five decades. We used a structural equation model to estimate relationships between historical agriculture and salamander abundance mediated by changes in forest vegetation, microclimate, and landscape structure.

Results

Historical agriculture affected salamander abundance by altering forest vegetation at a local scale and forest cover at a landscape scale. Abundance was lowest at post-agricultural sites with low woody vegetation, leaf litter depth, and canopy cover. Post-agricultural sites had limited forest cover in the surrounding landscape historically, and salamander abundance was positively related to historical forest cover, suggesting that connectivity to source populations affects colonization of regenerating forests. Abundance was also negatively related to current forest fragmentation.

Conclusions

Historical land use can have legacy effects on animal abundance on par with effects of ongoing landscape change. We showed that associations between animal abundance and historical land use can be driven by altered site conditions and surrounding habitat area, indicating that restoration efforts should consider local site conditions and landscape context.
  相似文献   

8.

Context

Habitat loss and habitat fragmentation negatively affect amphibian populations. Roads impact amphibian species through barrier effects and traffic mortality. The landscape variable ‘accessible habitat’ considers the combined effects of habitat loss and roads on populations.

Objectives

The aim was to test whether accessible habitat was a better predictor of amphibian species richness than separate measures of road effects and habitat loss. I assessed how accessible habitat and local habitat variables determine species richness and community composition.

Methods

Frog and tadpole surveys were conducted at 52 wetlands in a peri-urban area of eastern Australia. Accessible habitat was delineated using a highway. Regressions were used to examine relationships between species richness and eleven landscape and local habitat variables. Redundancy analysis was used to examine relationships between community composition and accessible habitat and local habitat variables.

Results

Best-ranked models of species richness included both landscape and local habitat variables. There were positive relationships between species richness and accessible habitat and distance to the highway, and uncertain relationships with proportion cover of native vegetation and road density. There were negative relationships between species richness and concreted wetlands and wetland electrical conductivity. Four species were positively associated with accessible habitat, whereas all species were negatively associated with wetland type.

Conclusions

Barrier effects caused by the highway and habitat loss have negatively affected the amphibian community. Local habitat variables had strong relationships with species richness and community composition, highlighting the importance of both availability and quality of habitat for amphibian conservation near major roads.
  相似文献   

9.

Context

The landscape heterogeneity hypothesis states that increased heterogeneity in agricultural landscapes will promote biodiversity. However, this hypothesis does not detail which components of landscape heterogeneity (compositional or configurational) most affect biodiversity and how these compare to the effects of surrounding agricultural land-use.

Objectives

Our objectives were to: (1) assess the influence of the components of structural landscape heterogeneity on taxonomic diversity; and (2) compare the effects of landscape heterogeneity to those of different types of agricultural land-use in the same landscape across different taxonomic groups.

Methods

We identified a priori independent gradients of compositional and configurational landscape heterogeneity within an agricultural mosaic of north-eastern Swaziland. We tested how bird, dung beetle, ant and meso-carnivore richness and diversity responded to compositional and configurational heterogeneity and agricultural land-use across five different spatial scales.

Results

Compositional heterogeneity best explained species richness in each taxonomic group. Bird and ant richness were both positively correlated with compositional heterogeneity, whilst dung beetle richness was negatively correlated. Commercial agriculture positively influenced bird species richness and ant diversity, but had a negative influence on dung beetle richness. There was no effect of either component of heterogeneity on the combined taxonomic diversity or richness at any spatial scale.

Conclusions

Our results suggest that increasing landscape compositional heterogeneity and limiting the negative effects of intensive commercial agriculture will foster diversity across a greater number of taxonomic groups in agricultural mosaics. This will require the implementation of different strategies across landscapes to balance the contrasting influences of compositional heterogeneity and land-use. Strategies that couple large patches of core habitat across broader scales with landscape structural heterogeneity at finer scales could best benefit biodiversity.
  相似文献   

10.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

11.

Context

East African ecosystems are characterized by the migrations of large herbivores that are highly vulnerable to the recent development of anthropogenic land use change.

Objectives

We analyzed land cover changes in the Kenyan-Tanzanian borderlands of the greater Amboseli ecosystem to evaluate landscape connectivity using African elephants as an indicator species.

Methods

We used multi-temporal Landsat imagery and a post classification approach to monitor land cover changes over a 43-year period. GIS based methods were accompanied by a literature review for spatial data on land cover changes and elephant migrations.

Results

Land cover changed considerably between 1975 and 2017. Wood- and bushlands declined by 16.3% while open grasslands increased throughout the study region (+?10.3%). Agricultural expansion was observed (+?12.2%) occupying important wildlife habitats and narrowing migration corridors. This development has led to the isolation of Nairobi National Park which was previously part of a large contiguous ecosystem. Eight migration corridors were identified of which only one is formally protected. Two others are almost completely blocked by agriculture and three are expected to become endangered under continuing land use changes.

Conclusions

Landscape connectivity is still viable for this ecosystem (except for Nairobi National Park). However, the current situation is very fragile as anthropogenic land use changes are threatening most of the identified large mammal migration corridors. Sustainable land use planning with regard to important wildlife habitats and connecting corridors is a crucial task for further conservation work to safeguard a viable future for wildlife populations in the Kenyan-Tanzanian borderlands.
  相似文献   

12.

Context

Urbanization has altered many landscapes around the world and created novel contexts and interactions, such as the rural–urban interface.

Objectives

We sought to address how a forest patch’s location in the rural–urban interface influences which avian species choose to occur within the patch. We predicted a negative relationship between forest bird richness and urbanization surrounding the patch, but that it would be ameliorated by the area of tree cover in the patch and matrix, and that total tree-cover area would be more influential on forest bird species richness than area of tree cover in the focal patch alone.

Methods

We conducted bird surveys in 44 forest patches over 2 years in Southeast Michigan and evaluated bird presence and richness relative to patch and matrix tree cover and development density.

Results

We observed 43 species, comprised of 21 Neotropical migrants, 19 residents, and three short-distance migrants. Focal-patch tree-cover area and the matrix tree-cover area were the predominant contributors to a site’s overall forest-bird species richness at the rural–urban interface, but the addition of percent of over-story vegetation and percentage of deciduous tree cover influenced the ability of the patches to support forest species, especially Neotropical migrants. Development intensity in the matrix was unrelated to species richness and only had an effect in four species models.

Conclusions

Although small forest patches remain an important conservation strategy in developed environments, the influence of matrix tree cover suggests that landscape design decisions in surrounding matrix can contribute conservation value at the rural–urban interface.
  相似文献   

13.

Context

Revealing the interaction between landscape pattern and urban land surface temperature (LST) can provide insight into mitigating thermal environmental risks. However, there is no consensus about the key landscape indicators influencing LST.

Objectives

This study sought to identify the key landscape indicators influencing LST considering a large number of landscape pattern variables and multiple scales.

Methods

This study applied ordinary least squares regression and partial least squares regression to explore a combination of landscape metrics and identify the key indicators influencing LST. A total of 49 Landsat images of the main city of Shenzhen, China were examined at 13 spatial scales.

Results

The landscape composition indicators derived from biophysical proportion, a new metric developed in this study, more effectively determined LST variation than those derived from land cover proportion. Area-related landscape configuration indicators independently characterized LST variation, but did not give much more new information beyond that given by land cover proportion. Shape-related landscape configuration indicators were effective in combination with land cover proportion, but their importance was uncertain when temporal and spatial scales varied.

Conclusions

The influence of landscape configuration on LST exists but should not be overestimated. Comparison of numerous variables at multiple spatiotemporal scales can help identify the influence of multiple landscape characteristics on LST variation.
  相似文献   

14.

Context

Land use and land cover (LULC) change is a major part of environmental change. Understanding its long-term causes is a major issue in landscape ecology.

Objectives

Our aim was to characterise LULC transitions since 1860 and assess the respective and changing effects of biophysical and socioeconomic drivers on forest, arable land and pasture in 1860, 1958 and 2010, and of biophysical, socioeconomic and distance from pre-existing forest on forest recovery for the two time intervals.

Methods

We assessed LULC transitions by superimposing 1860, 1958 and 2010 LULCs using a regular grid of 1 × 1 km points, in a French Mediterranean landscape (195,413 ha). We tested the effects of drivers using logistic regressions, and quantified pure and joint effects by deviance partitioning.

Results

Over the whole period, the three main LULCs were spatially structured according to land accessibility and soil productivity. LULC was driven more by socioeconomic than biophysical drivers in 1860, but the pattern was reversed in 2010. A widespread forest recovery mainly occurred on steeper slopes, far from houses and close to pre-existing forest, due to traditional practice abandonment. Forest recovery was better explained by biophysical than by socioeconomic drivers and was more dependent on distance from pre-existing forest between 1958 and 2010.

Conclusions

Our results showed a shift in drivers of LULC and forest recovery over the last 150 years. Contrary to temperate regions, the set-aside of agricultural practices on difficult land has strengthened the link between biophysical drivers and LULC distribution over the last 150 years.
  相似文献   

15.

Context

In agricultural landscapes, riparian forests are used as a management tool to protect stream ecosystems from agricultural activities. However, the ability of managers to target stream protection actions is limited by incomplete knowledge of scale-specific effects of agriculture in riparian corridor and catchment areas.

Objectives

We evaluated scale-specific effects of agricultural cover in riparian corridor and catchment areas on stream benthic macroinvertebrate (BMI) communities to develop cover targets for agricultural landscapes.

Methods

Sixty-eight streams assigned to three experimental treatments (Forested Riparian, Agricultural Riparian, Agricultural Catchment) were sampled for BMIs. Ordination and segmented regression were used to assess impacts of agriculture on BMI communities and detect thresholds for BMI community metrics.

Results

BMI communities were not associated with catchment agricultural cover where the riparian corridor was forested, but were associated with variation in catchment agriculture where riparian forests had been converted to agriculture. Trait-based metrics showed threshold responses at greater than 70% agricultural cover in the catchment. Increasing agriculture in the riparian corridor was associated with less diverse and more tolerant BMI communities. Eight metrics exhibited threshold responses ranging from 45 to 75% agriculture in the riparian corridor.

Conclusions

Riparian forest effectively buffered streams from agricultural activity even where catchment agriculture exceeds 80%. We recommend managers prioritize protection of forested riparian corridors and that restore riparian corridors where agricultural cover is near identified thresholds be a secondary priority. Adoption of catchment management actions should be effective where the riparian corridor has been converted to agriculture.
  相似文献   

16.

Context

The relative importance of habitat area and connectivity for species richness is often unknown. Connectivity effects may be confounded with area effects or they may be of minor importance as posited by the habitat-amount hypothesis.

Objectives

We studied effects of habitat area and connectivity of linear landscape elements for plant species richness at plot level. We hypothesized that connectivity of linear landscape elements, assessed by resistance distance, has a positive effect on species richness beyond the effect of area and, further, that the relative importance of connectivity varies among groups of species with different habitat preferences and dispersal syndromes.

Methods

We surveyed plant species richness in 50 plots (25 m2) located on open linear landscape elements (field margins, ditches) in eight study areas of 1 km2 in agricultural landscapes of Northwest Germany. We calculated the area of linear landscape elements and assessed their connectivity using resistance distance within circular buffers (500 m) around the plots. Effects of area and connectivity on species richness were modelled with generalised linear mixed models.

Results

Species richness did not increase with area. Resistance distance had significant negative effects on total richness and on the richness of typical species of grasslands and wetlands. Regarding dispersal syndromes, resistance distance had negative effects on the richness of species with short-distance, long-distance and aquatic dispersal. The significant effects of resistance distance indicated that species richness increased with connectivity of the network of linear landscape elements.

Conclusions

Connectivity is more important for plant species richness in linear landscape elements than area. In particular, the richness of plant species that are dispersal limited and confined to semi-natural habitats benefits from connective networks of linear landscape elements in agricultural landscapes.
  相似文献   

17.

Context

Changes in land use have disruptive effects on community structure, causing many species to disappear, though a few thrive and become pests.

Objectives

To gain understanding on how anthropogenic activity changes spatial patterns of native species diversity while favoring pests, we conducted rapid biodiversity assessments of dacine fruit flies across eight regions in Southeast Asia.

Methods

Male lure traps were maintained for 2 days along transects at 233 sites, in forest, agricultural and urban environments.

Results

A total of 8393 individuals were collected, belonging to 57 described and 4 new or unidentified species. The majority (78 %) of individuals belonged to 14 pest species, dominated by Bactrocera dorsalis (Hendel). The 57 species represent 38 % of those recorded from the region, indicating effective sampling. Individual flies were collected in highest numbers in urban and agricultural sites, but species diversity was low. Forest samples yielded fewer specimens but highest species diversity, suggesting a shift in community structure after disturbance, benefiting a few pest species at the expense of the broader community, even in the same genus and ecological guild.

Conclusions

Dacine fruit flies may be useful in assessing habitat quality and bait systems permit the execution of rapid biodiversity and multi-species conservation assessments. Our results apply to broader patterns concerning biodiversity loss and the emergence of pest species under increasingly intensive land use gradients, and demonstrate the remarkable loss of biodiversity over very narrow distances as forest is converted into agricultural use, hence the importance in maintaining a mosaic of native habitats.
  相似文献   

18.

Context

The application of regional-level airborne lidar (light detection and ranging) data to characterize habitat patches and model habitat connectivity over large landscapes has not been well explored. Maintaining a connected network of habitat in the presence of anthropogenic disturbances is essential for regional-level conservation planning and the maintenance of biodiversity values.

Objectives

We quantified variation in connectivity following simulated changes in land cover and contrasted outcomes when different conservation priorities were emphasized.

Methods

First, we defined habitat patches using vegetation structural attributes identified via lidar. Second, habitat networks were constructed for different forest types and assessed using network connectivity metrics. And finally, land cover change scenarios were simulated using a series of habitat patch removals, representing the impact of implementing different spatial prioritization schemes.

Results

Networks for different forest structure types produced very different patch distributions. Conservation scenarios based on different schemes led to contrasting changes during land cover change simulations: the scheme prioritizing only habitat area resulted in immediate near-term losses in connectivity, whereas the scheme considering both habitat area and their spatial configurations maintained the overall connectivity most effectively. Adding climate constraints did not diminish or improve overall connectivity.

Conclusions

Both habitat area and habitat configuration should be considered in dynamic modeling of habitat connectivity under changing landscapes. This research provides a framework for integrating forest structure and cover attributes obtained from remote sensing data into network connectivity modeling, and may serve as a prototype for multi-criteria forest management and conservation planning.
  相似文献   

19.

Context

Understanding how landscape patterns affect species diversity is of great importance in the fields of biogeography, landscape ecology and conservation planning, but despite the rapid advance in biodiversity analysis, investigations of spatial effects on biodiversity are still largely focused on species richness.

Objectives

We wanted to know if and how species richness and species composition are differentially driven by the spatial measures dominating studies in landscape ecology and biogeography. As both measures require the same limited presence/absence information, it is important to choose an appropriate diversity measure, as differing results could have important consequences for interpreting ecological processes.

Methods

We recorded plant occurrences on 112 islands in the Baltic archipelago. Species richness and composition were calculated for each island, and the explanatory power of island area and habitat heterogeneity, distance to mainland and structural connectivity at three different landscape sizes were examined.

Results

A total of 354 different plant species were recorded. The influence of landscape variables differed depending on which diversity measure was used. Island area and structural connectivity determined plant species richness, while species composition revealed a more complex pattern, being influenced by island area, habitat heterogeneity and structural connectivity.

Conclusions

Although both measures require the same basic input data, species composition can reveal more about the ecological processes affecting plant communities in fragmented landscapes than species richness alone. Therefore, we recommend that species community composition should be used as an additional standard measure of diversity for biogeography, landscape ecology and conservation planning.
  相似文献   

20.

Context

Butterflies have been continuously declining for several decades in Europe due to many factors, such as farming intensification. Rural landscapes have undergone dramatic changes leading to homogenized landscapes.

Objectives

In this study, we investigated how landscape composition, structure and connectivity impact butterfly communities according to their ecological and biological traits.

Methods

We made use of 5669 Lepidoptera surveys performed at 4525 distinct locations in lowland Central France. We considered 19 ecological groups based on habitat specialization, mobility, diet, voltinism or overwintering strategy. Generalized linear mixed-effect models were used to relate the species richness of these groups to landscape variables defined in circular zones with radius from 250 m to 5 km.

Results

Richness of most species groups co-varied with landscape variables, with the exception of mobile, imago-overwintering, monophagous and polyphagous species. Habitat proportion explained more variation in butterfly diversity than habitat connectivity or habitat diversity. Moreover, the best proportion models were generally found for the 250-m circular zones. Thirteen species groups were disfavored by cropland amount. Except for forest specialists and high mobility group, no other group was more diverse in landscapes dominated by a single land cover type. Rather, for total diversity and 14 groups, species richness peaked for forest proportions varying between 40 and 80%, and for total diversity and nine groups for grassland proportions ranging from 30 to 60%.

Conclusions

These results indicate that landscape homogenization is contributing to the ongoing decline in butterflies, and support preserving and (re)creating mosaics of grasslands and forests.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号